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NOTES ON THE LIGHTLIKE HYPERSURFACES
ALONG SPACELIKE SUBMANIFOLDS

ITPO CBITJIONIOAIGHI I'TTTIEPITOBEPXHI
B31OBX MNPOCTOPOBONIOAIBHUX ITIJIMHOI'OBU/IIB

In the light of the method of construction of lightlike hypersurfaces along spacelike submanifolds, we give a relation between
the second fundamental form of a spacelike submanifold and the screen second fundamental form of the corresponding
lightlike hypersurface. In addition, we investigate the conditions for a lightlike hypersurface of this kind to be screen
conformal.

V cBiTii MeToAy MOOYAOBH CBITIONOAIOHNX T1IIEPIIOBEPXOHD Y3IOBXK MPOCTOPOBONONIOHNX TiIMHOTOBHIIB OTPUMAHO CIiB-
BIZIHOIICHHS MK Jpyroto GyHIaMEeHTaIBHOI0 (POPMOIO IIPOCTOPOBOIOiOHOTO MiIMHOTOBHY Ta €KPaHHOIO APYTOI0 (yHIa-
MEHTaIBHOI0 (OPMOIO BiIIOBITHOT CBITIIONOAIOHOI rinepmoBepxHi. KpiM Toro, BUBYEHO YMOBH, 32 SKMX Taka CBITIONOAIOHA
riMeprnoBepxHs € eKPAHHO KOH(POPMHOIO.

1. Introduction. The theory of lightlike hypersurfaces has a special place in differential geometry
and theoretical physics. In the general relativity, lightlike hypersurfaces play an important role since
they are considered as the models for different horizon types of black holes. A black hole is a region
of spacetime which contains a huge amount of mass compacted into an extremely small volume. The
gravity inside a black hole is so strong that, even light with a remarkable speed can not escape, see
[1] . Since Einstein’s theory of gravitation was first published in 1915, so many research papers on
the mathematical and physical theory of black holes, have been published. For further information
about black holes and applications of lightlike hypersurfaces, see [2, 4, 6].

The lightlike hypersurfaces along spacelike submanifolds was introduced by Izumiya and Sato in
[7]. They constructed the lightlike hypersurfaces as ruled hypersurfaces based on spacelike subman-
ifolds with lightlike rulings. There are several types of ruled surfaces in the Lorentz—Minkowski
space (see, for example, [1, 8]). In this paper, we investigate the geometric properties of the lightlike
hypersurfaces along spacelike submanifolds defined by

LHu(p,&,t) = X (u) + tLG(n")(u, ).

Since we have degenerate metric on the tangent space, considering a lightlike hypersurface together
with its screen distribution provides simplicity. Thus, we define the screen second fundamental form
and give the lightcone Weingarten equations for the screen distribution of the lightlike hypersurface
mentioned above. Then we find a relation between the second fundamental form of the spacelike
submanifold and the screen second fundamental form of corresponding lightlike hypersurface. Also,
we put forward the conditions to be screen conformal of the lightlike hypersurface. As an example,
we show that the event horizon in Schwarzschild spacetime is actually the lightlike hypersurface
along a spacelike submanifold. Then we support our theory with some other examples.
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2. Preliminaries. Let z = (20,21,...,2n), ¥ = (Y0, Y1, - -, Yn) € R*T! then the pseudoscalar
product of x and y is defined by

n
(z,y) = —zoyo + Z ZiYi-
i=1

(]R”H, {, >) is called Lorentz— Minkowski (n-+1)-space and represented by }R’f“. A non-zero vector
T e R?H is spacelike, timelike or lightlike if (x,z) > 0, (x,z) < 0 or (xz,x) = 0, respectively. The
norm of a non-null vector is defined by ||z|| = 1/|{(z, x)|. The canonical projection 7 : R?H — R™,
where 7 (zg,x1,...,2y) = (21,...,2y). The lightcone with vertex a is defined as follows:

LC, = {$: (.’L‘(),.ZUl,...,iL'n) ERErlH_l ‘ <$_a‘7$_a> :0}

and we denote LC* = LC(\{0}.

Let X: U — R?H be a spacelike embedding of codimension &, where U C R? is an open sub-
set. Take N, M as the pseudonormal space of M at p in R?H, which is a k-dimensional Lorentzian
subspace of T,R}*!. On the pseudonormal space N, M, there are following pseudospheres:

NP(M’ 71) = {U € NPM | <7),U> = 71}5
NP(M7 1) = {U € NPM | <U,U> = 1}7
so that it can be written the following unit spherical normal bundles over M :

N(M;-1) =] Np(M;—1) and N(M;1) = UPGM N,(M;1).

peEM

There is always a future directed unit timelike normal vector field n” (u) € N,(M;—1). One

can also choose a pseudonormal section n°(u) € (Sp {nT(u)})L N N(M;1) at least locally. Then
(n¥ n%) =1 and (n°,nT) = 0. A (k — 1)-dimensional spacelike unit sphere is defined by

Ni(M)y[n"] = {€ € Np(M; 1) | (¢,n") = 0}
and a spacelike unit k£ — 2 spherical bundle over M is defined by

Ni(M)[n"] = [ Ni(M),[n"].
peEM

The vector field n” + n” is taken as a lightlike normal vector field along M, see [7].
Definition 1. The mapping LG(n™): Ny(M)[n"] — LC*, defined by

LG(n")(u,€) = n'(u) + ¢,

is called the lightcone Gauss image of N1(M)[n™] [7].
Definition 2. A4 hypersurface

LHy(n"): Ny(M)[nT] x R — R

given by LH(p,&,t) = X(u) + t(nT + €)(u) = X(u) + tLG(nT)(u,€), where p = X (u), is
called the lightlike hypersurface along M relative to n™ [7].
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3. Lightlike hypersurfaces. In the light of the information given in [5], we consider the lightlike
hypersurface along a spacelike submanifold M = X (U) in ]R?'H mentioned in the previous section.
Take LHys (u,&,t) =Y (u,€,t) to ease the calculations. If we take U = Ny (M)[n”] x R, we can

represent the hypersurface by Y (U) = M. It is easy to see that the dimension of TpM = n and
M is a submanifold of M. We can find the basis of TpM by taking the partial derivatives as

Yuz(uafat):Xul(u)‘i't(ngz—Fgul) (U), izl,...,s,
vam(uvgat) :tfgm(u), m=1,....,k—2, (1)
Yi(u,&,t) = (n” +&)(w),

where u € U and £ € N1(M)[n”]. Here we note that the sections Y,,, and Y, are spacelike and Y;
is lightlike.

From now, we assume a; = uy,...,05s = Ug, Q541 = &1y--.,0n-1 = Ex—2, an, = t for the
casement of the calculations. We have a pseudo-Riemannian metric on M = Y (U) which is the
lightcone first fundamental form defined by ds? = Zj_l Gijda;daj, where g;; = (Yy,, Yaj>. Now
let V € Rad(T'M) and we choose a screen distribution of M as S(TM) = Sp{Y,,, V¢, }. Then
the lightcone second fundamental form with respect to the pair (nT, & ) of § (TM ) is

hij(n") = (=V,,Y,,), where i=1,...,n, j=1,...,n—1 )

We know that the radical distribution of the lightlike hypersurface M is Rad (TM ) = Sp{Y;}. If
we use the global null splitting theorem [1], to figure out the lightcone Weingarten operator of the
screen distribution S(T'M) of M, we can give the following theorem.

Theorem 1. The lightcone Weingarten equations of the screen distribution S (TM ) of M are
n—1 .
H(Val):—zh‘z(nT)YaJ7 2.217_.',”7
j=1

where ﬁf(nT) = <ﬁlk(nT)> (%), g" = (§kj)_1 and 11 is the canonical projection ofx(TM) on
x(S (T M ))
Corollary 1. Let M be the lightlike hypersurface along a spacelike submanifold M. Then the

following equation gives the relation between the lightcone second fundamental forms of S (TM )
and M :

s 9 n—1
- ~ t -
hia = Y 1| gap — 2thas + 2 > hbhiag |
B=1 l,g=1

where t=1,... ., na=1,...,s and A € R.

4. Screen conformality. Since the screen distribution is non degenerate, it is very important
when we investigate a lightlike hypersurface. Screen conformality provides getting information about
the structure of the lightlike hypersurface with the help of its screen distribution. In the following
theorem, we use the components of the lightlike vector field in the radical distribution to show the
screen conformality of a lightlike hypersurface. Hence, this method makes remarkable simplicity.
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Theorem 2. A lightlike hypersurface M along a spacelike submanifold M is screen conformal,

. d(¢&£nT)
i (" — € £0 ana 2EET)
Oa; )
Proof. From now, we will denote the metric and connection of R’f“ by (,) and V, respectively.

1
There is a section N € tr (T'M) which is given by N = 5(5 —nT) and it ensures (N, N) = 0,
(N,Y,,) = (N,Yg,) =0, (N,Y;) = 1. Since B(X,Y;) = 0, see [1], where X € x(M), we have

_ . n 0 n 0
VxY; = VxY;. We can write Y; = ZAZl(n + §) Ban and X = Zj:1 xjaTLj, then we get

=0, wherei# j,i,j=1,...,n

- = T+ 9" 0
VXYt:Zij a; Oaa
J

A=1j—1 A
) o T\t
Since oE+n7) =0, where i # j, i,j = 1,...,n, we denote
Oa;
B o T 1 o T n
VyY =27 = <x1(n+§)7'“7$n(n+§))7
al (079

where Z € x(T'M). Therefore, we obtain
AL X + 7(X)Y; + VxY; =0,

It can be seen that 7(X) = 0 by using the equations (VxN,Y;) = 7(X), see [3] and (1). Then
Ay X = —PZ, where P is the projection on S(T'M). For every X € x(S(T'M)) we can write

a9
X = ZA 1X dan’ Then we get

A=1
B 3)
SN 0XA 0
X =VyX = T4y —
Vy, X = Vy, ZZ( +&) D0, dax
A=11i=1
Tyi

If we take the partial derivatives of (1), since 3(5;—71) =0, where i # j, i,j = 1,...,n, we

a;
obtain (Vy, X,Y;) = 0. Therefore, Vy, X € x(S(T'M)) and AyY; = 0.
For X, W € x(S(TM)),

gANX, W) = C(X, W) = g(VxW,N) = (VxW,N).

If we write
D 9D DR Sl oL A
8&1"
A 1:=1
o(& — T\
sinceM:O,i#j,i,jzl,...,n,wehave
8aj
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Hence, we write

_Xl a(nT . é—)l b _Xl 8(nT 4 5)1
1 8@1 aal
ANX=—§ : Ay, X =—-PZ = — :
T _ &£\n T n
L Oan, dnx1 L Oay, dnx1

Finding the map

11 PN 1p

@ pu—
(07751 e (079} nxn

which satisfies the equation Ay X = ® A7, X, completes the proof. For this, from the equation

T 1 T n T _ g\l
O411)(18(” +6) +..‘+a1ana(” +¢) :X16<n §) ’
Oaq Oan, Oay
we see that all the coefficients are zero except the ones on diagonal line. We calculate ay; as
(" +8)! (n" +¢)? (" +¢)"
Q11 = — 1> 2= 0 20 0 O T o ame
(n" —¢) (nT —¢€) (n" =€)

Theorem 2 is proved.

Theorem 3. Let M be a lightlike hypersurface along a spacelike submanifold M. The Gauss
image LG(nT) of M is a geodesic line in M.

5. Examples.

Example1. The Schwarzschild spacetime in Eddington - Finkelstein coordinates (u,r, v, ) is
given by

2M
ds? = — <1 — > du? + 2dudr + r2d0?,
T

where M > 0 denotes the mass and dQ? = di? + sin® 0dp? denotes the volume element of the
standard sphere. The event horizon is the surface given by

r=1r9=2M.

This is a lightlike hypersurface foliated by metric spheres of constant radius » = r¢ and generated
C 0
by the lightlike vector field L = 28—, see [9].
Now, let we consider the spacelike submanifold defined by

X, ¢) = (0,2M,9, ).

Then we can find a basis of the tangent space as

) )
Xg=—-,Xp=— .
{19 99’ "¢ 8@}
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Fig. 1

One can see that the vector field L is in the normal space of X. Then we find an orthogonal basis

10 0 10 0
of the normal space as {17 =59 + o ¢ = 390 87“} Here we choose ( = n” and n = ¢

since ( is timelike and 7 is spacelike. Hence, we have the lightcone Gauss image of the spacelike

0
submanifold X defined by (n” + &) = 0 Finally, we can rewrite the event horizon as
u

Y (u,9, ) = (0,2M, 9, 9) + u(n” +¢).

Example2. In R} with the metric (z,y) = —xoyo + T1y1 + T2y2 We take the spacelike curve
a(u) = (0,u,u?). Then we have the Frenet frame

1

T=——(0,1,2),
\/1+4u2( )
1
N=——(0,—2u,l),
NETTA
B =(~1,0,0).

1 —2u 1
V14 42’ V1 + 4u?

We can choose B = n! and N = &, then n? + ¢ = (— ) Hence, the

lightlike hypersurface along « is

Y (u, 1) < / w2 >
u, = —lL, U= , U )
V1 + 4u? V1 + 4u?

where ¢ € R. It can be seen in the Fig. 1.
If we use the notations in [3], we have

2ut 9 t
To = —t, T =U— —, To = U" + —————,
0 ! V1 + 42 2 V1t 42

2_ 1_L i+ 2u—$ ﬁ
ou (1 + 4u2)*/? | 9z (1 + 4u2)*/? | Oz’
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Fig. 2

Fig. 3

0 0 2u 0 1 0

_————
ot 0rg V1+4u20r1 1+ 4u2 0xs

Then we calculate

0 2u 0 1 0 0

- 4+ - =
Oxo V14 4u20x1 1+ 4u20xy Ot

It can be seen that the lightcone Gauss image LG(n") (u,€) = n'(u) + ¢ is in the direction of the
lightlike vector Y; € RadTM = T M. Figures 2 and 3 show the lightcone Gauss image of the
spacelike curve a(u).

nt &=~

o 0
We can rewrite n? 4 ¢ = ((nT + 6L (nT + 5)2) = (0,1) according to the base {%, a}
Since a1 = u, ag =t we have

o(nT 4 &)1 _ o(nT 4 ¢)? _

8@2 80,1 0

According to Theorem 2, the lightlike hypersurface Y (u,t) is screen conformal.
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Example3. Let we take the spacelike curve 3(u) = (0, cosu, sinu). Then the Frenet frame is
T = (0, — sinu, cos u),
N = (0, cos u,sinu),

B =(-1,0,0).

We can choose B = n” and N = ¢, then n” + ¢ = (—1,cosu,sinu). Hence, the lightlike
hypersurface along ( is

Y(u,t) = (—t,(t +1)cosu, (t + 1)sinu).

It can be calculated that n” 4 & = (¢ + 1)268 = ((t+1)%,0) and this vector field is in the direction
u

of the lightlike vector Y; too. Since

o(nT + &)t

= 0, assertions of Theorem 2 do not hold.
az
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