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APPLICATION OF THE INFINITE MATRIX THEORY
TO THE SOLVABILITY OF SEQUENCE
SPACES INCLUSION EQUATIONS WITH OPERATORS

3ACTOCYBAHHS TEOPIi HECKIHUEHHUX MATPUIb
10 PO3B’SA3AHHSA BIJHOIIEHDb BKJIIOYEHHSA
JIJISI TIPOCTOPIB IMOCJIIIOBHOCTEM 3 OITEPATOPAMU

Given any sequence a = (an)n>1 Of positive real numbers and any set E of complex sequences, we write F, for the
set of all sequences y = (Yn)n>1 such that y/a = (yn/an)n>1 € E. In particular, ¢, denotes the set of all sequences y
such that y/a converges. We deal with sequence spaces inclusion equations (SSIE) of the form F' C E, + F,, withe € F
and explicitly find the solutions of these SSIE when a = (r™),>1, F is either c or s1, and E, F’ are any sets co, ¢, s1,
lp, wo, and we. Then we determine the sets of all positive sequences satisfying each of the SSIE ¢ C Dy * (co)a + ¢x
and ¢ C Dy * (s1)a + ¢z, where A is the operator of the first difference defined by A,y = yn — yn—1 forall n > 1
with yo = 0. Then we solve the SSIE ¢ C D, x E¢, + s with E € {¢,s1} and s1 C D, * (s1)c, + Sz, where C1
is the Cesaro operator defined by (C1)ny = n™* Z: L Yk for all y. We also deal with the solvability of the sequence
spaces equations (SSE) associated with the previous SSIE and defined as D, x Ec, + s$) = cwith E € {co,¢,s1} and
D, x Ec, + s = s1 with E € {c,s1}.

JUyist 3a71aHOT MOCIIIOBHOCTI OJATHUX AIHCHUX uncel @ = (an)pn>1 1 OyAb-sKOI MHOXXMHH KOMIUICKCHHX IIOCIIXOBHOCTEH
E Bupas E, no3Hayae MHOXHHY BCIX IOCHIZOBHOCTEH Y = (Yn)n>1 TaKHX, WO y/a = (yYn/an)n>1 € E. 30kpema, ¢,
M03HAYAE MHOKHHY BCiX MOCIIIOBHOCTEH Y TaKKX, IO Y/ a 30iracThes. PO3MISHYTO BiIHONMIEHHS BKIIOYEHHS 17151 IPOCTOPIB
nociinosrHocreit (BBIII) surmsany F' C E, + F. 3 e € F, a Takox 3HANIEHO ABHI po3p’sizku 1ux BBIII y Bumazky,
kot a = (r")p>1, F —ue c abo s1, a £ 1 F' — Gynp-sKi 3 MHOXHH Co, C, 51, £p, Wo 1 Weo. KpiM TOTO, BU3HAYEHO
MHOXHHH BCiX JOMAaTHHX MOCIiTOBHOCTEH, 110 3310BONMBHSIOTE KoskHe 3 BBIII ¢ C Dy % (co)a+¢z i ¢ C Dyrx(s1)a+ca,
ne A — omeparop mepioi pi3HULI, BU3HAYCHHH K Apy = Yn — Yn—1 W1 Beix 1 > 1 3 yo = 0. Takoxx po3B’si3aHO
BBII ¢ C D, * Ec, + s, ne E € {c,s1}, s1 C Dy * (s1)¢, + Sa, a C1 — oneparop Yesapo, Bu3HaueHuii sk
cyma (Ch)ny = nt Z: | Y A BCcix y. Kpim TOro, po3missHyTo HmHUTaHHS HPO iCHYBaHHS PO3B’S3KiB PIBHSAHB JUIs
npoctopiB nocaigoBrocte (PIIIT), mos’s3anux i3 monepennivu BBIIII i Bu3navennx takum anHOM: D, % Ec; + sgf) =c
3 F €{co,¢,81} 1 Dyr*xEc, +5; =513 FE € {c,s1}.

1. Introduction. We write w for the set of all complex sequences y = (Yn)n>1, loo, ¢ and

co for the sets of all bounded, convergent and null sequences, respectively, also £, = {y € w:

Z:;l lyn|P < oo} for 1 <p <oo.Ify, z €w, then we write yz = (yn2n)n>1. Let U = {y cw:
Yn 0} and Ut = {y € w: y, > 0}. We write z/u = (2,/un),~; forall z € w and all u € U, in
particular 1/u = e/u, where e is the sequence with e, = 1 for all n. Finally, if « € UT and F is
any subset of w, then we put E, = (1/a) '+E = {y € w: y/a € E}. Let E and F be subsets of w.
In [1], the sets s4, s0 and sgf) were defined for positive sequences a by (1/a)~! * E and E = /o,
co, ¢, respectively. In [2], the sum E, + Fj and the product E, * F were defined, where E, F' are

0 or (¢, Then in [5] the solvability was determined of sequences spaces

any of the symbols s, s
inclusion equations G, C E,+ F,, where E, I, G € {so, (0, s} and some applications were given
to sequence spaces inclusions with operators. Recall that the spaces ws, and wg of strongly bounded
and summable sequences are the sets of all y such that (nfl Z:_l ]yﬂ)n is bounded and tends to

zero, respectively. These spaces were studied by Maddox [21] and Malkowsky, Rakocevi¢ [20]. In
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[9, 12], were given some properties of well known operators definedby the sets W, = (1/a) ™! * wuo
and W0 = (1/a)~! % wo. In this paper, we deal with special sequence spaces inclusion equations
(SSIE) (resp. sequence spaces equations (SSE)), which are determined by an inclusion (resp. identity),
for which each term is a sum or a sum of products of sets of the form (E,)r and (Ef(m))T, where
f maps U™ to itself, E is any linear space of sequences and T is a triangle. Some results on SSE
and SSIE were stated in [3-6, 8, 13, 14, 16, 17]. In [5], we dealt with the SSIE with operators
E, + (Fy)a C sg,;c), where E and F' are any of the sets cg, ¢ or s;. Then we gave a resolution

of the next inclusion equations with operator sgf) + (sg) A C sp and s+ (sg) A C sl(f). Note that

the SSIE sg(f) + (sg)A C sp means Y, /x, — | and (z, — z,—1)/bp, — 0 n — oo, together imply
|yn + 2zn| < Kby, forall y, z € w and for some scalars [ and K with K > 0. In [13], we determined
the set of all positive sequences = for which the SSIE (sgf)) B(rsy C (sgf)) Bl
r’, ', and s are real numbers, and B(r, s) is the generalized operator of the first difference defined
by (B(7,5)y)n = ryn + syn—1 for all n > 2 and (B(r, s)y)1 = ry;. In this way we determined the
set of all positive sequences x for which (ry, + syp—1) /@, — | implies (r'yn + 'yn—1)/zn — 1
(n — o0) for all y and for some scalar /. In the paper [8], we used the sets of analytic and entire
sequences denoted by A and I' and defined by sup,,>; (|yn\1/”) < oo and limy, o0 (|yn|1/") =0,
respectively. Then we dealt with a class of SSE with operators of the form Er + F, = Fj, where T
is either A or ¥ and E is any of the sets ¢y, ¢, loo, £, (p > 1), wo, T or A and F' = ¢, {5 or
A. In [11], we solved the SSE defined by (E,)a + sg(cc) = sl(f), where E is either ¢y or £, and the
SSE (Ey)a + 82 = 52, where E is either ¢ or /. Finally, in [10], we dealt with the SSIE defined
by F C E, + F., where a is positive sequence and F, F, and F’ are linear subspaces of w and we

solved the SSE E, + ({,)z = (£p)s.

holds, where r,

In this paper, we deal with the SSIE of the form F' C E, + F, where E, F, and F’ are linear
spaces of sequences a is a positive sequence with e € F. We obtain a solvability of these SSIE for
a = (r")p>1. Throughout this paper we consider the SSIE F' C E, + F., as a perturbed inclusion
equation of the elementary inclusion equation F' C F.. In this way it is interesting to determine
the set of all positive sequences a for which the elementary and the perturbed inclusions equations
have the same solutions. Then writing D, for the diagonal matrix with (D, )., = ", we study the
solvability of the SSIE using the operator of the first difference A, defined by ¢ C D, * Fa + ¢,
with £ = ¢y or s;. Then we consider the SSIE ¢ C D, x E¢, + s:(f) with £ = ¢y, ¢ or s; and
s1 C D, * (31)C1 + s; with E = ¢ or s1, where C] is the Cesaro operator defined by (C1),y =

- (Zzzl yk) /n-

This paper is organized as follows. In Section 2, we recall some well-known results on sequence
spaces and matrix transformations. In Section 3, we recall some results on the multipliers and on
some characterizations of matrix transformations. In Section 4, we give some general results on the
SSIE F C E, + F., where E, F, and F’ are linear spaces of sequences and e € F. In Section 5,
we study the solvability of the SSIE of the form F' C E, + F., where a = (r"),>1. In Section 6,
we deal with the SSIE of the form F' C E, + F, and we explicitly calculate the solutions of the
SSIE of the form F' C E, + F, where a = (r"),>1. Finally, in Section 7, we study some SSIE with
operators of the form F' C (E7), + F,, where T is a either A or C, and we solve the SSE of the
form (Ec, ), + Fy = F.
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1042 B. DE MALAFOSSE

2. Preliminaries and notations. An FK space is a complete linear metric space, for which
convergence implies coordinatewise convergence. A BK space is a Banach space of sequences that
is an FK space. A BK space E is said to have AK if for every sequence y = (yx)r>1 € E, then
y = limy o0 2271 yee'®) | where e®) = (0,...,0,1,0,...), 1 being in the k th position.

Let R be the set of all real numbers. For any given infinite matrix A = (a, ), x>1 We define the
operators A,, = (a,x)i>1 for any integer n > 1, by A,y = Zzo_l ank Yk, where y = (yr)r>1, and
the series are assumed convergent for all n. So we are led to the study of the operator A defined by
Ay = (Any)n>1 mapping between sequence spaces. When A maps E into F, where E and F are
subsets of w, we write A € (E, F) (cf. [21, 22]). It is well known that if F has AK, then the set
B(E) of all bounded linear operators L mapping in £, with norm ||L|| = sup,, (IILWe/ylEe)
satisfies the identity B(E) = (E, E). We write £, for the set of all p-absolutely convergent series

with p > 1, that is, ¢, = {y Ew: Z:il lyrlP < oo}. For any subset F' of w, we write Fy = {y €
cw: Ay e F } for the matrix domain of A in F. Then for any given sequence u = (uy)p>1 € W

we define the diagonal matrix D,, by [Dy]n, = uy, for all n. It is interesting to rewrite the set E,,
using a diagonal matrix. Let E be any subset of w and u € U™, then we have E, = D, * FE = {y =

= (yn)n Ew:y/u € E} We use the sets s” s((f), Sq, and (¢)), defined as follows (cf. [1]). For

a?
givena € Ut and p > 1 we put Dy*xco = 80, Dy*c = s,(f), Do#loy = 34, and Do xly = (€,),. We
will frequently write ¢, instead of s((f) to simplify. Each of the spaces D, x E, where E € {cg, ¢, oo}

is a BK space normed by ||y||, = sup,, (|yn|/an) and sQ has AK. The set £,, p > 1, normed by
1/p
Iylle, = (ZZ; \yk\p) is a BK space with AK. If a = (R"),>; with R > 0, we write sg,

5%, sg) (or cg), and (¢,)R for the sets sq, s2, sﬁf), and (fp)q, respectively. We also write Dp for
Dy, ., When R = 1, we obtain s; = (o, s = ¢o, and s§C> = c. Recall that S7 = (s1,51) is a

Banach algebra and (cg, s1) = (¢, 51) = (s1,51) = S1. We have A € S; if and only if

sup (Z |ank\> < 0. ey

™\ k=1

We also use the characterizations of the classes (co,co), (co,c), (¢,co), (¢,¢), (s1,¢), and
(¢, F), where F' = cq, c or {. In this way we state the next well-known results.

Lemma 1 ([20, p. 160], Theorem 1.36, [21]). (1) A € (co,co) if and only if (1) holds and
limy,—00 ang = 0 for all k.

(ii) A € (co, ¢) if and only if (1) holds and

li_>m anr =l forall k and for some scalar . 2)

(iii) A € (e, ¢q) if and only if (1) holds and lim,, Z:il a,r = 0 and lim,_, a,; = 0 for
all k. -

(iv) A € (¢, ) if and only if (1) holds and lim,,_,~ Z:o_l a,i = [ for some scalar .

(V) A € (s1,¢) if and only if (2) holds and lim,,_,~ Z:il lank| = Z:O:1 |k

Characterization of (¢, F'), where F' = ¢y, ¢ or {. For this, we let ¢ = p/(p — 1) for p > 1.
By using the notations of [20], we define M (€p, o) = sup,, (|ank|) if p = 1 and M (€, o) =

oo .
= sup,, (Zkzl |ank|q> if p> 1.
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Lemma 2 ([20, p. 161], Theorem 1.37). Let p > 1. Then we have:
(i) A€ (ly,lx) if and only if
My, lss) < 0. 3)

(i) A € (£p,co) if and only if the condition in (3) holds and lim,,_, a,, = 0 for all k.

(i) A € (£p,c) if and only if the conditions in (3) and (2) hold.

We also use the well known properties, stated as follows.

Lemma 3. Let a, b € U" and let E, F C w be any linear spaces. We have A € (E,, F}y) if
and only if Dy, AD, € (E, IF).

Lemma 4 ([3, p. 45], Lemma 9). Let T’ and T" be any given triangles and let E, F C w.
Then for any given operator T represented by a triangle we have T € (Eq+, Frn) if and only if
T'"TT'~' € (E,F).

3. Some results on matrix transformations and on the multipliers of special sets. 3.1. On
the triangles C(\) and A(X) and the sets W, and W?. The infinite matrix 7 = (tn5)n4>1 1S
said to be a triangle if ¢, = 0 for kK > n and t,, # 0 for all n. For A € U the infinite matrices
C(A) and A(X) are triangles. We have [C'(M\)],,, = 1/, for k& < n, and the nonzero entries of
A()) are determined by [A()\)]m = A\, for all n, and [A(A)]nm*l = —A\p—1 forall n > 2. It can
be shown that the matrix A()) is the inverse of C()), that is, C(A)(A(N)y) = AN)(C(N\)y) =y
for all y € w. If A = e we obtain the well known operator of the first difference represented by
A(FE) = A. Then we have A,y = y,, — yn—1 for all n > 1 with the convention yy = 0. It is usually
written ¥ = C(E), and then we may write C(\) = D;,,3. Note that A = £~ The Cesaro
operator is defined by C; = C((n)nzl). We use the sets of sequences that are a-strongly bounded
and a-strongly convergent to zero sequences defined for a € UT by

n
W, = {y €w: |lyllw, = sup (n_lz \ml/%) < OO}
n

k=1

and
0_ R -1 _
W, = {y Ew: nlgl;o (n ,;_1 ]yk\/ak> = 0}

(cf. [7,9, 12, 15]). It can easily be seen that W, = {y € w: C1Dy/4lyl € si}. If a = (r")p>1 the
sets W, and W2 are denoted by W, and W?. For r = 1, we obtain the well-known sets

n
Woo = {y €w: ||y|lw. = sup (n_l Z \yﬂ) < oo}
" k=1

_ .o -1 _
wo—{yew. nh_}r{)lo (n ;]yk|> —O}

called the spaces of sequences that are strongly bounded and strongly summable to zero sequences
by the Cesaro method (cf. [18]).

3.2. On the multipliers of some sets. First we need to recall some well known results. Let y
and z be sequences and let £ and F' be two subsets of w, then we write M (E,F) = {y € w:
yz € Fforallz € £ }, the set M (E, F) is called the multiplierspace of E and F. In the following
we will use the next well known results.

and
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1044 B. DE MALAFOSSE

Lemma 5. Let E, E, F and Iibe arbitrary subsets of w. Then: (i) M(E, F') C M(E,F) for
all E € E; (i) M(E,F) ¢ M(E,F) forall F C F.

The a-dual of a set of sequences F is defined as E* = M (F, {1) and the 5-dual of FE is defined
as EP = M(E, cs), where cs = cx, is the set of all convergent series.

Lemma 6. Leta, b € U" and let E and F be two subsets of w. Then D,E C DyF if and only
ifa/be M(E,F).

In the following we use the results stated below.

Lemma 7. Let p > 1. Then we have:

(i) a) M(c,c0) = M(loo,c) = M (Lo, co) = co and M(c,c) = ¢,

b) M(E,lx) = M(co, F) =Ll for E, F = ¢, ¢ or Lo,

c) M(co,lp) = M(c,ly) = Moo, by) =€),

d) M4y, F) =l for F € {co,c, 81,€p};

(i) ) M(wo, F') = M(Weo, lc) = S(1/n), 5, JOr F' = co, ¢ or €,

b) M(wss, o) = S((]l/n)n217

¢) M(l,we) = S$(n)ns1 and M ({1, wq) = s‘(]n)n21,
d) M(E,wy) =wy for E = s1 or c,

e) M(E,ws) = weo for E = ¢y, $1 or c.

Proof. Statements (i) a), (i) b) and (i) d) with F' € {co,c, 600} follow from [19, p. 648],
(Lemma 3.1), Lemma 2 and [20, p. 157] (Example 1.28). The case M (¢,,(,) = { is immediate.
Then statements (ii) a) with F' = ¢y or ¢, (ii) b), (ii) ¢), (ii) d) follow from [14, p. 598] (Lemma 4.2).
It remains to successively show the identity M (co, ¢,) = ¢, in (i) c), statement (ii) a) with F' = (o,
and the identity M (cp, Woo) = Woo in (ii) €). We show M (co, £p) = £,

Case p = 1. We have M (co, (1) = cff = ¢1 (cf. [20], Theorem 1.29).

Case p > 1. By [22, p. 124] (Theorem 8.3.9) with X = ¢y and Z = ¢, we have M (co,lp) =
= M(co, ) = M(£g.c) = M(£y,£1) = €3. Then by [20] (Theorem 1.29) we have (2 = (] = {,,.
We conclude M(co,¢,) = ¢,. The identity M ({w,£,) = £, follows from [21], since (co,¢p) =
= (lso,lp). We conclude by Lemma 5 that ¢, = M ({x,l,) C M(c,bp) C M(co,lp) = £p,
which shows (i) ¢). For (ii) a) it is enough to notice that by [20, p. 219] (Theorem 3.58), we
have (wg,s1) = (woo,s1). Then, by [14, p. 598] (Lemma 4.2), we obtain M (wo, F') = s(1/n),,-,
for F' € {cp,c,s1}. It remains to show M(cp, ws) = W in the statement (ii) e). By [20, p. 218]
(Lemma 3.56), the set M = wgo is a BK space with AK, and is S-perfect, that is, wfoﬁ = Woo. Again
by [22, p. 124] (Theorem 8.3.9) with X = ¢p and Z = M, we obtain M (cp, ws) = M(cp, wfoﬁ) =
= M(M,cg). But we have cg = {1. We conclude M (cq, weo) = MPB = w.

3.3. The equivalence relation Rg. We need to recall some results on the equivalence relation
Re which is defined using the multiplier of sequence spaces. For b € U™ and for any subset £
of w, we denote by cl®(b) the equivalence class for the equivalence relation R¢ defined by zRgy
if & = &, for z,y € U*. It can easily be seen that cI®(b) is the set of all x € U™ such that
z/b € M(E,E) and bz € M(E,E) (cf. [16]). Then we have cl(b) = M (EE)(b). For instance,
cl®(b) is the set of all x € U™ such that sg(cc) = sl()c). This is the set of allsequences z € U™ such that
Ty ~ Cby, (n — o0) for some C' > 0. In [16], we denote by cI°(b) the class cl‘<(b). Recall that
cl>(b) is the set of all z € U™ such that K; < x,,/b, < K> for all n and for some K;, Ky > 0.

ISSN 1027-3190. Ykp. mam. scypn., 2019, m. 71, Ne 8



APPLICATION OF THE INFINITE MATRIX THEORY TO THE SOLVABILITY OF SEQUENCE ... 1045

4.On the SSIE F C E, + F. with e € F and F’ C M(F, F’). Here we are interested in
the study of the set of all positive sequences x that satisfy the inclusion F' C E, + F, where E, F,
and F” are linear spaces of sequences and a is a positive sequence. We may consider this problem as
a perturbation problem. 1f we know the set M (F, F”), then the solutions of the elementary inclusion
F! D F are determined by 1/x € M(F,F’). Now the question is: let £ be a linear space of
sequences. What are the solutions of the perturbed inclusion F), + & D F? An additionnal question
may be the following one: what are the conditions on £ under which the solutions of the elementary
and the perturbed inclusions are the same? The solutions of the perturbed inclusion F' C E, + FJ,
where F, F, and F’ are linear spaces of sequences cannot be obtained in the general case. So are
led to deal with the case when a = (r"),>1, © > 0, for which most of these SSIE can be totally
solved. In the following we write Z,(E,F,F') = {x € U": F C E, + F,}, where E, F, and
F’ are linear spaces of sequences and a € U™. For any set y of sequences we let ¥ = {a; cU™:
1)z € x}.

4.1. General case. The next theorem is the main result and is used throuhgout this paper. We
use the set & = {co,c,sl,ép,wo,woo} with p > 1. By ¢(1) we define the set of all sequences
a € UT that satisfy lim,, ,o, o, = 1. Then we consider the condition

G C Gy forall a€c(l) 4

for any given linear space G of sequences. Notice that condition (4) is satisfied for all G € ®.

Theorem 1. Let a € U and let E, F, F' be linear spaces of sequences. Assume: a) e €
€ F,b) F! ¢ M(F,F'), ¢) F' satisfies condition (4). Then we have: (i) a € M(E,cy) implies
T.(E,F,F') = F, (i) 1/a € M(F, E) implies T,(E, F,F') = U~.

Proof. (i) Let x € Z,(E, F, F'). Then there are £ € F and f’ € F’ such that 1 = a,,§, + . f},,
hence,

1 —anén

= fl forall n.
. f, forall n

Since a € M(E, cp) we have 1 — a,&, — 1 (n — o0) and

1 1
— =———f foral n.

T - 1—anén

By the condition in ¢) we conclude = € F’. Conversely, the condition x € F’ implies 1/z € F”, and
the condition in b) implies 1/x € M (F, F"). We conclude F' C F. and = € Z,(E, F, F'). So we
have shown (i). Statement (ii) follows from the equivalence of 1/a € M (F,FE) and F' C E,. This
concludes the proof.

We immediately deduce the following.

Corollary 1. Let E, F, F' be linear spaces of sequences. Assume: a) e € F, b) F' C M(F, F")
and ¢) E C cy. Then the next statements are equivalent: (i) F C E + F!, (ii) F C F!, (iii) = € F'.

In some cases, where I/ = cs or /1 and F’ = /1, we obtain the next results using the a- and
(-duals.

Corollary?2. Let a € U" and let F and F' be linear spaces of sequences. Assume a), b), c)
in Theorem 1 hold. Then the set T,(cs, F,F') of all positive sequences x such that F C cs, +
+ F!, satisfies the next properties: (i) a € sy implies T,(cs, F,F') = F’, (ii) 1/a € F? implies
Zo(es, F,F')=U".
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1046 B. DE MALAFOSSE

Proof. 1t is enough to show M (cs,cg) = s1. We have a € M (cs,cg) if and only if D,A €
€ (¢, cp), and DA is the infinite matrix whose the nonzero entries are [D,Alny, = —[DgAlypn—1 =
= ay, for all n > 2, and [D,A]11 = a;. By the characterization of (c, ¢p) recalled in Lemma 1 we
conclude M (cs,co) = s1.

Corollary3. Let a € U and let F and F' be linear spaces of sequences. Assume a), b), c)
in Theorem 1 hold. Then the set T,({1,F,F') of all positive sequences x such that F C ({1), +
+ F!, satisfies the next properties: (i) a € s implies T,({1,F, F') = F', (i) 1/a € F® implies
T.(6,F,F') = U*.

Proof. This result follows from the identity M (¢1,c9) = s1 which is a direct consequence of
Lemma 2.

Corollary4. Let a € UT and let E and F be linear spaces of sequences. Assume e € F and
0y C F“. Then the set T,(E, F, 1) of all positive sequences x such that F C E, + ({1), satisfies:
(i) and (ii) in Theorem 1 with F' = /1.

4.2. On SSIE of the form F' C E, + F;, where E, F, and F’ are any of the sets cqg, c, s1,
£p, Wwo, OF Woo. In this part we use the set Q = ({s1} x (P\{c})) U ({c} x ®) with p > 1, and
we deal with the perturbed inclusions of the form F' C E, + F,, where E = ¢, s1,£p, Wp, OF Weo
and (F, F’) € Q. As a direct consequence of Lemma 7 we obtain.

Lemma 8. We have (F,F') € Q= F' C M(F,F’).

As a direct consequence of Corollary 1 and Lemma 8 we get the following result.

Proposition 1. Let E C ¢ be a linear space of sequences and let (F, F') € Q. Then the next
Statements are equivalent, where

(i) F c E+ F., (ii) F C F., (iii) v € F'.

Proposition 2. Let a € UT and (F, F') € Q. We have:

() Zu(co, F, F') = F" if a € s1, and Ly(co, F, F') = U™ if 1/a € c,

(i) Zu(s1, F,F')=Fifa € co, and T,(s1, F, F') =U" if 1/a € s1,

(i) Zo(by, F, F') = F' if a € s1, and T,({,, F, F') =U" if 1/a € £, for p > 1,

(iv) Zo(wo, F,F') = F"if a € s(1/p),-,» and To(wo, F, F') = U if 1/a € wy,

(V) Zo(Weo, F, F') = F ifa € s?l/n)n>1, and T,(Woo, F, F') =UT if 1/a € weo.

Proof. The proof is a direct consequeﬂce of Theorem 1 and Lemma 7. Indeed, we successively
have M(FE,cg) = s1 for E = ¢ or £y, M(E,co) = co for E' = c or s1, M(wo,co) = S(1/n),~,
and M (weo, co) = s(()l/n)n>1. Then we have M (F, E) = M(s1,E) = M(c, E) for E € ®\{c} and
M(Sl, Co) = (g, M(Sl, Slj = S1, M(Sl,fp) = fp, M(Sl,’wo) = wo, and M(sl,woo) = Weo-

In the case when E = ¢ we obtain the following result.

Proposition 3. Let a € UT and F' € ®. We have:

() Zu(e,c, F') = F' if a € co, and Ly(c,c, F') =U* if1/a € c,

(i) Zu(c,s1,F") = F' if a € cg, and Ty(c,s1, F') =U" if 1/a € co.

Proof. The proof follows from Theorem 1 and Lemma 7. Here we have M (E, co) = M(c, o) =
=cpand M (F,E) = M(F,c) = ¢ for F' = s, and M (F,c) =c for F = c.

5. Solvability of the SSIE of the form F C E, + F., where E and F’ are any of the
sets co, ¢, s1, £p (p > 1), wg, Or weo. For a = (r"),>1, we write Z,.(E, F, F’) for the set
Z.(E, F, F'). Then we solve the perturbed inclusions F' C E, + F, where F' is either ¢ or s; and
E € &\{wp}, F' € ®. It can easily beseen that in most of the cases the set Z,.(E, F, F') may be
determined by
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Frooif r<1,
I.(E,F, F') = (5)
Ut if r>1
or
7oif r<i,
Ir(Ea F, F,) = (6)
Ut if r>1.

As a direct consequence of Propositions 2 and 3 we obtain the following result.

Proposition 4. Let a € UT and (F, F') € Q. We have:

(i) The sets T,.(s1,F, F"), Z,(c,c, F'), and I, (weo, F, F') are determined by (5).

(i) The sets L, (co, F, F') and ZL,(¢,, F, F') for p > 1 are determined by (6).

Rewriting Proposition 4 we obtain.

CorollaryS. Let r > 0. Then we have:

(i) Let F' € ®. Then:

a) The solutions of the SSIE ¢ C E, + F. with E = ¢, $1 or weo are determined by (5).

b) The solutions of the SSIE ¢ C E, + F, with E = ¢y or £, (p > 1) are determined by (6).

(i) Let F' € ®\{c}. Then we have:

a) The solutions of the SSIE s1 C E, + F., with E = s1 or weo are determined by (5).

b) The solutions of the SSIE sy C E, + F., with E = ¢q or {, (p > 1) are determined by (6).

Remark 1. The set Z,.(wo, ¢, F') of all the solutions of the SSIE ¢ C W0 + F/, where F’ € ®,
is determined for all » # 1. We obtain Z,.(wo,c, F') = F’ for r < 1, and Z.(wo,c, F') = Ut if
r > 1.

6. Application to the SSIE of the form F C E, 4 F, with e € F. In the following we
write Z,(E, F) = I,(E,F,F) = {z € U": F C E,+ F,}. In this part we give results on the SSIE
F C E, + F, and we explicitly calculate the solutions of special SSIE of the form F' C F, + F,.

6.1. Some general results on the SSIE of the form F C E, + F,. From Theorem 1 we obtain
the next corollary.

Corollary 6. Let a € UT and let E, F be two linear spaces of sequences. Assume: a) e € F, b)
F C M(F,F) and c) F satisfies condition (4). Then we have:

(i) a € M(E,cy) implies T,(E,F) = F,

(i) 1/a € M(F,E) implies T,(E,F) =U".

Now we deal with the SSIE F' C E, + F., where F' is either c or s; and F € ®. By Corollary 6
and Lemma 7 we obtain the following result.

Corollary. Let a € U, We have:

() a) Zu(co,c) =cif a € s1, and L,(co,c) =U" if 1/a € co,

b) Z,(c,c) =Cifa € co, and I,(c,c) =UT if 1/a € c,

¢) Zu(s1,¢) =cifa € co, and I,(s1,¢) =U" if 1/a € s1,

d) Z,(¢p,c) =Cifa € s1, and Ly(ly,c) =U" if 1/a € £, for p > 1,

e) Za(wo,c) =T if a € sa /)., and Ly(wo,c) = U™ if 1/a € wo,

To(Woo,¢) =Cifa € 8[(]1/n)n>1’ and Ty(woo,¢) = UT if 1/a € woo;

(11) a) Zy(co,s1) =351 ifa € s1, and Ta(co,51) =UT if 1/a € ¢,

b) Zu(c,s1) =31 if a € co, and Ly(c,s1) = U™ if 1/a € ¢y,

¢) Zu(s1,81) =31 if a € o, and T,(s1,51) = U™T if 1/a € s1,

d) Z,(¢p,s1) =51 if a € s1, and T,(p,s1) = U™ if 1/a € £, for p > 1,

e) Zo(wo,s1) =351 ifa € S(1/n)ps1 and Z,(wg, s1) = UT if 1/a € wy,
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f) Zy(weo,51) =51 if a € s(()l/n)n21, and Ty(weo,51) = UT if 1/a € weo.
6.2. Solvability of SSIE of the form F' C E, 4+ Fj. In this part we consider the case when

a = (r")n>1 for r > 0. We write £, for E(,n) _,, and the set of all positive sequences z that satisfy

FCE,+F, 7)

is denoted by Z,.(E, F). Here we explicitly calculate the solutions of the SSIE defined by (7),
where F' is either ¢ or s1 and E € ®. We consider the conditions

(r")p>1 € M(E,co) forall 0<r <1, (8)
(r")p>1 € M(E,co) forall 0<r <1, 9)
(r"™)p>1 € M(F,E) forall r>1, (10)
(r"™)p>1 € M(F,E) forall r>1. (11)

We will use the next result which is a direct consequence of Corollary 6.

Corollary8. Let v > 0 and let E and F be linear spaces of sequences. We assume that F
satisfies the conditions a), b) and c¢) in Corollary 6. Then we have:

(1) Assume that the conditions in (8) and (10) hold. Then the solutions of the SSIE defined by (7)
are determined by (5) with F' = F.

(i) Assume that the conditions in (9) and (11) hold. Then the solutions of the SSIE defined by (7)
are determined by (6) with F' = F.

As a direct consequence of the preceding we obtain the following result.

Corollary9. Let r > 0. Then we have:

(1) @) The solutions of the SSIE ¢ C E, + ¢, for EE = ¢, s1 or we are determined by (5) with
F'=c.

b) The solutions of the SSIE ¢ C E, + c, with E = ¢y or £, (p > 1) are determined by (6) with
F'=c.

(ii) a) The solutions of the SSIE s1 C E, 4+ s, with EE = s1 or ws are determined by (5) with
F/ = S1.

b) The solutions of the SSIE s1 C E, + s, with E = ¢y or £, (p > 1) are determined by (6)
with F' = S1.

7. On some SSIE and SSE with operators. In this part we consider the SSIE associated
with the operator A, defined by ¢ C D, * (¢co)a + ¢z, ¢ C Dy xca + €z, ¢ C Dy % (S1)A + Cay
$1 C 8y + 8 and s1 C Dy % (s1)a + s, for 7 > 0. Then we consider the SSIE ¢ C D, * E¢, + sg(f)
with E € {c¢,s1} and s1 C D, * (s1)c, + Sz, Where C is the Cesaro operator. Then we solve
the SSE D, x E¢, + s§f) = c¢ with E € {cp,c,s1}, and D, * (s1)cy, + sz = s1. Notice that since
Do* Er = Erp, ,,, where T'Dy , is a triangle, for any linear space £ of sequences and any triangle
T the previous inclusions and identities can be considered as SSIE and SSE. More precisely, the
previous SSE can be considered as the perturbed equations of the equations F,, = F' with F' = ¢,
or si.

7.1. On the SSIE of the form F C D, x Ex + F,. In the next result among other things we
deal with the SSIE ¢ C D, * (co)a + ¢ which is associated with the next statement. The condition
Yn — | (n — o0) implies that there are u, v € w such that y = u+wv and Ut =ty D 0
and v, /z, — ' (n — oo) for some scalars [, I’ and for all y. The corresponding set of sequences
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is denoted by Z,.((co)a, ¢). In a similar way Z,((s1)a, c) is the set of all sequences that satisfy the
SSIE ¢ C D, * (s1)a + ¢;. We obtain the following result.

Corollary10. Let r > 0. We have:

(1) Z.(E,c) =Z,(s1,c¢) for E = ¢, (co)a, ca or (s1)a, and I.(s1,c) is determined by (5) with
F' =c.

(i) Z.((s1)a, s1) = Z-(s1, 81) is determined by (5) with F' = s;.

Proof. (i) The identity Z,(s1,c) = Z,(c, ¢) is a direct consequence of Corollary 8, and Z,(s1, ¢)
is determined by (5) with F' = c. Indeed, we have M (E, co) = M(c,co) = M(s1,c0) = co. Then
we get M(F,c) =c for E = ¢, and M(FE,s;) = s; for E = s1. Now we deal with Z((cp)a, c).
We have (R"),>1 € M((co)a,co) if and only if DX € (co, c¢p). The operator DX is the triangle
defined by (DgrX),rx = R™ for k < n, for all n. Then from the characterization of (cg,cg) the
condition Dr¥ € (co, ¢p) is equivalent to nR™ = O(1) (n — o0), and R < 1. Then the condition
(R™")n>1 € M(c,(co)a) implies AD;/r € (c,cp). The nonzero entries of AD;/p are given by
[AD;/glnn = R7" and [AD;/glnn—1 = —R~™*+1 for all n > 1, and from the characterization of
(c,co) we conclude R > 1. By similar arguments we obtain Z,((s1)a,c) = Z,(ca, ¢) = Z.(s1, ¢).
The proof of (ii) is similar and is left to the reader.

7.2. On the SSIE of the form F C D, x Ec, + F,, where C is the Cesaro operator. In
this part we consider the SSIE with the Cesaro operator C; of the form ¢ C D, x E¢, + s§f) with
E € {c,s1} and of the form s; C D, x E¢, + s, with E' € {c, s1}. We obtain the following result.

Proposition 5. Let r > 0. Then we have:

(1) The solutions of the SSIE defined by ¢ C D, x E¢, + SS;C) with E € {c, s1}, are determined
by (5) with F' = c.

(ii) The solutions of the SSIE s1 C D, * (s1)c, + sz are determined by (5) with F' = s;.

Proof. (i). Case E = c. Let R > 0. We have (r"),>1 € M(cc,, co) if and only if DpCy ! €
€ (c¢,cp). It can easily be seen that the entries of the matrix C] ! are defined by [Cf 1]nn = n,
[C7 Y wm—1 = —(n — 1) for all n > 2 and [C;']11 = 1. Then DrC; " is the triangle whose the
nonzero entries are given by [DRCI_ILM = nR", [DRCI_I] = —(n—1)R" forall n > 2

n,n—1

and [DrCy 1]1,1 = R. From the characterization of (c,cp) this means lim, oo {R” [n — (n—

- 1)}} = limy 0o R" = 0, and (2n — 1)R"™ < K for some K > 0 and for all n. We conclude
(R™")p>1 € M(ccy,co) if and only if R < 1. Then we have (r™"),>1 € M(c,cc,) if and only if
C1Dy/g € (c,c). But C1Dyp is the triangle defined by [C1D1/glnk = n 'R~ for k < n, for
all n. So the condition C1 Dy g € (¢, c) is equivalent to n™! Z:ﬂ R™* - L (n — oo) for some
scalar L., and R > 1. We conclude by Corollary 8. -

Case E = s1. We have (r"),>1 € M((s1)c;,co) if and only if DRCy! € (s1,¢0), and from
the characterization of (s1,¢), that is, lim, e [(2n — 1)R"] = 0 and R < 1. Then we have
(r™)ns1 € M(c, (s1)c,) if and only if C1 Dy € (c, 1), that is, sup,, (n_IZ:_l R”“) < 00
and R > 1. Again we conclude by Corollary 8.

(ii). As we have just seen above we have (r"),>1 € M ((s1)c,,co) if and only if R < 1. Then
we have (r7")p,>1 € M(sl, (31)01) if and only if C1 Dy /R € (s1,81), that is,

sup (n_l Z R_k> < 00
k=1

n

and we conclude R > 1.
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Corollary 11. The solutions of the SSIE ¢ C D, x (co)cy + séc) are determined by

c if r<l,
IT((CO)Clac) =
Ut if r>1.

Proof. We apply Theorem 1. We have (r"),>1 € M ((co)cy,co) if and only if DrC* €
€ (cg, o). We conclude DrCy ! € (co, o) if and only if ((2n — 1)R”)n>1 € s and R < 1. Then

we get (r™")u>1 € M(c,(co)c,) if and only if C1D; /g € (c,co), that is, n™* sz R™* =50
(n —o00) and R > 1.

7.3. Application to the solvability of the SSE with operator of the form D, x Ec, + F, = F.
In this subsection the deal with the solvability of each of the SSE D, x E¢, + sgf) = ¢, where
E e {Co,c, 51} and D, x Ec, + s, = s1 with E € {c¢,s1}. For instance, the SSE defined by
D, * (s1)c, + ¢ = c is associated with the next statement. The condition y, — | (n — 00)
holds if and only if there are u, v € w such that y = u + v and sup,, {n‘l ‘Z:_l uk/rk‘} <

< oo and vy, /xy, — I (n — o) for some scalars [, I’ and for all y. Here we also use the SSIE
defined by D, x (co)c1 + ¢ C ¢ which is associated with the next statement. The conditions
n-t (Z:ﬂ uk/rk) — 0 and v, /x, — [ together imply u,, +v, — ' (n — o) for all u, v € w
and for some scalars [, . Let E and F be two linear spaces of sequences. We write Z/ (E, F) =
= {x eUT:E,+F,CF } Notice that since £/ and F' are linear spaces of sequences, we have
x € I)(E,F) if and only if and E, C F and F, C F. This means that € Z,(E, F) if and only
ifa € M(E,F) and x € M(F,F). Then we have S(E,F) = I,(E,F)NI,(E,F) = {z € U":
E, + F, = F}, see [16].

From Proposition 5 and Corollary 11 we obtain the next results on the SSE D, * E¢, + sgf) =c
with E € {cg,c, 51}, and D, * E¢, + s, = 51 with E € {c, 1}, where we write GT = GNU™ for
any set G of sequences.

Proposition 6. Let r > 0. Then we have:

(i) The solutions of the SSIE D, * E¢, + S(xc) C cwith E € {cy,c,s1}, and D, x Ec, + s, C 51
with E € {c, s1} are determined by

ct i or<i,
I.(Ec,,c) = Jor E €{cp,c,s1}, (12)
g if r>1,
and
st if r<l1,
I (Ec,,s1) = for E €{c,s1}.
g if r>1,

(i1) The solutions of the perturbed equations D, x Ec, + sgc) = c with E € {co,c,s1}, and
D, x Ec, + s, = s1 with E € {c, s1} are determined by
cC(E) if r<1,
Sr(Feoy,c) = for E € {cy,c,s1},
1% if r>1,

and
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d>(E) if r<l,
Sr(Ecy,s1) = for E €{c,s1}.
1%} if r>1,

Proof. (i) The inclusion D, * (c)c, C c is equivalent to D,C| le (co,c), thatis, D,C les
and (n+n —1)r" < K for all n and for some K > 0. So we have D, x (cp)¢, C c if and only if
r < 1. Then the inclusion sgcc) C c is equivalent to x € c. So the SSIE D, * (co)c, + sg(cc) Ccis
equivalent to r < 1 and x € ¢ and the identity in (12) holds for ¥ = ¢y. Case E = c. The inclusion
D, % cc, C c is equivalent to D,C; ' € (c,c), that is, [n—(n—1)]r" =r" = L (n — oo) for
some scalar L, and [n+ (n—1)]r" = O(1) (n — oo). This implies r < 1. Using similar arguments
as those above we conclude (12) holds for £ = ¢. The proof of the case ¥ = s; is similar and is
left to the reader.

(ii) is obtained from (i) and Proposition 5 (i) for S, (E¢,,c) with E = ¢, or s, and is obtained
from (i) and Corollary 11 for S,((co)c;,c). Then the determination of the set S, ((s1)c;,s1) is
obtained from (i) and Proposition 5 (ii). It remains to determine the set S, (cc,, s1). For this we deal
with the solvability of the SSIE s; C D, * c¢c, + sz. As we have seen in the proof of Proposition 5
we have (r"),>1 € M(cc,,co) if and only if D,C; ' € (c,cp), that is, r < 1. Then we have
(r™™)n>1 € M(s1,¢c,) if and only if C1Dy),. € (s1,c¢). Since limy,00[C1D1/glnx = 0 for all
k > 1, by v) in Lemma 1 we have C1 D, € (s1,c) if and only if n~1 Z:_l " =0 (n = o)
and 7 > 1. So we have shown Z,(c¢,,s1) = 51 for r < 1 and Ir(ccl,sl)_: 57 for r > 1. We
conclude for the set S, (cc,, 1) using the determination of Z/.(c¢,, s1) given in (i).
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