UDC 517.9
Ly Kim Ha (Univ. Sci., Vietham Nat. Univ., Ho Chi Minh City)

THE O,-HEAT EQUATION ON FINITE TYPE CR MANIFOLDS
WITH COMPARABLE LEVI FORM *

PIBHAHHSA O,-TEIVIONTPOBIJHOCTI HA CR MHOI'OBUJIAX
CKIHYEHHOT'O TUILY 31 CIHIIBBUMIPHUMHU ®OPMAMMU JIEBI

The main purpose of this paper is to study the initial-value problems for the heat equations associated with the operator
Op on compact CR manifolds of finite type. The critical component of our analysis is the condition called D(q) and
introduced by K. D. Koenig [Amer. J. Math. — 2002. — 124. — P. 129-197]. Actually, it states that the min{q,n — 1 — ¢}th
smallest eigenvalue of the Levi form is comparable with the largest eigenvalue of the Levi form.

OCHOBHOIO METOIO Lii€i poGOTH € BUBUCHHS OYAaTKOBHX 3a/1a4 IS PiBHSIHb TEIIONPOBIIHOCTI, aCOLIHOBaHUX 3 OIEPaTOPOM
O, Ha xomakTHUX CR MHOroBuaax CKiH4eHHOTo TUmy. KpUTHYHHUM KOMIIOHEHTOM HAILOTO aHaji3y € TaK 3BaHa yMOBa
D<(q), mo 6yna sanpononosana K. /1. Keonirom [Amer. J. Math. — 2002. — 124. — P. 129 — 197]. ®akTH4HO BOHA BCTAHOBIIIOE,
mo min{q,n — 1 — ¢}-Haiimenme BracHe 3HaueHHs hopmu JIeBi € CHiBBUMIpHUM i3 HAWOLTBIINM BIACHUM 3HAYECHHSIM
¢dopmu Jlesi.

1. Introduction. In Riemannian geometry, the Laplace — Beltrami operator defined on a Riemannian
manifold M is A = d*d. In order to study the relation between geometry and analysis on M, a
well-known approach is to use the heat equation associated to the Laplace — Beltrami operator. Let u
be defined on (0,00) x M. We say that u solves the heat equation on M when

g—Z+Au:O on (0,00) x M.

Moreover, we are also interested in the initial-value problem for the heat equation. That is, finding a
function (s, x) solving the heat equation on M and satisfying

lim u(s,:)=f

s—0t

with convergence in an appropriate norm on M. It is well-known that there is a unique fundamental
solution H (s, z,y) of the initial-value problem so that

u(s,z) = [ His.0) f)V (o),
M

where dV(-) is the volume form on M. The kernel H (s, z,y) is a smooth function only for s > 0.
For s = 0, it agrees with the delta distribution of the diagonal, and it is obviously not smooth. The
smoothness is a consequence of the ellipticity of the Laplace — Beltrami operator.

The study of the heat equation and the heat kernel for operators of the Laplace-type has numer-
ous applications, including heat-kernel proofs of the Atiyah- Singer index theorem and its various
generalizations.

In the present work, we will consider one analogue of the heat equation in Cauchy—Riemann
(CR) geometry. That is an equation associated to the Oj-heat operator. Here, the operator O,
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is the Laplacian associated to the Jj-complex on a given CR manifold. Unfortunately, none of
these are elliptic on CR manifolds. Hence, the classical analysis approach in Riemannian geometry
does not allow us to deal with the Oj-heat equation. For non degenerate CR manifolds, the study
of the Op-heat equation culminates with Beals— Greiner—Stanton [1]. They actually built a class
of pseudodifferential operators with a full symbolic calculus that allows us to construct explicit
parametrices for the Oj-heat equation on (p,gq)-forms under the condition Y(q). In the strictly
pseudoconvex case, this was used to derive a full short-time asymptotic for the heat kernel in terms
of local pseudo-Hermitian invariants (i.e., universal polynomial in the covariant derivatives of the
curvature and torsion tensors of the Tanaka— Webster connection). These results are the complete
analogues of the results of the heat equation associated with Laplace type operators in the Riemannian
setting.

The condition Y (¢q) cannot hold on weakly pseudoconvex CR manifolds that are not strongly
pseudoconvex. For finite type CR manifolds there were various attempts to give estimates in terms
of the associated Carnot— Carathéodory metric for the fundamental solution of the Oj-equation. In
particular, Nagel — Stein [8] established such estimates for the Oj-heat equation on finite type domains
in C2.

The main purpose of this paper is to give an attempt to extend Nagel — Stein’s results to finite type,
compact CR manifolds of real dimension > 5 by using the D(q)-condition introduced by K. Koenig
[6]. Using this condition, K. Koenig [6] established that the Kohn—Laplacian has an inverse that
belongs to a class of operators called nonisotropic smoothing (NIS) operators. This implies that its
Schwartz kernel (i.e., the Green function of 0O) satisfies suitable metric distance estimates. The
present work is also motivated to the fourth level in Fefferman’s hierarchy [4], deriving estimates
directly from the singularities of the integral kernels.

The main result of this paper is as follows:

Theorem 1.1. Let M be a pseudoconvex, finite type, compact CR manifold for which the range
of Oy is closed in L* and which satisfies the D(qq) condition. Then, for every s > 0, the heat
solution operators e~*7 is a NIS operator of order zero on (0, q)-forms, with qo < q < n —1 — qq,
and associated estimates are uniform in s > 0.

The paper is organized as follows. We will recall the definition of the operator O, and its
properties, see [10] for all notions. Section 3 includes a short review on the class of NIS operators.
The last section contains the full proof of Theorem 1.1, which is divided into two main steps:
Theorems 4.3 and 4.4.

2. The hypoellipticity of the Op-heat operator. Throughout this paper M is a compact oriented
CR manifold of dimension (n— 1) with n > 3. The existence of a CR structure means there is a rank
(n — 1) complex subbundle T19(M) of the complexified tangent bundle CT'(M) = T(M) ®r C
such that

(1) TH(M)N T (M) = {0}, where TO' (M) = T1O(M),
and

(2) if Z and W are smooth sections of T19(M), then [Z,W] is also a smooth section of 719 (M).

We always assume that the manifold M is equipped with a Hermitian metric on CT'(M) so
that TH0(M) is orthogonal to 71 (M). Denote by n(M) the orthogonal complement of TH0(M) @
T (M). Let T*19(M) and T*%! (M) be the dual bundles of TH°(M) and T%! (M), respectively.
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1084 LY KIM HA
For 0 < p,q < n — 1, the vector bundle AP?(M) is defined as
APA(M) = APT*YO (M) @ AIT*OH(M).
The tangential CR complex 0y, : C°(AP9(M)) — C°(AP9+1(M)) is defined by
Op := Tpgi1 0 d,

where 7,441 is the orthogonal projection of APT9T1(M) onto AP9F(M) and d is the exterior

differentiation. Let J; be the formal adjoint of J, in L%p 9 (M), where L%p q)(M ) is the closure of

C>° (M, AP1(M)) with respect to the appropriate pre-Hermitian inner product. The operator O, is
the Laplacian associated to the 0,-complex

O = gbgg + ggéb

The associated initial-value problem is to find a function u on (0,00) x M such that

Hul(s,x) = Li + Db] u(s,z) =0 for s>0and z € M,

lim u(s,-) = ¢(-) in L% (M).

S—>0+ (qu)
Let U be a suitable small open subset of M. We pick an orthogonal basis {wi,,...,wn_1,
W1,W2,...,W0n_1,wp} of T*(U) such that {wi,...,w,_1} is a frame of AMO(U), and wq is a

real annihilator of 70!, Next, let {Li,..., Ly 1,L1,...,Ln_1,T} be the (local) basis dual to
{wl, e, Whp—1, W1, W, . .. ,wn_l,wo}.

Definition 2.1. The Levi matrix associated with the Levi form is a Hermitian matrix
(ij)k,jzl,...,n—l presented by

[Lk, LJ] = icij, mod (Ll, ey Ln_l,fl, cee ,Ln_1>.

Now, we will consider what is called the comparable Levi form condition on the CR manifolds.

—1
For 1 < g <n —1, let o, denote any of the <n > sums of ¢ eigenvalues \; of the Levi matrix
q

n—1

(ckj) and 7 = Zj:1 A; be the trace.

Definition 2.2 [6]. We say that the D(q) condition holds on M if there exists € > 0 such that

er <04 < (1 —¢€)7 on M, for all possible 0.
Moreover, for 1 < qo < n —2, if the D*(qo) condition holds in U, so does the D¢(q) condition also
holds for all min(qp,n—1—qp) < ¢ < max(qo,n—1—qo). For this reason, we will always assume
-1

that 1 < qo < %, that means the range of D(qo) is for q € [qo,n — 1 — qq].

Theorem 2.1. Assume U C M (suitable small open subset) is of finite commutator type and
satisfies the D(qo) condition defined as above, for 1 < qy < (n — 1)/2. Then the heat operator
acting on (0, q) forms is hypoelliptic in (0,00) x U with g0 < g <n —1— qo.
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Here and in what follows, < and > denote inequality up to a positive constant. Moreover, we
will use =~ for the combination of < and > .

Proof. 1t suffices to prove the theorem on (0, gg)-forms.
Since the finite type and D¢(qp) conditions, in the distributional sense, we have
2
I8l

_ 2 2
o (000)x M) = HaSuHL?OA’qO)((O,oo)xM) + HDbu”L?O’qO)((O,oo)XJ\/[)_‘_

+(9su, DbU>L§O ((0,00)x M) T (B, 8SU>L<20

,40) ((0,00)x M)

,40)

But 0O, is self-adjoint and 0} = —0;, then
2 _ 2 2
||55[U]||L(20’q0)((0,00)xM) = ||asUHL?07q0)((o,oo)XM) + HDbUHL?O’qO)((o,OO)X]w)'

Let u = u(s, ), for s > 0 and = € U. The condition of finite commutator type for L1, ..., L,_1,
Li,...,L,_1 on U also implies the finite commutator type for Li,...,Ln,_1, L1,..., Ly_1,05 on
(0,00) x U. Since the D¢(q) condition holds, we have obtained the well-known subelliptic estimate
for the heat operator and the maximal estimate for O, [6]. Then these imply that

2 < 2 2
ullzreo < "5[U]||L?07q0)((0,oo)xM) + HUHL%MO)((QOO)XM)'

Let ¢, (; be smooth real-valued cutoff functions supported in U, with ( < (; (i.e., ( = 1 on supp(y).
For any 6 € R and N > 0, by the same method to prove Theorem 8.2.9 in [3], the following estimate
holds:

[Cull go+eo < Con([|CH[u]llgs + [[Crullg-w).

Therefore, ) is hypoelliptic on all (0, gp)-forms defined on (0, c0) x U.

Theorem 2.1 is proved.

3. Spaces of homogeneous type. In this section, we also assume that the holomorphic vectors
fields L1,...,Ly—1,L1,..., L, defined on U C M satisfy the condition of finite commutator
type and the condition D¢(q). The real vector fields X1, ..., Xo,_o are defined by X; = ReL;,
Xpyj—1 =ImL;, j=1,...,n— 1. For each finite sequence i1, ...,%; of integers with 1 <i; <
< 2n — 2, setting I = (i1,...,1) and the length |I| = k. We can write the commutator

[Xik7 [Xik—N ey [Xi27Xi1]7 .. H = )‘i1---ikT7 mod (Xl, . ,Xgn_g),

where \;, _;, € C*(U).
Definition 3.1. For x € U and r > 0, the size functions are defined by

2

M) = D Paa@P] , =2

2<|1|<!
and
Aa,r) = Ag(a)r!
1=2
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1086 LY KIM HA

Definition 3.2. For each x, y € U, the natural nonisotropic distance pyr(z,y) corresponding
to the vector fields X1, ..., Xon_o is defined by

pu(z,y) = inf {5 > 0: there exists a continuous, piecewise smooth map

¢:10,1] = U such that $(0) =z, ¢(1) =y,
2n—2
and ¢'(t) = Zj:l a;(t)X; almost everywhere,

with |oj(t)] < 6, for j = 1,...,2n—2}.
The nonisotropic ball centered at x € U, with radius v > 0 is given by

Buy(z,m)={y € U: pu(z,y) <7}

For any z, y € U, we also define V(z,y) = |Bu(x, prr(x,y))|.
Let By denote the unit ball (defined by the Euclidean metric) in R>*~!. For z € U and r > 0,
we set
O, r(u) =exp(rur X1 + ... + rugp—2Xon—o + Az, 7)usn—17T)(z),
where u = (uq,...,u2,—1) € Bpy. There is Ry > 0 depending on the manifold M so that for
all 0 < r < Ry, the map ®,, is a diffeomorphism of the unit ball By to its image. Hereafter,
0 < r < Rp when we have calculations on the exponential map ®, . Now, let

Ba(z,7) = ,.,(Bo),
that is

EM(m,r) = {y eU:y=exp(a1 X1+ ...+ a2m—2Xon—o+aTl)(x),

where |a;| <rforj=1,...,2n—2, and |a| < A(m,r)}.

We have the following facts about the size function A and the above families of nonisotropic balls,
which were proved in [9].
Theorem 3.1. Assume that U C M of finite commutator type, there exists Rg > 0 such that:
(1) There are positive constants C1, Cy so that for all x € U and 0 < r < Ry,

B (z,Cir) C EM(QT,’I“) C By (x, Car).
(2) There are two constants Cs,Cy > 0 such that for all x,y € U

Vi (z,y)
(ont @ )P A paa (@)~

(3) Let J..(u) denote the Jacobian matrix of ®,,(u). Then |det(J,,(u))| ~ r*"=2A(z,r)

uniformly in x and 0 < r < Ry.

4) ;a det(Jy - (w)| < r*2A(x, ) uniformly in x and 0 < r < Ry, for each multiindex c.
u

C3

AN
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For any function f € C'(By), the scaled pullbacks to By of the vector fields X are defined by
(X; ) () = (Xjagr(w) = r(X; [)(@pr(w), j=1,...,2n =2,
where f(y) = fo @;},(y) for y € EM(ZL‘,T‘). Therefore, )/(\'1,...,)?271,2 may be written (in the

. . L 0
u-coordinates) as linear combinations of the vector fields —, ...,
Ouq Ougn—1

. Also, we define the

scaled pullback to By of the function ¢ on By (z,r) by
P(u) = ¢(Pyr(u))

for u € By.

The following facts are also from [2, 9].

Theorem 3.2. (1) The coefficients of the X j (expressed in w-coordinates), together with their
derivatives, are bounded above uniformly in x and r.

(2) The vector fields )?1, . ,)?gn_g are of finite commutator type on By, and

det()?l, ceey )/(:gn_g, Z) >C

for a commutator Z (of the )/(\'j) of length < m such that )21, e ,Xgn_g, Z span the tangent space
(C > 0 is independent of x and r).
In particular, we can write

P 2n—2
= bjuXi+bjon-172,
ou,; ’
J =1
so that b;; and its derivatives are bounded above uniformly in x and r, for j, [ =1,...,2n — 1.

Now, let us define the CR structure on By determined by the following vector fields:

Ej = )?j + i)?n+j_1, I:j = )?j — i)?n—i-j—l,
and the basis of (0, 1)-forms dual 0 L1,..., Ly_1 by &1, ..., Bn-1.
We consider the equation on B(z, )

From the definition,
Lid = 1(L;6) (@ (1)) = 1 f (@ p(u)) = 1f = rL;o.

So, fj\gb = r‘l/f:jngb is the scaled pullback of the equation L;¢ = f. Now, f)j = —Lj + a;, for some
a; € C*°(U), we also define

I/;k = —Lj + Taj‘
_— A~k = = =
Similarly, we obtain L7¢ = rile ¢. We also define the pullbacks 9, and 9} of the operators J;, and
5;‘ by

—

— =~

(Dpp) = ' Dp,
and .

(O50) =r~'030,
respectively.
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Lemma 3.1 [6]. Let (0,)B and (9;)P be the operators defined in the terms of the CR structure
on_the unit ball By which is determined by the vector fields {L],L }. Then 81) = (0p)P

7’82‘ — (5;; VB is a differential operator of order zero on By uniformly in x and r.
Finally, we also extend the map @, , on By to the map ®(, ), on R x By by

é(s,x),r(sv U) = (T_st @x,r(u))

with 0 < r < Ry.
The scaled pullback of the heat equation on R x M to R x By is

((5 - De») 6(s, x>> - ’”2555(8,@ +r720,0(s, u),

where 0y, = 0,0; + 0; 0, is defined on B,.
Next, under the condition of finite commutator type on M, we also define the parabolic non-
isotropic metric on R x M. Recall that the family of dilation §) on R x M is

5>\(S7 .I‘) = ()‘237 )\33‘)7

for s € R,z € M and the parameter A > 0.
0
Definition 3.3. Denote by Y the vector field s on R, then the family of the vector fields
S

{Y, X1,..., Xon—2} also satisfies the condition of finite commutator type. For every p = (s,x),
q = (t,y) € R x U, the following function is finite:

PrxM (D, @) = par(x,y) + V/|s —t].

This distance associates to the corresponding balls Brxas((s,x),r) on R x M. Note that
| Brxwr((s, @), |t = s|)| = (t — )| Bu(, |t = s])].

Let ]ﬁ%o denote the unit ball in R?". For each (u,ug) € IE%O the exponential mapping on R x M is

D5 0),r (s ug) = exp(r?ugY 4+ rus X1 + ... + rugn_oXon_o + Az, 7)ug, 1 T) (s, x)

and N N N
BRXM((37 J}), T) = q)(s,x),r(]BO)-

Now, we briefly recall the definition of the class of NIS operators on the CR manifold M. For more
discussions, see [6—8].

Let D'(M) be the space of distributions defined on M and I be the set of multiindexes
(o1, ..., a2,—2) such that 22"12% =kfork=0,1,....

Deﬁnltlon 3.4. An operator T : C§°(M) — D'(M) is called a NIS operator of order k > 0
if the following conditions hold.:

(1) There is a function Ty(x,y) € C®°(M x M \ Ap) (smooth of the diagonal) so that if
¢, € C§°(M) have disjoint supports,

/ / By ()T, y)dV (2)dV (3).
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(2) For any s > 0, there exist parameters «o(s) < oo,3 < oo such that if (,{’ € C>®°(M),
¢ < (', then there is a constant Cs so that

ISTTAlls < Cs(IS fllags) + 1£118) (.1

SJorall f e C>®(M).
(3) Forany o € Iy, B € I, there exists a constant Cy,; so that

I XEXDTo(2,y)| < Crapar(e,y)™* WVar(a,y) 7t

(4) For any ball By(xo,r) C U, for each integer k > 0, there is a positive integer Ny and a
constant Cy, so that if ¢ € C§°(Bar(xo, 7)) and a € I, we have

sup | XoT()(x)] < Cur™ Fsup Y X [g](y)].
:EGBM/({L‘Q,T) yeM |J‘§Nk

(5) The above conditions also hold for the adjoint operator T* with kernel Ty(y, x).
We also generalize this definition to a class of operators defined on (0, ¢)-forms. Let 7 be an

operator from Cg5, (M) into C§%, (M) and ¢ = Z\,ﬂ p10r € Cgy, (U), then
) 5 =q )

|J]=g2

where

(T8 () = > {Tlor(@)ai],@s) .

[I1=q1

Then we define 777 [g)(x) = (T[g(z)@1], @ )2 for g € C(U). We say that T is a NIS operator
of order x on (0,q;)-form if and only if 7 and 7* satisfy the estimate in condition (2) of the
Definition 3.4 and each 777 is a NIS operator of order  on functions.

Example 3.1 (Szego projections). Let S, and S(’Z denote the orthogonal projections in L%O 9 (M)

onto ker(él? 1) and ker(ézo’q), respectively, where 51? 7 and 5;0"1 mean 0, J; acting on (0, ¢)-forms.
We can rewrite these operators by

Slol(x) = > > N Sler(@)wr], @)y = Y | D S [gil(x) | @,

[J|=gz2|I|=q1 [J=g2 \|I|=q1
Sylol(x) = > > SHler@wr],wn) e = Y | D (S [61)(w) | @
|J|=g2|T|=q1 [Jl=q2 \|I|=q

for ¢ = ZII\ ¢rwr. Now, by the Riesz representation theorem,
=q

slelm = S [ 3 / S ()1 (9)dV (4) | @,

|JI=q2 \|I|=a1p1
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Sl = S| X [ @nerwav) e,

[Jl=q2 \/|=aq1ps

where SI/(z,y) and (S77)(x,y) are the respective Schwartz kernels of S!7[] and (S}7)'[-].
In [6], the author showed that the operators S, and S(’I are the NIS operators of order zero with
90 <qg<n-—1-—qo.

As a consequence, we have the following proposition.

Proposition 3.1. Let o be a multiindex with |o| = k > 1. For 0 < j < [k/2], there are N1S
operators Aj1, ..., Ajon_2,Ajon_1 smoothing of order zero such that

[k/2] /2n—2 '
XTI —Hy) = Z (Z (A X0) + Aj,2n1> Oy,

=0 \ (=1

Here the operator H, is the orthogonal projection in La q onto its harmonic subspace. In particular,
ifk = Qj, Aj71 = Aj72 =...= Ajygn_g =0.

Proof. The proof uses the fact (which is established in [6]) that the relative inverse K to O, is a
NIS operator of order 2, in the cases of comparable Levi form. Here the modification to Proposition
3.4.7 in [8] is that now UK = I — H, instead of I — S, in dimension n = 2.

The scaling method also provides following Sobolev type theorem.

Theorem 3.3. Assume that the D(q) and finite type conditions hold on M. Then there are a
constant C' and an even integer L, so that if f € C*°(U), then, for all x € U and all r < 1y,

_1
sup |f| < C|Bu(x,r)| 2 > P X Fll 2By o2 -
B (z,r) 0<|I|< L, |I| even

Let f € A% (C™(M)) N Lg’q,(M) with ¢ < ¢ <n —1— q. Moreover, if f € (ker(0p))*, then

Lim/2
_1 i i
swp |f] < ClBu )| > 1108,
B (,r) =0 “

Proof. We apply the scaling method introduced above. From the property (1) in Theorem 3.1,
we have

sup  [f(y)l < sup  [f(y)| < sup [f(Pa,cor(w)]-
yEBM(x’T) yEB]\/[(.Z‘,CU”) u€Bg

Set F(u) = f(®z,cyr(u)) for u € By. Let G(u) = F(u)f(u), where § € C°(R?*"7 1), § =1 on
By, and 6 = 0 outside the ball B(0,2) c R?"~!. So,

sup [F(uw)| < sup  |G(u)| < / Ge)]av (€) <
u€Bg ueR2n—1 REw-1

< (1 + €N G )| g2 a1y |1 (L + [€11) TN L2 (gzn1y <

(N can be chosen large enough to guarantee integrability)
I
0
<C — | F
sc > (g

0<|I1<2, |I| even
ISSN 1027-3190. Ykp. mam. scypn., 2019, m. 71, Ne 8
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Now, from the statement (2) in Theorem 3.2, there is a positive integer number [ depending on m
(the constant [ should be the higher power to make the Holder’s inequality work) such that

o\
sup |[F| < C > 1(X)" Fllr2m0,2))-
Bo 0<|I|<2L,|I| even

Then, after rescaling pullback, by Theorem 3.1, we have the first statement. The analogue of the first
statement for forms is immediately obvious. In order to estimate X' f in the terms of DZ f, with
f = f—H4lf], we will apply the basic decomposition in Proposition 3.1. Since || is even, there
exists a NIS operator of smoothing of order zero A; such that

1]

X1 -H,y) = A0, .

Therefore, if f is orthogonal to the null space of O, we obtain the second assertion.

Theorem 3.3 is proved.

4. Proof of the main theorem. 4.1. The heat kernel. For convenience, we recall some results
for the heat semigroup of unbounded operators e~*7% via Hilbert space theory.

Theorem 4.1. Let ¢ € L%o q)(M) Sor q € [go,n — 1 — qo], then:

(1) limg o [le™[¢] — ¢||L§O (M) = 0;

@) for s >0, le=*=[ll 2 ary < I8ll2

(0,9) (0,9)

(3) if ¢ € Dom(Oy,), then [le™*7*[¢] — ¢HL?O7(1)(M) < s[I06[9]ll 22 ()

(0,9)

-\ J
(4) for s > 0 and j nonnegative integer; ||(Cy Ve [d] <M>S(i) ol

0,9) (0,9)
(5) e v H @] = Hoe *70[¢] = Hylo);
(6) e™0[g] = (I —Hy)e™*2[¢] + Hylg] = e (I — Ho)[d] + Holo):
(7) for any ¢ € L%O,q) (M) and any s > 0, the Hilbert space valued form e~7%[¢| satisfies

[0s + Oylle ™[9]l =0 for s >0,

lime 5 [p] = ¢ in L%(,’q)((o, 00) x M);

s—0

(8) for any s > 0, e=* is a self-adjoint operator on L%qu)(M).

From Proposition 4.1 in [6], the operator H, does exactly equal to S, + S(’] — I. Therefore, H,
is a NIS operator of order zero, with ¢ < ¢ < n — 1 — qg. This fact and Theorem 4.1 imply the
pseudolocal property (3.1) for 7 = e~ 7 uniformly in s > 0.

Lemma 4.1. Let M be a pseudoconvex finite type compact CR manifold for which the range of
Oy is closed in L? and which satisfies the D(qq) condition. Let |a| = a > 0 and K C M be a
compact set. Choose an integer N so that Neg > 2n — 1 + a. Then there is a constant C such that

for each s > 0, if x € K, and for all ¢ € L?O,q)(M) with g < qg<n—1-q,
XDl < OO+ 5 M8l

As a consequence of the condition of finite commutator type, for any derivative D on M,
D [g)(@)] < O+ 5 )0l
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Proof. Choose ¢ € C§°(M) with ((x) = 1 for all z € K. Then, pick cutoff functions
(< <...=<{n =" By Sobolev imbedding heorem, we have

| X [g)(2)] = [XC(z)e P[] ()] < Cllce™ ][ pran-1+a-
Applying the basic subelliptic estimate, we get
ICe™ " (@]l pran-1+a < C [0 [0]]| gan-1+a-co + [[Cre™ ] 2] -

If we repeat this argument N times, by (4) in Theorem 4.1, we will obtain

e~ llmren < O3 IO 6ll1s,_ ) < L+ 5ol an
7=0

Lemma 4.1 is proved.

We also have integral kernels for X e~ [¢].

Lemma 4.2. For each x € M and s > 0, and for each multiindex || = a, there exist unique
functions H!Y € L>(M), where |I| = |J| = q, q € [qo,n — 1 — qo], so that

$,T,x

xee ol = X 3 AL orwav) |as

IJI=q¢ \ll=q j

or in short

x5O / Hema(9)6(y)dV (),

where ¢ = Zi I‘:qd)[@[. Moreover, if K C M is compact and if C' is the corresponding constant in
Lemma 4.1, then, if x € K,

3 / HI () Pdy < C2(1+ sV
LJ jy

Proof. For each s > 0, x € M, we define the mapping ¢ — X%e 57%[¢]|(z). By Lemma 4.1,
this functional is bounded. Moreover, since

X2 ol() = DD (X gl @) 2 ()6,

|J|=q |T|=q

and so by the Riesz representation theorem, there exist functions H L‘,{ J a € L%(M) so that

X (e loi](w)) = (X e prr], @) (x) =/ H3 o(y)0r(y)dV (y)-

M

Hence, by duality, we obtain

/
/|H§;{a )2dy < C?(1+ s7N)2
I’JM

Lemma 4.2 is proved.
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Definition 4.1. We define the following (0, q)-forms, for q € [qo,n — 1 — qo],

H(s,2) = Y H (5,2, 9)s(x),

|J]=q
!
Hz{(sa y) = Z HIJ(Sv:va)‘DI(y)v
[I]=q
and, for s > 0,
/
Hy(w,y) = 32 HY (5,2, )@, (2) 0 @1 (y).

|I|=g
[J]=q

/
It turns out that e~*7¢[¢](z) = Z|J|:q<1£fg}](87 ), ¢>L§0 q)(M)U_-’J-

For fixed s > 0, since H'/(s,z,y) = HSI;;’O, for all I,J, Lemma 4.2 says that the maps
y +— H'(s,2,%) belong to L?(M) for all I,.J, and

lgla) = Y| X [ HY s wpermav) e
[JI=a \lI|=q s
We denote these sums as/ H(s,z,y)o(y)dV (y).
M

Theorem 4.2. For each fixed s > 0 and x € M, the function y — H''(s,x,1) belongs to
L?(M), so each integral above converges absolutely. Moreover, each component H'' (s, x,y) of
H(s,z,y) satisfies

(1) for s >0 and x,y € M, H" (s,z,y) = H'I(s,y, x);
(2) [0 + (D)) [Hy](s,2) = [05 + (Tp)y)[H]](s,y) = 0 and, hence,

[0s + (Bo)][Hs (x, y)] = 05 + (Oo)y] [Hs(z,y)] = 0;
(3) for any integer j, k > 0,
(O0)L(O)y H (2, y) = (Op) P Hy (s, ) = (Oy)5H H (5, y);
(4) for each s >0 and y € M, for any nonnegative integer j, each function
x> (Db)g‘:Hy](s,x)

is orthogonal to ker(Op).

Proof. The proof of Theorem 4.2 is almost identical to the one in [8] (Theorem 5.1.2), hence it
is omitted.

These heat kernels also provide the fundamental solutions for the initial-value problem on the
whole space R x M.
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Definition 4.2. For 1) € A%(C5°(R x M)), we set

<Hx,1/)—hm//Hsmy (5,9)dV (y s—hm//sty (5,9)dV (3) ds,

e—0t e—07t
€ M

where H s components are

B (s,2,y) = {H”(s,x,y), ifs >0,
0, if s <0.
Proposition 4.1. The limit defining H,, exists. Moreover,
[0s + (Bb)y][Ha] = do ® Je
in the sense of distributions (in component-wise), i.e.,

<Hw7 [—0s + Db]¢> = (0, 7).

Proof. Setting 5(y) = (s,y), so s € A% (C>(M)). Choose a positive integer N so that

2n —1
Ne> 2 . Choose ( < (1 < ... < {y = ¢ with {(x) = 1. Then, once again, by Sobolev
imbedding theorem and the basic subelliptic estimate applied /N times, we obtain

/ H(s, 2, p)b()dV (y)| = |ce ™ [a)()] <

< Cll¢e™ P ]| ve <
CllI¢1T[e ™ [Wha]lll (v—1)e + [ICre* 0[] [lo] <

< ...repeating N-times as above... <

N
< C Y l<Tle™ > alllo-

Jj=0

Moreover, since the operators 0 and e 7% commute,

/ H(s, 2, 9)d()dV (y) <cZuc o0l < S Tl
M

7=0
The right-hand side is uniformly bounded in s, and then, taking integral on [, 1)2], we have

N

2
[ [ HGamitavi)ds| < Gl - misw > 3w

m M J=0

We see that the left-hand side goes to zero as 772 — 0, so the limit defining Hl, exists. Again, let
Y € A%(CS°(R x M), then
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<H:B> [_85 + Db]ws> = li_I}T(l)/e_SDb[[—as + Db]ws] ds =

~ _lim 7 / H(s, 2, 9)0u0(s, 2)dV () ds+

e—0
€ M

e—0

+lim//H(s,m,y)wa(s,y)dV(y) ds. 4.1
M

Now, for the first term, we get

o0

|
o \

/sty Os9(s,z)dV (y) ds =

= Z/ / H” (6,2, 9)¥1(e,y)dV (y) | @5+
[J1=q \lIl=q ps
+ / S0 (5, ), (s, )y ds. 42)
€ |J|:q

For the second term,

H(s,z,y)0p¢(s,y)dV (y) ds = (H;(s,-), Opth(s, )y ds =
/] /5"

E‘J‘q

/ Z s,-),0(s, )@y ds. (4.3)

e |J]=q
Hence, since [0s + (0p),]H; (s,y) = 0, (4.1), (4.2), and (4.3) imply
<Hx7 [_as + Db]¢s> = ¢(07 .73) = <60 X 6967 7/]>

Proposition 4.1 is proved.
A remark that, by translation, we also have

<H:Jca [_aert + Db]w> = ¢(tv $)

4.2. Pointwise estimates for the heat kernel. We begin by recalling the scaled pullback of the
heat equation on R x M to R x By by

(95 + 0p)d(s,u)) = r2[(Bs + Op) (s, )]

Now, using the above changing of the variable ®(; ) -, With s >0, 0 € M, u,v € Bg, we define
the pullback of the heat kernel H (s, x,y):
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WIJ(S,’LL, v) = wiJ (s,u,v) = HIJ(’I“QS,(I);EOJ(U),‘I)IO’T(U))

xo,T

foreach |I| = |J| =¢q, g0 < ¢<n—1-gqp, and 0 < r < Ry. Hence, from previous sections, we
have

105 + (0, [V (5,u) = 0,
[0 + (3,)u][W)(s,v) = 0,

where W/ (s,u) and W,/ (s,v) are defined by the same formulas as Hy[(s, z) and H(s,v).
In the same way, for s > 0, and ¢ € A%9(C§°(By)), we define the scaled pullback of =57 as

_ / W (s, u,0)6(v)dv = / H(r2s, @y 1 (1), g r (1)) (0) .

The key point is that the norm of the operator W is bounded on L%O 9 (By).
Lemma 4.3. There is a constant C' which is independent of xq,  and s > 0 so that

-1
IWl6lllz3,, ey < B0 I 622, ooy

Proof. Let x € B(xzg,r), by changing of variables, we have

W [o)( zor /H 778, @y (P 20,7 ( ))vq)xo,r(”))d)(v)dv =

= /H(T 5,2,9) (60 P ) (1) oo (D ) P (W) (y)dAV () =
M

=e " SDb[(Cf’ o (I)xo ) Jao (I)wo (@)

Since Heir SDb[(¢ ° q)xo T)J$0, (I)xolr] HL2 < H<¢ © q)ato T)J$07 (I)xo T‘HL2 it follows that

/ W, [8)(@5L, (2))[2dV (x / (@54, ()2 (g (@52, (2))) 2V () =
/ (10) 2 (g 5L (B (1)) B (1)t <

< C|B(ao, )| / 6 () .

The last inequality is derived from the facts that J,, T¢>IM( vor(W) = Jugr Py (u)~t, and
Jro R®uo.r(1) > C7Y|B(zg,7)| for 0 < r < Ry according to Theorem 3.1.
On the other hand,

/|W L (@)PdVi(z) > O Blao. ) |/|W (u)Pdu.

Bo
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Hence, we obtain
W[l 23, 20y < CIBG@o0, M) Iolzs, oy
Lemma 4.3 is proved.

Next, we will obtain local estimates for the functions H'/s, |I| = |J| = q, ¢ € [qo,n — 1 — qo].

Theorem 4.3. Let j, k, | be nonnegative integers. For every positive integer N, there is a
constant Cy = C j 1 so that if |o| =k, |B| =1,

N
. S .
’anaXﬂHIJ(S T y)| < CNp(xvy)izjikiqB(xap(-xvy))lil (p(x y)g) ) lfS < p(x)y)2a
sz Ay » by = ;

Cns™I7F/ 22| B(x, \/5)| Y, if's > ple,y)?,

for all (s,z,y) with prxps((s, ), (0,7)) = |s|Y/2 + p(z,y) < 1.
The proof is based the scaling method which was introduced M. Christ [2], and then deve-
loped in higher dimensions by K. Koenig [6]. We need the following subelliptic estimate for the

scaled pullback of O, operator on By which is a consequence of the subelliptic estimate of O, and
Theorem 3.1.

Proposition 4.2. Fix ¢, (" € C§°(Bo) with ¢ < ('. For smooth (0, q)-forms, q € [qo,n—1—qo],
¢= Z\/K|ZQ¢K@K on By and § > 0, we have

I¢oli3.. < Cs (ICaI3 + ICT0113 + IC113)

where Cs is a positive constant independent of x and 0 < r < Ry.

As a consequence, for q € [qo,n — 1 —qo], the heat operator O, + O, also satisfies the subelliptic
estimate

¢ol3 < Cs (119 + T, 0113 + 14113

Sfor all smooth (0, q)-forms ¢ on R x By.

Proof of Theorem 4.3. We will prove the theorem with N = 0 first. By compactness, if
Ro < |s]"/2 4 p(x,y) < 1, the estimates are trivial. Hence, it suffices to show that the estimates hold
when |s|'/2 + p(z,y) < Ro. Now, let fix (so,z0) € R x M, and let (s,z) € R x M be another
point so that prxar((So, o), (s,2)) = r < Ry. There exists a unique point (tp,vg) € (—1,1) x By
such that (s, z) = (so + 72to, @4, »(v0)). Let 7 > 0 such that [to|"/2 + |vg| > 7.

For (t1,u), (t2,v) € (—1,1) x By, we put

W#((tlv u)v (t27 1))) = H(TQ(tQ - tl)? (I)xoﬂ“(u)v (I)J»‘O,T’(v))7

in the sense that (W#)' ((t1, ), (t2,0)) = HY (r2(ty — t1), ®up (1), Py (v)) for all || =
= |J| = q. Then

=0k, + (B,)[(W#)!] = 0,

[Br + ()] [(WF)] = 0,

and
[DIXSXPH(r?(t — t1), Pag (1), Pag,r(v) = =2 F10] XEXEWH#)((t1,w), (t2,0)).
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Now, for ¢ € C3°((—1,1) x By), set

T#(8](t1,u) = / WH((t1, ), (ta, 0))B(ta, v)dvdts

RXBO

in the sense as above, i.e.,

<T#[¢](t1,u))J = (Z/ //(W#)I‘]((tl,u)7(tQ,U))QbI(tQ,U)dvdtz) .

|I‘:q RX]BO J

Then /
THoltw) = Y. (THeltn,u)) G

|J]=q

The nonisotropic balls

1
B = { () 12+l < g

1
By = {(tmv) [tz — to]/? + o — wo| < 37}
are disjoint.
Choose cutoff functions ¢ < ¢’ < (" € C§°(Bz) with ((tp,v0) = 1, and n < 1 € C§°(B1)
with 7(0,0) = 1. Then, by the Sobolev inequality and the basic subelliptic estimate for the operator
O, + O, we have

107, X2 2 W#)71((0,0), (to, v0)) | = [ (o, 50)[04, X2 REW#)”)((0,0), (t0, v0)) | <

< C ‘ C/(W#)J((Ov 0)7 (‘7 )) Mt it <
<C h ¢"[0h, + (a\b)v](W#)J((O’ 0), () 2n+j+h+l—
e oo, <
< C e (0,0, ()| <
<C sup  |T#[C'9(0,0)|,
$€C™(B2)
llo]=1

where the last estimate follows from the fact that [0y, + a\b] W#((0,0), (t,s)) = 0 on By containing
the support of (’.
Now, to estimate the term with the supremum sign, again, we use the basic subelliptic for

_atl + (Db)w
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s |THCE)(0,0)| = sup [n(0,0)T#(¢'6](0,0)] <
peC>(B2) peC™>(Bz2)
lgll=1 =1
<c swp |nT*IC)| <
¢peC>(Ba) 2n
lgll=1
<C sw || [0+ @)ITHCS]  + | THCel | <
$EC>(Bz2) 0
[|[#]|=1 =0 on Bj containing supp(n’) IMm—e
<c sw [T <
$pEC>(Ba) 0
=1
< C||T#|.

Therefore, we have shown that

HIXSXPH (r?tg, xo,2)| < Cr= 27K T#|.

1099

The last step is to estimate the norm |77#]|. Let ¢,1 be (0,q)-forms whose coefficients are
C3((—1,1) x Byp), and let ¢5(v) = ¢(s,v), Yr(u) = (t,u). Then, in the sense as above, we

get

//T#[¢](t7u)¢(t,u) dudt| =

RxBg
= Z/ (Z/ (W) ((t,w), (5,0))b1(s, v)dv ds) Wy (t,u) dudt
171=q Réé [T1=q RéB[()

= Z' Z' // //(W#)”((t,u),(s,u))¢1(s,v)¢J(t,u)dsdtdudv =

I71=q 111=9 RxB, RxBo

= Z/ Z/ /// H' (1P (s — t), ®ag 0 (w), Pag,r (v) 1 (s, )0 (7, u) ds dt dudv

[J1=q =g

= Z/ Z/ /// HM (1?8, @39 0 (1), @ r () b1 (s + t,0)1p (¢, 1) ds dt dudv| <

[J1=q l=q

< C// HWs[¢s+t”|L?O7q)(IB%O)Hwt”L%O’q)(BO) dsdt.
R2

Now, by Lemma 4.3, |W, [¢s+t]HL§O Y < C|B(=o, r)]*lquSﬁHL%O . (Bo): Then
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/ TH(8)(t, u)(t, ) dudt| <
RxBg

< C|B(xo0, )| |8 llrxs, [ ¥]|rxEo-

Hence, we obtain
agXa?XgH(& Z, y)’ < C(pRXM(Sa .'L‘), (07 y))72jikil‘B(x7 pRXM(Sa .'L‘), (07 y))|71 (44)

This implies the statement of Theorem 4.3 when N = 0. To deal with the case N > 0, we must use
the facts that s — H!/(s,z,y) is a smooth function when 2 # y, and vanishes to infinite order as
s — 0 by Proposition 4.1. Hence, applying Taylor’s formula and integrating by parts, we get

1 r _
Y (s < gy [ N H s = 0 e <
0
< Copgr (@ w) " B pla )] ™ /(s — 1)Vt <
0

1 S N
<Coi |5 IB -1
>~ CON' (p($,y)2> | ('Tvp(x7y)‘ ;

when s < p(z,v), and replace p(x,y) by s'/? to obtain the expected estimate. This argument also

provides the same results when s > p(x,y). Finally, applying (4.4), estimates for other derivatives
of H!/(s,z,y) are handled in the same way.

Theorem 4.3 is proved.

Next, the action of the heat operator on bump functions is provided.

Theorem 4.4. Fix s > 0, for each multiindex o, there is an integer N, and a constant Cy so
that if ¢ € A%4(C5°(B(x,r))), then

1 XSe P [g](x)] < Cor ¥ sup > P XPe(y)|. (4.5)
veM g,

Proof. By Sobolev type Theorem 3.3 and the argument before, for ¢ € (ker )+ and 0 < 7 <
< Ry, we have

riel X e [g)(x)] <

< C’|BM(1:,T)|_1/2 Z rlﬁ\ﬂal||Xa+ﬂe—sﬂb[¢]||L?O ) <
0<|B|<Lm,|B|even ’
L et ,
< ClBu(w, )2 37 oS e (@ 6l <
1=0,leven Jj=0 ’
Lim I+]al

_ l

< C|Bp(z,r)| 1/2 Z ritlel Z HXB¢|’Lqu)7

1=0,leven |81=0 ’

ISSN 1027-3190. Vkp. mam. scypn., 2019, m. 71, Ne 8



THE O,-HEAT EQUATION ON FINITE TYPE CR MANIFOLDS WITH COMPARABLE LEVI FORM 1101

which yields the desired estimate in this case.

If r > Ry, applying Theorem 3.1 for r = Ry, we obtain

I+

L
o, —s —|a — I+
X [g](@)] < Or | Bar(a, Ro) 7 Y Ry YT IX 9l (Bt <
1=0, leven |B8]=0

L+
< C'p el Z PPl sup [ XPpl.
18]=0 B(xz,2r)

For the last inequality, note that r < cRy since M is compact. This yields (4.5) for ¢ € (ker O)".
The general case follows from Theorem 4.1 and the fact that H, is NIS of order zero.

Theorem 4.4 is proved.
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