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ON SPLICED SEQUENCES AND THE DENSITY OF POINTS WITH RESPECT
TO A MATRIX CONSTRUCTED BY USING A WEIGHT FUNCTION *

PO CILIETEHI NOCJIJOBHOCTI TA I'YCTHHY TOYOK BIJTHOCHO
MATPHIII, IO CKOHCTPYMOBAHA 3A JOIIOMOI'OIO BATOBOI ®YHKIIIi

Following the line of investigation in [Linear Algebra and Appl. — 2015. — 487. — P. 22-42], for y € R and a sequence
x = (zn) € £°° we define a new notion of density d, with respect to a weight function g of indices of the elements z,,
close to y, where g: N — [0, 00) is such that g(n) — oo and n/g (n) - 0. We present the relationships between the

densities 4 of indices of (z,) and the variation of the Cesaro-limit of (x,,). Our main result states that if the set of limit

points of (x,) is countable and d4(y) exists for any y € R, then limy,— o0 ﬁ Zj:l T = ZyER 84(y) -y, which is

an extended and much more general form of the “natural density version of the Osikiewicz theorem”. Note that in [Linear
Algebra and Appl. — 2015. — 487. — P. 22 -42], the regularity of the matrix was used in the entire investigation, whereas in
the present paper the investigation is actually performed with respect to a special type of matrix, which is not necessarily
regular.

VY npomy BuKIani mu ciigyemo poboti [Linear Algebra and Appl. — 2015. — 487. — P. 22-42]. Tax, mna y € R 1 moci-
noBHOCTI © = (z,) € £°° MM BBOLMMO HOBE IOHSTTS I'yCTHHH 04 BiJIHOCHO BaroBoi (yHKUIl g Bij iHIEKCIB eJeMEHTIB
Zn, OMM3BKHX 10 Yy, Ae ¢QyHkmis g: N — [0,00) Taka, mo g(n) — oo i n/g(n) - 0. HaBexmeno cmiBBimHOIICHHS
MIX T'yCTHHaMH Oy iHJCKCIB eleMeHTIB (x,) i Bapiauismu rpanuui Yesapo mnst (). B ocHOBHOMY pesyssrari cTBEp-

IDKYETBCS, 10 y BHIAJKY, KOJH MHOKMHA TPAHUYHUX 3HaYeHb UL (T,) € 3IideHHo, a 04(y) icHye must Beix y € R,

. 1 n . ..
limy, 00 — E o = E 0g(y) - y, MmO € po3MHUpPeHo0 Ta Habararo GiMBII 3aralbHOI0 (HOPMOIO ,,IPHPOAHO]
) i=1 yER

g(n

ryctiuHHOI Bepcii Teopemu OcikeBrnua”. Bigmitnmo, mo B [Linear Algebra and Appl. — 2015. — 487. — P. 22-42] pery-
JISIPHICTH MaTPUIll BUKOPHCTOBYBaJIaCh MPOTATOM YChOTO AOCIHiKeHHs. BomHouac y Hamiii poGOTi TOCHiKEHHS HACTIpaBi
BUKOHYETKLCSI IS CIICIIaIbHOTO THITY MATPHIIi, 1[0 HEOOOB I3KOBO € PETYISIPHOIO.

1. Introduction. For n,m € N with n < m, let [n, m] denote the set {n,n+1,n+2,...,m}. Let
A C N. Define

d(A) = lim sup AN, n]| and  d(A) = liminf AN, n]| n]\

n—00 n n—00
The numbers d(A) and d(A) are called the upper natural density and the lower natural density of
A, respectively. If d(A) = d(A), then this common value is called the natural density of A and we
denote it by d(A). Let Z; be the family of all subsets of N which have natural density 0. Then Z; is
a proper nontrivial admissible ideal of subsets of N. The notion of natural density was used by Fast
[8] and Scoenberg [23] to define the notion of statistical convergence.

In [4] a natural extension of the notions of natural density and statistical convergence were
introduced, by replacing n with a non linear term n®, 0 < o < 1, in the definition of asymptotic
density. The motivation came from the urge to investigation different kinds of densities and the
problem of comparing them with the natural density. Very recently in has been shown in [2] that one
can Further, extend the concept of natural density by considering natural density of weight g where
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ON SPLICED SEQUENCES AND THE DENSITY OF POINTS WITH RESPECT TO A MATRIX ... 1193

g: N — [0,00) is a function with lim,_,~ ¢ (n) = oo and 4 0. It has been observed in [2]
n

that one can construct uncountably many noncomparable P-ideals corresponding to different choices
of the weight function g, all different from the ideal Z,.
In another direction Osikiewicz had developed the ideas of finite and infinite splices in [20]. Let
FEh, Ey, Fs, ..., Eg, ... be a partition of N into countable number of sequences. Let y1, y2, ys, ...
.+y Yk, - .. be distinct real numbers. Let (z,,) be such that
li = y;.
o o =
Then (z,) is called an infinite-splice. (In the same way Osikiewicz defined a finite splice taking
finite number of sequences and finite number of distinct real numbers.) He proved the following.

Theorem 1 (Natural density (or Cesaro) version of Osikiewicz theorem [20]). Assume that (x,,)
is a splice over a partition {E;}. Let y; = limy,_o0 nek; Tn. Assume that d(E;) exists for each i and

> d(E) =1.

Then
1 n
Jam D=3 (B,
= 7

In fact Osikiewicz considered a more general case, namely matrix summability method and
A-density with the use of regular infinite matrices A the details of which are presented in the pre-
liminaries. Very recently in [3] a new approach was made to study the general version of Osikiewicz
theorem by defining the notion of the A-density of a point and an alternative version of the same
result was established. In fact it was shown that the assumptions of Osikiewicz theorem imply those
of the following theorem.

Theorem 2. Suppose that x = (x,,) is a bounded sequence, d4(y) exists for every y € R and
Z 04(y) = 1. Then
yeD

lim (Az)n = Y 6a(y) -y

n—oo
yeD

Consequently, the Osikiewicz result follows from Theorem 2.

As a natural consequence in this paper we extend the “natural density version of Osikiewicz
theorem” with the help of a weighted density function. But instead of considering the original
approach of Osikiewicz, we follow the more natural line of investigation of [3]. In order to do that
we define the notion of the density of a point with respect to a weight function and prove some of
its consequences. Note that the corresponding results do not follow from the results of [3] as the
redefined matrix with respect to a weight function is not necessarily a regular matrix. This shows
that results similar to [20] or [3] can be obtained for special kinds of nonregular matrices also. For
simplicity we do not use the matrix notation inside the body of the paper.
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1194 K. BOSE, P. DAS, S. SENGUPTA

2. Preliminaries. We first present the necessary definitions and notations which will form the
background of this article.
If © = (z,) is a sequence and A = (a, ) is a summability matrix, then by Az we denote the

sequence ((Az)1, (Az)2, (Ax)s,...) where (Az), = Z:il k2. The matrix A is called regular
if limy, o0z, = L implies lim,_,(Az), = L. The well-known Silverman - Toeplitz theorem
characterizes regular matrices in the following way. A matrix A is regular if and only if

(1) limy, o0 ap i = 0,

.o . Oo
(1) limg,—eo Zk:l an e = 1,

o0
(iii) sup,eyn Zk:l |ap, k| < o0
We say that a nonnegative matrix A = (a;;) is nonregular if it fails to satisfy any of the three
conditions (i), (ii) and (iii) prescribed above.
For a nonnegative regular matrix A and £ C N, following Freedman and Sember [12], the
A-density of E, denoted by d4(F), is defined as follows:

oa(E _11nH_1>£fZank—hmlanank]lE —liggicgf(A]lE)n,
ker
where 1 is a 0-1 sequence such that 1p(k) =1 <= k€ E. If 04(F) = 04(F) then we say that
the A-density of E exists and it is denoted by d4(F). Clearly, if A is the Cesaro matrix, i.e.,

— ifn >k,
an k= n

0 otherwise,
then § 4 coincides with the natural density.

Throughout by /*° we denote the set of all bounded sequences of reals.

We first recall the original Osikiewicz theorem.

Theorem 3 (Osikiewicz [20]). Assume that A is a nonnegative regular summability matrix.
Assume that (x,) € € is a splice over a partition {E;}. Let y; = limy,_yo0 nep, Tn. Assume
that 0 4(E;) exists for each i and

D 0a(E) =
i

Then -
nlggoz Un T = Zyz -0A(E;)
k=1 7

In [3] in a new approach, the authors had defined for a sequence (x,) the density d4(y) of
indices of those x,, which are close to y which was not dealt with till then in the literature. This was
a more general approach than that of Osikiewicz.

Fix (x,) € £>°. For y € R let

5a(y) = lim Ta({n: 20— y] < <))
and
6a(y) = lim Sa({n: o — ] < <}

If 54(y) = da(y), then the common value is denoted by §4(y).
The main result of [3] was the following.
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Theorem 4. Let © = (x,) € (°°. Suppose that the set of limit points of (x,) is countable and
d4(y) exists for any y € R where A is a nonnegative regular matrix. Then

lim (Ax), = Z daly) - y.

n—oo
yER

Now recall that a nonempty family Z of subsets of N is an ideal in N if for A, B C N:
(i) A, B € T implies AUB € I; (ii))AcZ, BC Aimply B € Z. Further, if J .7 A = N,
ie, {n} €Z Vn €N, then Z is called admissible or free. An ideal Z is called a P-ideal if for any
sequence of sets (D,,) from Z, there is another sequence of sets (C),) in Z such that D,, A C,, is
finite for all » and (J,, C\, € Z. Equivalently, if for each sequence (A,) of sets from Z there exists
Aso € 7 such that A,, \ A is finite for all n € N, then Z becomes a P-ideal.

For a bounded sequence (x,), we now recall the following definitions (see [17]):

(i) (zy,) is Z-convergent to y if for any € > 0, {n: |z, —y| >} € T.

(ii) A point y is called an Z-cluster point of (z,) if {n: |z, —y| < e} ¢ Z for any £ > 0.

(iii) y is called an Z-limit point of (z,,) if thereisaset B C N, B ¢ Z, such that lim,cp x, = y.

We now start our main discussions. Let g: N — [0, 00) be a function with lim,,_,., g (n) = 0.
The upper density of weight g was defined in [2] by the formula

dy(A) = limsup A0 L)

n—00 g(n)

for A C N. The lower density of weight g, dg(A) is defined in a similar way. Then the family

Z,={ACN:d,(A) =0}
_n
. gtn)
additionally assume that n/g (n) - 0 so that N ¢ Z, and Z, becomes a proper admissible P-ideal
of N (see [2]). As a natural consequence we can consider the following definition.

Definition 1. 4 sequence (xn) of real numbers is said to converge dg-statistically to x if, for
any given € > 0, dy(A.) = 0 where

forms an ideal. It has been observed in [2] that N € Z, if and only if — 0. Therefore, we

Ac={neN: |z, —z| > €}.

Further, one should observe that if we define A = (a;;), 4,j = 1,2,..., 00, such that

— if 1<y,
aj; = g(4)
0 otherwise,

where g: N — (0,00) is a weight function defined above then clearly A is not necessarily a regular
matrix (though for certain choices of g, for example, if g(n) = n + 1, the generated matrix would
be regular). In fact for appropriately chosen functions g the corresponding matrices may not satisfy
all the three conditions of a regular matrix. For example, if we take g(n) = \/n, then for the
corresponding matrix

(1) limy, oo an,k; 0,

(i) limy—oo Zk:l (U jp = 0.
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1196 K. BOSE, P. DAS, S. SENGUPTA

Our main result, Theorem 5, reveals that we can actually obtain Osikiewicz like theorems for matrices
which are not necessarily regular.

We now define the main concepts, namely, the notions of g-densities at a point where the upper
density of weight ¢ is defined by

dg(y) = lim og{n: oy —y| < e}
e—0t
and the lower density of weight g is defined by
dg(y) = lim og{n: |z, —y| < e}
— e—0t —

If 3,(y) = d4(y), then the common value is denoted by J,(y).
3. Main results. The main result which we are going to establish in this paper is the following.
Theorem 5. Let x = (x,) € £ and the set of limit points of (x,) is countable. Let A be a

g(n)

matrix generated by a weight function g for wich lim,,_, = M (say) finitely exists. Suppose

dq(y) exists for all y € R. Then

nlglolo(Ax)n = Zég(y) Y
yeR

or, equivalently,
1 n
lim — ) ;= 0q(y) - y.
e g 2 = 2

We start with the following observation.
Lemma 1. Let (z,,) € (> and §4(y) exists for all y € R. Then D = {y € R: 64(y) > 0} is
countable and

Z dg(y) < limsup e
JeD n o g(n)
Proof. If limsup L 00, then there is nothing to prove. So let limsup SRy < 00
n o g(n) n o g(n)

and let (1) be a strictly decreasing sequence converging to M. For m € N let

m

Dy = {y e R5,(y) > 1}.

Note that Dy C Dy C ... C Dy, C ... and D = {J,, Din. Now if y1,92,...,y € Dy, be distinct,

let us choose € = min,,; ’yl_gy]’ > 0. Consequently, the sets F; = {n: x, € (y; —e,y; +¢)} are

pairwise disjoint. Moreover,

1 En[Ln) 1
E;, N1 1
Then, for any 7 > 0, there exists n; € N such that ‘Z(w > — — 7 for all n > n;.
g(n m
Again lim supL < ry, for every n € N. So, for any fixed r,, we get ng € N such that

n o g(n)
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g(n)

disjoint, we have

(Ui BN Lnl| _ BNl 0
g0 X g Zm T YnEm
But
(o Byl o,
< < Tp.
9(n) 9(n)

mryp
— Tm

l
Now note that — — [T < r, evidently implies | <

1197

<M +06 <1, Vn > ny and for a suitably chosen 4. Let ng = max{ni,na}. As E;’s are

. Hence, choosing 7 so that 1 — 7m > 0

m
we observe that [ must be finite. Thus, D,, is finite for each m which implies that D = |J,,, D,

can be at most countable.
Again

l
S ) < 35 = 3 timnt (B0 Ll

g9(n)
!
< Z <|EZQ[1’nH + 80) forall n >N (say)

where ¢ is arbitrary. So

Z dg(y) <

yED,

Uomnnl
o) S T

for suitably chosen ¢¢. Finally, in view of the fact that D = |J,, D, we get

Since this is true for any ry,, letting p — co we get Z D dg(y) < M.
y

Lemma 1 is proved.

Note that in general, one cannot prove that D = {y € R: dy(y) > 0} is nonempty. Also the
above lemma would not remain true if one would change d,(y) to d,(y), that is D1 := {y € R:

Tg(y) > 0} need not be countable. An example in this respect is given in [3] for g(n) = n.

The next result extends the natural density version of the Osikiewicz theorem. We will later show
that the condition E D 04(y) = M implies that the set of indices of (z,) can be divided into
y

appropriate splices. The method which we use in our proof is similar to that of Osikiewicz, but not

analogous as we use essentially new arguments.

Theorem 6. Let (x,) be a bounded sequence and g be a weight function such that §,4(y) exists

for every y € R and moreover Z . dg(y) = M. Then
y
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Proof. Since (z,,) is bounded, there exists a K > 0 such that |z,| < K for every n € N. Let
D ={y;:i=1,2,...} where y;’s are distinct. Let € > 0 be given and let » € N be such that

Z Yi -0 yz

i=r+1

259(%) >M —¢ and
i=1

Let N € N be such that

1 1
—min |y; — Y, — forall i, j€1,2,...
31’22?’y1 y]’> N ora (ZR] € y <y , T

1
and such that the sets F; = { Jilzi — il < N} have the following property:

€ — €
O0g(Ys) — —————— < 04(E;) < 0,(E;) < d,(y; —
for i = 1,2,...,r. Obviously Ei,..., E, are pairwise disjoint. Now we can choose an mg (€ N)
such that . B [ .
iN|l,n —
for every n > mg and ¢ = 1,2, ..., r. Therefore,
1 € |E; N [1,n]| 1 €
0g(yi) — —= — 0g(yi) + =4+ ———<
W N T S e Wty iaT
and, consequently,
|E; N [1,n]| 1 €
—— —,(y; — 4 — 1
O R R (TS) M
for every n > mg and ¢ = 1,2, ...,r. Then, for n > mg, we have
1 < |Ey N [1,n]| ( 1) |Ey N [1,n]| < 1)
— S — |\t | t— |\t )+
P 9(n) N ) N
|Er N1, n]| < 1> [(EyU...UE.)N[1,n]|
+ =+ | +K :
g9(n) N g9(n)

Now we can choose m1 > mg such that, for all n > my,

LS +e.
g9(n)
Then . )
M+e> _ \UizlEiﬁ[l,nH+|(Ui:1Ei)cﬂ[1,nH
g(n) g9(n) g(n)
and, consequently,
’UZlEﬂln |Eﬂ1n e
dg(yi) — .
g(n Z Z (%) K41
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Therefore, for n > mq, we obtain

|(U;1§"(z)m (L]l < (M +¢)— <M_]:r_ <1+K1+1> E) :%Jr <2+K1+1>

Subsequently we get, for n > m;,

n

1in§w<yl+é>+w<yz+$>+m

g(n) = g9(n)

|Er N1, n]| 1 Kr 1
12 DT )+ 2 (24— ek
= ety ) e 2 f

Analogously,
1 < |Ey N [1,n]| < 1> |Ey N [1,n]| ( 1)
— > >y - =) - (- = )+
g<n>; o) \"'TN gn)  \"TN
|Er N1, n]| 1 Kr 1
o By =) - — — (24— ] eK.
* g(n) TN n +K+1 ©
Thus,
1 <« Emln 1 Kr 1
_ ) )< = I
ey Z; z; <y1+N)_ - +<2+K+1>5K )
and
" |E;N[1,n]| 1 Kr 1
2 e - — > —— — (24 —— ) K.
z; ; g(n) YTN)= T +K+1 © ®)

Hence, by using (1) and (2), we have

1TL)Z:U1—259(y,)yz— sz Z‘S yz Yi Z 5 yz Y <
=1 =1

i=r+1

T

< L Zsz - Z(Sg(yz) Yi + Z 59(.%) Y| <
= =

i=r+1

Sg(; ; Yy te=

n

[inge B )

g(n) —

5

=1

Z: ['E al (yi‘f‘]i/v)_(sg(yi)‘yi} +e <

|E; N [1,n]| 1 1 Kr K
e v Jh . . _ _ . i - <
) Sg(wi) ) (wi+ +Ni§+159(yz)+ N 2Ky tl)es

155 )| ()] 55 (e )
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1 € 1 M Kr K
< —_ 4 — K+1+— — 4+ — 2K+ — +1 ) e.
_T<N+T(K+1)>< + +N>+n+N+< +K+1+>E

Analogously, from (1) and (3), we get

g(ln)zwz = 8y -y >
=1 =1

1 e 1\ M Kr K
> (ot ) (K+1+ o) -2 -2 ok + -2 1)
= T(N+T(K+1)>< * +N> n N ( TRt >5

Since N can be chosen arbitrarily large, we obtain

1 n o
— ) wi— D 0g(yi) i
g(n); ; oy

for every € > 0. Therefore, we can conclude that

1 n o0
lim —— NS () -
) ;xz ; 9 (Yi) - yi

K
< (2K +——+1
_< +K+1+>€

Theorem 6 is proved.

Next we establish the following result.

Proposition 1. Let (z,,) be a splice over a partition {E;}, y; = limngéo Ty, 04(E;) exists for
nek;

each i and Zoil dg(E;) = M. Then 04(y) exists for every y € R and 64(y;) = 64(E;).

N
Proof. Let € > 0 be given. We choose N € N such that Zi:l dg(E;) > M —e. Let 6 > 0 be

such that the intervals (y; — J,y; + 0) are pairwise disjoint for ¢« = 1,2, ..., N. It is noted that the
sets of indices E; \ {k: x € (y; — 0,y; +9)} are finite. So d4(y;) > d4(E;). On the other hand, we
have N

dg(yi) = lim g {k:ap € (yi —nyi+n)} =

n—0+

=M~ lim g{k:ax & (yi —n,y:i +1)} <

n—0t

SM—bg{k:an ¢ (yi — 6,y +0)} <

N
<M= 54(Em) < 84(Ey) +e.
i
Thus,
0g(yi) = 0g(Ei).
Finally, let y be not in the set of limits {y;}. As before for any ¢ > 0 we can find N such that
Zil dg(E;) > M — e. Let n be the distance from y to the set {yi,...,yn}. Then

%({m: |Tm —y| < Z}) < ¢ and, consequently, 64(y) = 0.

Proposition 1 is proved.
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Next we establish the following result which not only forms the basis of a necessary condition for

. e 1 n .. . . .
the existence of the limit lim,, oo —— E i but at the same time is an interesting observation.
1=

g9(n)
Proposition 2. Suppose x = (x,) € I®°. If §4(y) = M, then My is a limit point of the
sequence lim,, m Z:;l ;.
Proof. Since (x,,) is bounded, there is K > 0 such that |z,| < K for all N € N. Let y be
such that &,(y) = M. Also let N € N and let Ex = {j eN:|z; —y| < ]17} Then there exists
kn > N such that

|Exn N1 kN]| _ — 1 1
= > (EN) - —==M — —.
o) BTy N
Again as we have lim,, LI M, we get
g(n)
kn 1
— <M+ —.
g(kn) N

1 1
Since y — N <xp<y+ N for all z; € Ey and also —K < xj < K for each z} ¢ Ey, so we

have
i W) T < kZ:N;‘T -
<y () P
Thus,
<g<IZV> M ) N P ) <

kn
1 kn > 1 |ENﬂ[1,k‘N” ’chvﬁ[l,k]v”
< v, — My < — M)+ = + K-
iy 27— M < (s N gky) gy Y
and, consequently,

kn
1 |Ex N (1, k]| 1’ '\Ef\,ﬂ[l,kN]\ ‘ 1
i — My| < [IEN NI 2 BN D NI e 4 Sy,
g(kn) ; y' ‘ g(kn) N g(kn) ( lvl) N|y‘
S me byl by 1Ew A [k 1 1y 2
v N N N NN N
N ) )
= - <Mt (M-)=2,
g(kn) g(kn) g(kn) N ( N> N
we obtain
1 &

1
— <

< (M 1 ) |ES N1, kx|

Sy 2= My = (3 + a(k)

i=1
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M1 2 1
< (£ 4 )+ 2k 1yl
—(N+N2>+N( +1yD) + 1l

Therefore,

1 &
lim x;, = My.
Namg@w)zg Y
Proposition 2 is proved.

Corollary 1. Let (x,,) be a bounded sequence. Suppose that there are y and z (y # z) with
1 n
dg(y) = d4(2) = M. Then the limit lim,,_, ) Z i does not exist.
g(n) &=

One should note that Corollary 1 cannot be weakened by assuming &,(y), d4(z) > r for some
r € (0, M). A counter example is given in Proposition 9 in [3] for g(n) = n.
Now we recall some important results from [3] which will be useful in the sequel.

Lemma 2 [3]. Let Z be an ideal of subsets of N. Assume that X = {n: z, € [a,b]} ¢ T.
Suppose that

{nia<z,<t—cteZor{n:t+e<uz,<b}eZl
forany t € (a,b) and any € > 0 such that ¢ < min{t—a, b—t}. Then there is y € [a, b] such that {n :
|zy, —y| > e} € T for every £ > 0.

Proposition 3 [3]. Let Z be a P-ideal. Assume that (x,) € (> does not have any T-limit
points. Then the set of limit points of (x,), i.e., the set

{y € R: z,, — y for some increasing sequence (ny) of natural numbers},

is uncountable and closed.

Corollary2 [3]. Let [a,b] be a fixed interval and T be a P-ideal. Assume that {n: x, €
€ [a,b]} ¢ T and any point y € (a,b) is not an Z-limit point of (x,,). Then the set of limit points of
() in [a,b], ie., the set

{y € (a,b): xp, — y for some increasing sequence (ny) of natural numbers},

is uncountable and closed.
Corollary3 [3]. Let (xy,) € £>°. Assume that the set of limit points of (xy,) is countable. Then
the sequence (xy,) has at least one Z-limit point for every P-ideal T.

Now we prove certain results analogous to the results of [3] which will help us to reach our final
goal.

Lemma 3. Letr € (0,1), 71 > 19 > ..., limy oo 7y = 7 and (E,,) be a decreasing sequence
of subsets of N.

(i) If 04(En) = rn,n € N, then there is a subset E of N with 04(E) = r and such that E, \ E
is finite for all n. Moreover, if §,(E,) — r, then §4(E) = r.

(i) If 6,(En) = rn,n € N, then there is a subset E of N with 6,(E) = r and such that E,, \ E
is finite for all n.
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) . . E,nl,j
Proof. (i) Let (p,) be an increasing sequence of natural numbers such that M >

1
> r, — n for every j > p,,. For each n € N now choose m,, > p,, such that
n

Banimdad 111
9(j) " !

" 3n 3n
for all j, pn, < j < pny1. Thus, we have two increasing sequences of natural numbers (p,) and
(my,) such that, for all j € [p,, Pn+1],

[(En N [1,mn]) sl >y, — l
9(j) n

Put £ =J,2 | E, N [1,my41]. Take py < j < ppyi1. Then

B[] (a0 (L ma]) A (L] 1

. s Tn — —-

9(7) 9(7) n

[E N1, n]|

g9(n) ,

Uz En N [1,my41] C E; and E; LE - Ufl;:ll E, N [1,mp41]. Therefore, EJLE is finite, and,

consequently, 64(E) < §4(F;) and 04(F) < 64(E;). Hence, d,(FE) = r and if 64(E,) — r, then
6g(E)=r. o o

(ii) As before we can choose two increasing sequences of natural numbers (p,,) and (m,,) such

that

Thus, liminf, > r, which means that §,(E) > r. Since £y D E» D ..., so

‘(En N [1,my]) N [Lpn”
9(pn)
for every n. Put E = |J>2 | E, N [1,my41]. Then

’E N [17pn+1” > ‘(En N [Lmn-l-l]) N [Lpn—HH > 1
= ZTn4+l — ——
9(Pn+1) 9(Pn+1)

n+1
Thus, 6,(F) > r. Since E,, \ E is finite for all n, it now readily follows that d,(E) = r.

Lemma 3 is proved.

Theorem 7. As before let T, = {A C N : 6,(A) = 0}. Let (x,) € £>°. 4 point y € R is an
Z,-limit point of (x,,) if and only if 5,(y) > 0. Moreover, if 64(y) > 0, then there is E C N with
dg(E) = d4(y) and limpep xn = y.

Proof.  Assume that é4(y) = 0 and suppose y is an Z,-limit point of (x,). Then there is
E C N such that §,(E) > 0 and lim,cp 2, = y. Note that {j: |z; —y| < e} \ E is finite for all
e > 0. Hence, 64(F) < 64({j: |z; — y| < €}) for every & > 0. Therefore, 6,4(E) = 0 which is a
contradiction.

_ 1
Conversely, let 64(y) > 0. Let E,, = {j: |z —y| < } Then (E,,) is a decreasing sequence
n

witE@(En) — 84(y). By Lemma 3 there is E such that £, \ E is finite for all n with §,(E) =

= d4(y). Since almost all elements of £ are contained in E,, clearly lim; ,.. x; = y. Hence, y is
JjeEE
an Z,-limit point of (xy,).
The last part of the assertion follows in a similar way.
Theorem 7 is proved.
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Corollary4. Let (x,) € . 4 point y € R is an Iy-cluster point of (xy) and it is not an
1,-limit point if and only if

@) 69<{j: lz; —y| < ;}) > 0 for every n,

(i) 0,(y) = nli_)n;()%({j: 2 —y| < i}) = 0.

Proposition 4. Let (z,,) be a bounded sequence. Assume that y1,ys, ... are the only distinct
real numbers such that 04(y;) > 0 for all i. Then there exists a partition Ei,Es, ... such that
dg(E;) = 04(yi) for all i and limycg, , = y;.

Proof. By Theorem 7 there are Ef, E), ... with lim,,¢ £ Tn = ;. Note that E[N EY is finite
if i # j. Define Fy, By, ... in the following way. Let EY = E{, E/, = E! \ U, E} for m > 2.
Since B!, NJ," B is finite, so 3y (E") = §,(E!,) = 84(ym) for m € N. Let E = N\ U>_, F/,..
If E is finite, then put £y = EU EY and E,,, = EU E)), for m > 2. If the set F is infinite, then
enumerate it as {ny,ng,...} and put E,, = E!! U{n,,}. Clearly lim,cp,, T = Ym.

Proposition 4 is proved.

Proposition 5. Let {E,:n = 1,2,...} be a partition on N such that ZOO dg(En) <

< limsup % = M (say). Then there is a partition {F,,: n =0,1,2,...} of N such that
n gn
(i) Fn C Ey,

(i) 6g(Fpn) = 04(Ey) forall n,
(iii) dg(Fo) =M =~ 064(Ey).
Proof. Let (g,) be a strictly decreasing sequence of positive real numbers converging to 0. We

[W] Furthermore, 64(Ef) = M — 64(E1). So

Efn|1
n g(n)

have §,4(E1) = limsup
n

[E7 N [Ln]]

:M—(Sg(El) = g(n)

> M — 5g(E1) +ée1

for all n > Nj(say). Since — 0 as n — oo, we can choose Ny € N large enough such that

[EY N {1}
g9(n)

1
g9(n)
< 2¢7 for all n > Nj. Let m; = max{Ny, Nao}, and we set my = 1. Then

[EfN[Ln]  [EfN{1}|
g(n) g(n)

Z M — 59(E1) — &1

for each n > my and
|[mo, j] \ F1

9(j) = M=0y(Fn) =&

for all j > m,. Similarly, we have
3g [(B1U E2)°] = M — §4(E1 U Ea) = M — §4(E1) — 84(En),
ie.,

|(E1 U E3)° N [1,n]|
g9(n)

lim sup
n

] = M~ 5,(Fy) — 6y(E») =
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|(E1 U E2)*N[1,n]|
g9(n)
for all n > K;(say). Now we choose a large K5 > N> such that
[(Ey U E)° N [1,my]]
g(n)
for all n > Kj. Let mo = max{Ki, K2}. Then

}(E1UE2)CH [1,71” ‘(ElUEQ)Cﬂ [1,m1H
_ > M — (6,(E1) +04(FEs)) — ¢
g(n) g(n) ( 9( 1) 9( 2)) 2
whenever n > mso and this implies that
[[ma1, 5]\ (B1 U B»)|

9(4)

> M — (59(E1) + 59(E2)) + €92

< 2e9

> M — (64(E1) + 0g(E2)) — &2

for all j > mo.
Inductively we can define an increasing sequence (m,, : n =0,1,2,...) of natural numbers such
that, foralln =1,2,...,

|[mn,1,j]\(E1UE2U...UEn)} n
. >M — 0q(E;) —éen
9(j) 2 %(E)

whenever j > m,,. Now let Fy = (o7 ([mn—1,mn+1] \ U;—; Ei). Then, for m,, < j < my41, we
have

Fynll. i -1, J ]\ (E1UEyU...UE, "

Fo 0Ll [, N (F1 U B )’zM—Z%(E)—en

9(j) 9(j)

for every n. So

[(Fo N1,
04(Fp) = liminf —= > M — dg( @)
Qg(Fo) = Hmyinl =) Z
as ¢, — 0.
Now let F,, = E, \ Fy , n =1,2,... . Then Fy N E, is finite for all n (note that Fy N Ey =

=, FoNEy C[1,my], FoNEs C [1,ma],...). So 04(Fy) = d4(Ey) for all n and we obtain
o0 o0 o0 o0
Un:1 F, = Un:l(E" \ Fy) = Un:1 E,\Fy =N\ Fy= Fy =N\ Un:1 F,.

Hence,

5,(Fy) = M = 8y(Fg) = M~ &, (| Fu) <M - D dyl) =M - Za 5)

Combining (4) and (5), we finally observe that

=M - idg(ErJ
n=1

Proposition 5 is proved.
Finally, we prove a sufficient condition for a bounded sequence (z,) to have the property that

D e doly) = M.
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Theorem 8. Let (x,) be a bounded sequence. Suppose that the set of limit points of (x,,) is
countable and 04(y) exists for all y € R. Then Z - dg(y) = M.
y

Proof. Let D := {y € R: d,4(y) > 0}. If possible let Z (y) < M. As the number of

limit points is countable, we are in a posmon to use Corollary 16 [3]
Let y be an Z,-limit point of (z,,). Then there exists B C N, §,(B) > 0 such that lim,,cp x,, =
=y. Soforany e > 0, {n: |z, —y| < e} D B\ By where By C N is finite. Observe that

Syns on =yl < €} 2 8,(B) = lim [55{n: on — 9l < €}] 2 8,(B) = 8,(y) = 8,(B) > 0.

So D # @. Now from Lemma 1 it follows that that D is countable. We enumerate D as {y1, y2, .. .}.
By Proposition 4 there is a partition {E1, Fs, ...} of N such that §,(E)) = d4(yx) and hmnﬁﬁo =
€

= yg. Again applying Proposition 5 we get that there is a partition {Fy, Fi, F3,...} of N such that
Fy C Ey, 64(Fg) = 64(Ey) for k =1,2,...; Fop = N\UX, F; so that §,(Fp) = M~ Zk X
Obviously, d4(Fp) > 0.

Now we consider the sequence (7, )ner, and the ideal Zyp = {E C Fy: E € Z,}. Since
dg(y) = 0 for all y ¢ D, so by Theorem 7 y cannot be an Z,-limit of (x,)ncr,. Consequently, y
cannot be an Zg g, -limit point of (zy,)nem - Now if any y; is an Z g, -limit point of (2 )ner,, then
there would be a set B C N, B C F; such that B ¢ Ty r, and limpep z, = y;. Now B C Fy
and B ¢ I, implies B ¢ Z,. Again B C Fp implies BN F; = @ forall i = 1,2,.... So
limy, 00 T, € BU F; = y; for all ¢. Consequently,

59(?/2‘) = 5g<yi) = El_if(% [5;1{”3 |Tn — yi| < 5}} (B UF;) > 5g(Fi) = 59(%’)
which is a contradiction. So no y; is an Zyp, -limit point of (Tn)neFy, 1-€.,(Tn)ner, has no
Z,|F, -limit point.

Now to verify that the ideal 7, is a P-ideal let Ay, Ag, ... € Iy p. Then Ay, Ag, ... € Z;. As
7, is a P-ideal, we can get A, € Z, such that A,,\ A is finite for all n € N. Now Ao NFy € Iy,
and A, C Fp for all n implies A, \ (Ax N Fp) is finite for all n. So Zy|p, is a P-ideal such that
(%1 )ner, has no Zy p -limit point. Hence, the set of limit points of (z,,)ner, must be uncountable
(see Proposition 14 [3]), i.e., (x,) will have uncountably many limit points which contradicts the
assumption of the statement. Hence, it follows that ZyeR dg(y) = M.

Theorem 8 is proved.
Finally, combining Theorem 6 with Theorem 8, we get the desired proof of our main result.
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