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SOLUTIONS OF SYLVESTER EQUATION IN C*-MODULAR OPERATORS
PO3B’S13KH PIBHAAHHSA CIVIBBECTPA J1JIAA C*-MOJAYJIbHUX OIIEPATOPIB

We study the solvability of the Sylvester equation AX + Y B = C and the operator equation AXD + FYB = C in
the general setting of the adjointable operators between Hilbert C*-modules. Based on the Moore —Penrose inverses of
the associated operators, we propose necessary and sufficient conditions for the existence of solutions to these equations,
and obtain the general expressions of the solutions in the solvable cases. We also provide an approach to the study of the
positive solutions for a special case of Lyapunov equation.

PosrisHyTO po3B’sizHicTh piBHsHHA CinbBectpa AX + Y B = C Ta oneparoproro piBasiaast AXD + FYB = C nupu
3arajJibHUX yMOBAaX CYMDKHOCTI oreparopiB Mix rinmbbeprosumu C™-momynsmu. Ha ocHoBi o06epuenux Mypa —IleHnpoysa
JUISL TIOB’SI3aHUX OIIEPaTOpiB OTPHMAaHO HEOOXiHI Ta JOCTATHI yMOBH iCHYBAaHHS PO3B’SI3KIB IIUX PIBHSHb, a TAKOX 3aralibHi
BUPa3H IJIs PO3B’A3KIB Yy BUIIAJIKY, KOJIM BOHH iCHYIOTh. KpiM TOr0, 3aIpOIoHOBaHO MiAXi1 1O BUBUYCHHS JOAATHUX PO3B’S3KiB
y crieniaJlbHOMY BHIAJKy piBHsHHS JIsmyHoBa.

1. Introduction. In the year 2001, the Sylvester equation CX — XA” = B was studied for
matrices by [12]. Thereafter, more general equation AX — X F = BY was considered in [24]. The
generalized Sylvester equation AV + BW = EV'J + R with unknown matrices V' and W, has many
applications in linear systems theory [7, 19]. One special and important case is the Lyapunov matrix
equation AX + X7C = B, which has important applications in the control theory and robust fault
detection [8]. In 2007, Piao et al. [18] studied this equation when A and C' are square matrices
with different dimensions. Mor et al. [16] obtained the explicit solution and eigenvalue bounds
for the Lyapunov matrix equation AT P + PA = —BB” and determined the number of positive
eigenvalues of the positive semidefinite solution through the controllability matrix. The other special
case of interest is the equation A*X + X*A = B. It was studied for matrices by Braden [3], and
for the Hilbert space operators by Djordjevic [6]. Fang and Yu [9] investigated the solvability of
the operator equations A*X + X*A = C and A*XB + B*X*A = C for adjointable operators on
Hilbert C*-modules whose ranges may not be closed. On the other hand, Mousavi et al. [17] studied
the operator equations AX + Y B = C and AX A* + BY B* = C in Hilbert C*-modules.

In this paper, by using the matrix forms of adjointable operators between Hilbert C*-modules,
we first propose necessary and sufficient conditions for the existence of solutions to the Sylvester
equation

AX+YB=0C, (L.1)

and then with the help of that we describe necessary and sufficient conditions for the existence of
solution to the operator equation

AXD+FYB =C, (1.2)
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when A, B, D and F' are bounded adjointable operators with closed range between Hilbert C*-
modules. Moreover, we obtain the explicit solutions to these operator equations in the solvable cases.
The results obtained in this paper generalize earlier results due to Djordjevi¢ [6].

It is a very active topic to study positive solutions to matrix equations or positive solutions to
operator equations. The positive solutions to the operator equations AX = C and XB = D were
studied by Daji¢ et al. [5] for Hilbert space operators. In 2008, Xu [20] considered the Hermitian
and positive solutions to these equations in Hilbert C*-modules setting. Also, Hermitian positive
semidefinite solution to the matrix equation AX B = C was studied by Khatri and Mitra [11] and
then by Zhang [23] in 2004. Cvetkovi¢—-1li¢ and Koliha [4] described the positive solution to the
special case AX A* = B for elements of C*-algebras. The other purpose of this work, is to provide
an approach to the study of the positive solutions to the operator equation

AX + X*A* = B, (1.3)

in the framework of Hilbert C*-modules. The paper is organized as follows. In Section 2, we recall
some knowledge about the Hilbert C*-modules. For this purpose, we use [13—15, 21]. In Section
3, we study the general solutions to the operator equation (1.1). Based on the Moore —Penrose
inverses of the associated operators, in Section 4 we give the necessary and sufficient conditions
for the existence of a solution to the operator equation (1.2), and provide a formula for the general
solution to this operator equation. Finally, in Section 5, we find the positive solutions of Eq. (1.3) for
adjointable operators over Hilbert C*-modules, where X is the unknown operator.

2. Preliminaries. Throughout this paper, A denotes a C*-algebra. An inner-product .A-
module is a linear space X which is a right .4-module, together with a map (x,y) — <x,y>:
X x X — A such that for any z,y,z € X, «a, € C and a € A, the following conditions hold:

(i) (z,0y + Bz) = alz,y) + Bz, 2);

(i) (z,ya) = (z,y)q;

(i) (y,z) = (z,9)";

(iv) (z,z) > 0and (z,z) =0 <= x = 0.

An inner-product A-module X which is complete with respect to the induced norm ||z|| = /|| (z, )|
for any x € X is called a (right) Hilbert .A-module. A closed submodule M of a Hilbert .A-module
X is said to be orthogonally complemented if X = M @& M-, where

Mt ={zeX:(z,y)=0forany y € M}.

Now, suppose that X and ) are two Hilbert .A-modules, let £(X,)) be the set of operators T :
X — Y for which there is an operator 7 : ) — X such that

(Tx,y) = (x, T*y) forany z € X and y € ).

It is known that any element 7' € £(X,))) must be a bounded linear operator, which is also .A-linear
in the sense that 7'(za) = (Tx)a for x € X and a € A. We call £(X,)), the set of adjointable
operators from X to ). For any T" € L(X,)), the null and the range space of 7" are denoted by
ker(7T") and ran(T), respectively. In the case X = ), L(X,X) which is abbreviated to £(X), is
a C*-algebra. Let £(X),, be the set of self-adjoint elements and L£(X')4 be the set of positive
elements in £(X), respectively. The identity operator on X is denoted by 1y or 1 if there is no
ambiguity.
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Lemma 2.1 [13]. Let X be a Hilbert A-module and T € L(X). Then T' € L(X )4 if and only
if (Tx,x) >0 forall x in X.

Theorem 2.1 [13]. Suppose that X and Y are Hilbert A-modules and T € L(X,)) has closed
range. Then:

(i) ker (T') is orthogonally complemented in X, with complement ran (T™);

(it) ran (7") is orthogonally complemented in ), with complement ker (T*);

(iii) the map T € L(Y, X) has closed range.

Boichuk and Samoilenko suggested some methods for the construction of the Moore—Penrose
pseudoinverse for the original linear Fredholm operators in Banach and Hilbert spaces [2]. Boichuk
and Pokutnyi studied perturbation theory of operator equations in the Fréchet and Hilbert spaces
by using the notion of strong generalized inverse operators in [1]. Xu and Sheng [21] showed that
an adjointable operator between two Hilbert .A-modules admits a bounded Moore — Penrose inverse
if and only if it has closed range. The Moore—Penrose inverse 77 of T is the unique element in
L(Y, X) which satisfies the following conditions:

TT'T =T, T'TT'=T1", (TT)*=TT', (T'T)* =T'T.

From these conditions we obtain that (7'1)* = (T*)f, TTT and T'T are orthogonal projections, in
the sense that they are self-adjoint idempotent operators. Furthermore, we have

ran(T') = ran(TT"), ran(T1) = ran(TTT) = ran(T™),

ker(T') = ker(T1T), ker(T1) = ker(TT") = ker(T™).

It is well-known, that 7' € £(X, ) is regular if there exists S € £(), X) such that 7'ST = T'. Note
that if T is regular, then T exists (see [10], Theorem 6). If in addition, X = ) and T > 0, then
TTT =TT and T > 0.

Remark2.1. Let X and ) be Hilbert A-modules, we use the notation X @) to denote the direct
sum of X’ and ), which is also a Hilbert .A-module whose A-valued inner product is given by

< (:m)’ <x2)> = (x1,22) + (Y1, Y2)
n Y2

for x; € X and y; € Y, © = 1, 2. To simplify the notation, we use x & y to denote (Z:) cEXP).

A matrix form of a bounded adjointable operator 7" € L(X',))) can be induced by some natural
decompositions of Hilbert C*-modules. Indeed, if M and N are closed orthogonally complemented
submodules of X and Y, respectively, and X = M & ML, Y = N @& N1, then T can be written
as the following 2 x 2 matrix
T Ty

T3 Ty

9

where 17 = PyT Py € LM N), Ty = PyT(1 — Py) € LIME N), Ty = (1 — Py)TPy €
€ LM,N?L), Ty = (1 — P\y)T(1 — Py) € LML, NL) and Py and Py denote the projections
corresponding to M and N, respectively.

The proof of the following lemma can be found in [14].
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Lemma 2.2 [14]. Suppose that X and Y are Hilbert A-modules and T € L(X,)) has closed
range. Then T has the following matrix decomposition with respect to the orthogonal decompositions
of closed submodules X = ran(T™*) @ ker(T') and Y = ran(T) @ ker(T™):

7y 0 ran(7™) ran(7T)
o 0| | kex(T) ker(T%) |’
where Ty is invertible. Moreover,
Tt b0 : ran(7) ran(7™)
0 0 ker(7™) ker(T')

Remark2.2 [22]. Suppose that X is a Hilbert A-module and P € L(X) is a projection. Let
Xj=PXand Xy =(1—-P)X andletT: X1 dXy — X, T({Dn) =E+n for £ € X} and n € Ab.
Then T is invertible with T-1(x) = P(z) ® (1 — P)(z) for x € X, and it is easy to verify that
T* = T~ so that T is a unitary. Furthermore, for any self-adjoint element 7" of £(X'), T can be
decomposed as

T =T + Tia + 17y + Tho,
where 111 = PTP, Tio = PT(1 — P) and T2 = (1 — P)T(1 — P). By Lemma 2.1 we know that
T>0=((Tu+T+ThH+Tn)E+n),{+n) =20 Ve, nedy

— <T11§7€> + <T12777§> + <T1*2£777> + <T22777T]> Z 0 v€ S Xla n S XQ

Ty Tio
<:><< )(f@n)v(f@n)>20 VEe X, neiy
17 Ta

T Tho
= > (.
7, T

Lemma 2.3 [21]. Let X} and Xy be Hilbert A-modules and T = (TH Ty

. > be a self-
T,  Tx
adjoint element of L(X1 ® Xo) with Ti; € L(X; @ X;), i,j = 1,2. Suppose that ran(T11) is closed.

Then T > 0 if and only if the following three conditions are satisfied:
Th > 0, Ty = T11T1T1T12, Too — Tl*leTle > 0.

Lemma 2.4 [15]. Let X,), Z be Hilbert A-modules. Also, let T € L(),Z) and S € L(X,))
have closed ranges, and A € L(X, Z). Then the equation

TXS=A, Xec/L(Y), 2.1
has a solution if and only if TTTASTS = A. In this case, any solution of Eq. (2.1) has the form
X =T1AS"
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Theorem 2.2 [15]. Let X,Y, Z be Hilbert A-modules, S € L(X,Y) and T € L(Z,)) be
invertible operators and A € L()). Then the following statements are equivalent:

(a) there exists a solution X € L(X, Z) to the operator equation TX S* + SX*T* = A;

(b) A= A"
If (a) or (b) is satisfied, then any solution to

TXS*+SX*'T*=A, XeL(X Z2),

has the form

X = %T*A(S*)*1 —-T71Z(5%7 1,
where Z € L()) satisfies Z* = —Z.
3. Operator equation AX + Y B = C. In this section, we study the solvability of operator
equation (1.1) in the general context of the Hilbert C*-modules and present a general solution of it.
Theorem 3.1. Let X,) be Hilbert A-modules,A € L(X,Y) and B € L(),X) be invertible
and C € L(Y). Then the Eq. (1.1) has a solution (X,Y) € L(V,X) x L(X,)). In the case any

solution of the Eq. (1.1) is represented by

1 1

X = 5A—lc +5WB, (3.1)
1., 1

Y = _CB™' — D AW, (3.2)

where W € L(X) is arbitrary.

Proof. 1t is easy to see that operators X and Y of the forms (3.1) and (3.2) are a solution of
Eq. (1.1). On the other hand, let X be any solution of Eq. (1.1) then X = A~'C — A~'Y B and
A7YY = A7'CB!' — XB~!. We have

1 1
X = §A—lo + <2A—1CB—1 - A—ly) B =
L Lo 1 -1 -1
:§A C+ 5[A Y+XB | -AlY)B=
1, 1 . . 1, 1

where W = XB™1 — A71Y. Also, Y =CB ! —AXB ! and XB ' = A" 'CB~! — A~Y and
SO we can write

Y = %CB_l +A (;A—ch—l — XB_1> =

= %CB*1 + A (;[XBl + A7)~ XB1> =

1 1 1 1
=_CB'4+A(z(A'Y-XB™YHY)==CB ' —-AwW.
OB T (2( )> 2 AW

Theorem 3.1 is proved.
Now, we solve Eq. (1.1) in the case when A and B have closed ranges.

ISSN 1027-3190. Vkp. mam. ocypn., 2021, m. 73, Ne 3



SOLUTIONS OF SYLVESTER EQUATION IN C*-MODULAR OPERATORS 359

Theorem 3.2. Let X and ) be Hilbert A-modules and A € L(X,)) and B € L(Y,X) have
closed ranges and ran(A) = ran(B*) and ran(A*) = ran(B) and C € L(Y). Then the following
statements are equivalent:

(a) there exists a solution (X,Y) € L(Y,X) x L(X,Y) of Eq. (1.1);

(b) (1-AANHC(1 - B'B) =0.

If (a) or (b) is satisfied, then any solution (X,Y") of equation (1.1) has the form

1 1 1
X = 5ATC + 5ATC(1 — B'B) + SWB+(1- ATA)Z,

Y = %AATCBT +(1—AANCBT - %AWBBT + V(1 - BBY),

where Z € L(Y,X), V € L(X,Y) are arbitrary operators and W € L(X) so that (1 —
— AANYWBBT = 0.
Proof. (a) = (b). Suppose that (X,Y) is a solution of Eq. (1.1). Thus we have

(1—-AANC(1 - B'B) = (1 - AA")(AX +YB)(1 - B'B) =
=(1-AAAX(1 - B'B) + (1 - AAHYB(1 - B'B) = 0.

(b) = (a). Suppose (1 — AAN)C(1 — B'B) = 0. Since ran(A) and ran(B) are closed, then ap-
plying Theorem 2.1 we get X = ran(A*)@ker(A) and ) = ran(A) & ker(A*). By our assumptions
and using Lemma 2.2, operators A and B have the matrix forms

A A 0 ran(A*) ran(A)
o of | ker(A) ker(A*)
and
B B 0 ran(A) ran(A*)
1o o ker(A*) ker(A)

where A; and Bj are invertible. Now, condition (b) implies that C' has the form

(e
s 0

ran(A)
ker(A*)

ran(A)
ker(A*) '

C =

Let us assume that the operators X and Y have the following matrix forms:

v [ X, le' ran(A) ran(A*)
X3 Xy| |ker(4¥) ker(A)
and
Yi Y, ran(A*) ran(A)
Ty vl ker(A) ker(A*)|

Then from AX + Y B = C it follows that
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Ay 01X Xo Yi Y| [B1 0
0 0] lxg x| vy vl lo 0] N
A Xi+YiBr AlXo C1 Oy
| wB o | oz o)
That is,

A1 X1 +Y1By =C1, 3.3)
A1 Xy = Oy, 3.4
Y3B; = Cs. (3.5)

1 1
According Theorem 3.1, Eq.(3.3) has a solution (X7,Y7) of the form X; = 5141_101 + inBl,

1 1
Y1 = 50131_1 — §A1W1, where W € L(ran(A*)) is arbitrary. In view of (3.4) and (3.5) we
deduce Xy = A7'Cy and Y3 = C3B;". Hence,

1 1
§A1_101 + §W131 Al_ng

X =
X5 X4
and
1 1
—OYB7' - AW, Y-
v |2 1D 5 1Wi1 2 ’
C3B;* Y,

where X3, X4, Y2 and Yy can be taken arbitrary. Let

7 Z ran(A) ran(A*)
T xs Xa| [ker(a”) ker(A)
and
Vi Ya| [ran(A*) ran(A)
N Vs Yy : ker(A) ker(A*) '

From the condition (1 — ATA)W BBT = 0 we derive that W has the following matrix form:

Wy Wa ran(A*) ran(A*)
W = : — .
0 Wy ker(A) ker(A)
Thus, we have
1 1 1

1 —AT! . 1 .
Ly |24 G0 g4 Ce ., -Alc(1-B'B) = 0 A ,
2 0 0 2 0 0
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1
1 “WiB; 0
SWB= |2 b . (1-Ata)z =

0 0

0 0
X3 X4|
Consequently,

1 1 1
X = 5ATC + 5ATC(1 — B'B) + SWB+(1- ATA)Z.

On the other hand,

1 1
1 ~C1 B! 1 ——A
Lyatopt =[98 0 .,  ——AWBB'=| 2 W0 ,
2 0 0 2 0 0
0 0 Y
(1—-AANHCB' = , V(1 -BBY)= :
C3Byt 0 0 Y

Then
1 1
Y = 5AATCBT +(1—AATCBT - §AWBBT +V(1 - BB").

Theorem 3.2 is proved.

4. Operator equation AXD + FYB = C. In this section, we study the general solutions
to Eq.(1.2) below in the general context of the Hilbert C*-modules. The necessary and sufficient
conditions for the existence of a solution are given and the set of solutions are completely described.

Theorem 4.1. Let X,),Z, W, V,K be Hilbert A-modules, A € L(Z,K), B € L(X, W),
D e L(X,)), F e LV,K) be invertible and C € L(X,K). Then the operator equation (1.2) has
a solution (X,Y) € L(Y, Z) x LW, V). In the case any solution of the Eq. (1.2) is represented by

1
X = §A*10D*1 —A7'KkD! 4.1
and
1
Y = 5F—ICB—l +F KB, 4.2)

where K € L(X,K) is arbitrary.

Proof. We show that if the Eq.(1.2) has a solution (X,Y) € L(),Z) x L(W,V), then it
must be of the forms (4.1) and (4.2). Let T' = [13 BO*} ZoW-sKaeX, YV = [}9* )01
0o C
c* 0

F 0
0 D
TY S* + S(Y)*T* = N, we have

V@y%ZGBW,S:[ ]:V@y—ﬂC@/\,’andN:[ ]:X@X—)K@K.By

. . A o]0 X]|[F* o0
TYS* + S(Y)*'T* = +
0 B*|ly* o0||0 D
F ol[0o Y][4* o0 [0 C
o Dp|x* o]lo B |c* o]
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or, equivalently,

0 AXD + FYB
B*Y*F* + D*X*A* 0

e,
cx 0l

Therefore AXD + FY B = C. Obviously, by our assumptions 7" and S are invertible and from
Theorem 2.2, it follows that Y has the following representation:

~ 1
Y = 5T*U\I(S*)*l A (4.3)
: Zy 2y
where Z € L(K & X) satisfies Z* = —Z. Let Z = PEEAL From (4.3), we have
3 4
0 X] 1 At 0 0o C] [t 0
y* o] 2[0 (BY1lcr o0 0 D!
A1 0 71 79 (F*)_l 0
0 (B Y |23 Z4 0 D1
It enforces that
1
X = 5A—l(JD—l — A7 Z,D7 1,
* 1 *\ — * *\ — *\ — *\ —
Ve = (BN - (B Z(F)

A7z (F) ' = (B 'ZuD7 !t = 0.

From invertibility of the operators A, B, D and F' it follows that Z; = 0 and Z4; = 0. On the other
hand, from Z* = —Z, we get Z; = —Z>. For K = Z5, we have

1
X = §A_1CD‘1 — A 'KD™!
and
1
Y = 5F—ch—l + F KB~

Theorem 4.1 is proved.

Now, we are ready to state our main result of this section.

Theorem 4.2. Suppose that X and ) are Hilbert A-modules, A,F € L(X,)), B,D €
L(Y,X) and A, B, D, F have closed ranges and C € L()) such that ran(F) = ran(D*),
ran(F*) = ran(D), and

FFTA1-DDY) =0, (1-FFYADD'=0,
FTFB(1-D'D) =0, (1- FTFYBD'D =0,
D'DB'BA = D'DA, D'DAA'B* = D' DB*,
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FIFBBTA* = FTFA*, FIFA'AB = FTFB,
FICB'B(1 - D'D) = FfC(1 — D'D),
(1 - FFY)AA'CD' = (1 - FF")CDT.

Then the following statements are equivalent:
(a) there exists a solution (X,Y) € L(X) x L(X) to Eq. (1.2);
(b) (1 -AANC(1 - B'B)=0and (1- FF")C(1 - D'D) =0.
If (a) or (b) is satisfied, then any solution to Eq. (1.2) has the form

1 1
X = 5FTFATCDT +(1-FF)ATfeDt + 5FTFATC@ -~ B'B)D'+

1
+§FTFWBDT +FtFP(1 - AtA)zDt + U1 — DDY)
and

1
Y = 5F‘fAATCBTDDT + F'(1 - AANCB'DD' + FTCB'(1 — DD")—
—%FTAWBBTDDT +F'V(1-BB"YDD' + (1 - F'F)T,

where 7 € L(Y,X) and T,U,V,W € L(X) are arbitrary operators, so that F1F(1 —
~AAYWBBIDDT =0 ..
Proof. (a) = (b). Suppose that (X,Y) € L(X) x L(X) is a solution of Eq.(1.2). Then

(1—AANHC(1 —B'B) = (1 - AA"(AXD + FYB)(1 - B'B) =
= (1 - AANYAXD(1 - B'B) + (1 - AAYFYB(1 - B'B) =0
and
(1-FF)C(1—-D'D)=(1—-FF)(AXD+ FYB)(1—-D'D) =
= (1 - FFYAXD(1 - D'D)+ (1 - FF')FYB(1 — D'D) = 0.

(b) = (a). Suppose that (X,Y) € L(X) x L(X) is a solution of Eq.(1.2). Since ran(D) and
ran(F') are closed, we have X' = ran(D*) @ ker(D) and Y = ran(F') @ ker(F™). Applying our
hypotheses A, B, D and F' have the following matrix forms:

A As ran(D) | [ran(F)
A= : — ,
Az As ker(D*) | | ker(F™)
B, B ran(D*)] [ran(F™*)
= : —
Bg B4 ker(D) ] L ker(F)
D, O] [ran(D*)] [ran(D)]
= : —
0 0 ker(D) ker(D*)
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and
F 0
0 o

ran(F™)
ker(F')

ran(F')

F= .
ker(F™)

Hence D; and Fj are invertible by Lemma 2.2. Also, we can assume that unknown operators X
and Y have the matrix forms

[Xl Xg] [ran(D)] [ran(D)]
X = : —
X3 Xy ker(D*) ker(D*)

ran(F™)
ker(F)

and
i Y
Y3 Yy

ran(F™)
ker(F')

From condition (1 — FFT)C(1 — DTD) = 0 it obtains C has the form

Ci Oy
Cs 0

ran(D*)
ker(D)

ran(F')
ker(F*)|

_>

Conditions FFTA(1 — DD') = 0 and (1 — FFY)ADD' = 0 imply that A has the matrix form
A0 ran(D)
%

0 A4l

ran(F")

ker(D*) ker(F*)|’

and conditions FTFB(1—D'D) =0 and (1— FTF)BD'D = 0 imply that B have the matrix form

By
0

By replacing these matrix forms in the operator equation AXD + FY B = C we get

0

Byl

[ran(D*)
| ker(D)

]ﬁ

[ran(F*)]
| ker(F) | '

A 01Xy Xo|[D; 0] R ool[yi Yl [B o0
0 Agl | Xs X4l | O 0] 0 0] [Y3 Y4 [0 By
A1 XaDy+ FY1By F1YaBy v Oy
B Ay X3D; o | log o
That is,
AleDl + FY1B; = Cl, (44)
F1YsBy = Cs, (4.5)
Ay X3D; = Cs. (4.6)

Taking Xo = X1D; and Yy = F1Y7, then equation (4.4) becomes
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A1 Xy +YyBy = Ch. 4.7)

Due to the fact that DTDBTBA = DTDA and the above matrix forms we have
1 0
0 O

which gives us the identity BIBIAI = A;. Hence, ran(A;) C ran(BY). Similarly, applying condi-
tion D'DAATB* = D'DB* we find
1 0
o0

1 0
0 0
It in turn gives us AlAiB’f = Bjf and so ran(Bj) C ran(A;). Therefore,ran(A;) = ran(Bj).
Taking into account conditions FTFBBTA* = FIFA* and FIFATAB = F'FB and by using a
similar method we yield ran(A}) = ran(B;), too. Also, by multiplication F'F'T on the left and DTD
on the right to the identity (1 — AAT)C(1 — BIB) = 0, we obtain (1 — 4, A1)Cy(1 — BiB;) = 0.

Now, all conditions of Theorem 3.2 hold and so Eq.(4.7) is solvable and any solution of it can be
represented in the following forms:

BB, 0
0 BB

Ay 0
0 Ay

1 0
0 0

A 0
0 Ay

i

A A0
0 A4A}

Bf 0
0 B;

Bf 0
0 B

1 1 1
Xo = 5/1101 + §A101(1 —B{B) + SWiBL+ (1 AjA)Z,

1 1 (4.8)
Y, = §A1A10131 +(1 - A A B - iAIWIBlBlT +Vi(1 - BiB)),

where Z; € L(ran(F),ran(D)),V1 € L(ran(D),ran(F')) and W; € L(ran(D)) that W, satisfies
in (1— AlAi)WlBlBI = 0. This last identity implies that FTF(1 — AAT)WBBTDDT = 0. Since
D, and F} are invertible, then from (4.8) we deduce

1 1 1
X, = 5A{Clpl—l + 5A}(Jlu — BIB)DT! + SWiBIDT + (1 - AlA)z, D7,

1 1
Y = 5Fl—lAlAICIBI + F7Y1— A ADOB] - §F1_1A1W13131T + F7'Wi(1 — BiB)).
The assumptions FTCBTB(1—D'D) = FIC(1-D'D) and (1—- FFT)AATCD' = (1—- FFTCD'
give us F| 1023134 =Fy L¢y and A4(A4)T(73D1_ 1= C3Dy ! respectively. With the aid of these
facts and by using Lemma 2.4 it yields that the operator equations (4.5) and (4.6) are solvable, and
further we have Yz = F; 'Cy(By)t and X3 = (A4)TC3D!. Hence,

1 1 1 B _
N 5A}ClD1 1, 5A{Cl(1 — B{B))D;' + 5 W1B1D; 'y (1-AlAnziDyY Xy
(Ay)fCsDpt X4

and

ISSN 1027-3190. Vkp. mam. oscypn., 2021, m. 73, Ne 3



366 Z. NIAZI MOGHANI, M. MOHAMMADZADEH KARIZAKI, M. KHANEHGIR
Y =

1 B 1 _ _
S F LA ATC\ Bl + Fy 1(1—A1ADClBI—§F1 'A\Wi BBl +F;'Vi(1-B1B]) F'CyB]

)

Yg Y4
where X9, X4,Y3 and Yy can be taken arbitrary. On the other hand, from the assumptions ran(F') =
= ran(D*) and ran(F*) = ran(D) we observe that the operators W, Z, U,V and T have the

following matrix forms:

Wi Wa ran(D) ran(D)
W = : — ,
Ws Wy ker(D*) ker(D*)
Zy  Zy| [ran(F) ran(D)
Z = : — ,
Z3  Zy| |ker(F¥) ker(D*)
Ui Xo| [ran(D)] [ran(D) |
U= — )
U3 X4_ ker(D*) ker(D*)
Vi Vol [ran(D)] [ran(F) |
Vs V| |ker(D*) | ker(F™)]
and
T T ran(D) ran(D)
T = : — .
Y3 Y ker(D*) ker(D*)
Hence, we obtain
1 Laiept o
5FTFATCDT = |21 ,

0 0

0 0
(1-FTF)ATCD' = ,
Alosprt o

1
5A{cl(l —B{B)D;' 0

1
—FTFA'C(1 - B'B)D' =
2 0 0

)

1
§W1B1D1_1 0
0 0

)

1
5FTFWBDT =

o B
FIF1 - AtA)zDt = R
0 0
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U(l—DD") = !0 X2].

0 X4
From these we get
X = %FTFATCDT + (1 - FTF)ATCD' + %FTFATC’(l — B'B)D' + %FTFWBDT—F
+FtP(1 - AtA)ZDt + U1 — DDY).
Also, we have

(1
§F;1A1A10131 0
0 0

9

1
5FTAAT CB'DD' =
(P71 — A Ahe BT 0

0 0]’

FT(1 - AAHYCB'DD' =

0 F'CyB]
0 0

FTCB'(1 - DD") =

)

1
—5F;1A1W13113{ 0

1
—~FAWBB'DD' =
2 0 0

bl

-1 B T
F'v(1 - BB)DD' = A= BiBy) 0],

0 0

0 0

(1—F'F)T = .
Y3 Y,

Accordingly, we derive
1 1
Y = §FTAATCBTDDT + FT(1 - AANCB'DD' + F1CB'(1 — DDT) — §FTAWBBTDDT+
+F'V(1 - BBYDD' 4+ (1 — FTF)T.

Theorem 4.2 is proved.

5. Positive solutions of operator equation AX 4+ X*A* = B. In this section, we provide an
approach to the study of the positive solutions to the operator equation (1.3) for adjointable operators
between Hilbert C*-modules.

Theorem 5.1. Let X' be a Hilbert A-module, and A, B,C € L(X). Let A, B and BA* have
closed ranges and BA* be a positive operator, ran(B) = ran(BA*) and (1 — ATA)BT =0 . Then
the Eq. (1.3) has a positive solution X € L(X) if and only if B is self-adjoint and (1 — AA")B(1—
— AAT) = 0. In this case the general positive solution has the form
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X = %Xo + XoV(1 - ATA) + (1 — ATAV* Xy +2(1 — ATAV* XV (1 — ATA)+

+(1— ATAW (1 — ATA), (5.1)

where Xg = B*(BA*)'B is a particular positive solution, V. € L(X)sq and W € L(X)y are
arbitrary.
Proof. Suppose that Eq. (1.3) has a solution X € £(X). Obviously, B = B*. Also, we have

(1—AANB(1 — AAT) = (1 — AAT)(AX + X*A")(1 — AAT) =
=(1—-AANAX(1 - AAT) + (1 — AAH)X*A*(1 — AAT) = 0.

Conversely, assume that B is self-adjoint and (1 — AAT)B(1 — AAT) = 0. We prove that the general
positive solution of Eq.(1.3) can be expressed as (5.1). For this purpose, take P, = BB, P, =
=1-B'Band X; = P XP;, where X is as in (5.1). From the assumption (1 — ATA)B =0, we
have

1
X, =P XP, =B BXB'B= 5B*(BA*)TB,

and hence BA* € L(X)y implies that X; € L(X),. Moreover, since ran(B) = ran(BA*) we get

X, 28BN (BA*) (BN X, = %B*(BA*)TB(B*(BA*)(B*)T)B*(BA*)TB =

= %B*(BA*)TBBT(BA*)BBT(BA*)TB = %B*(BA*)TB,
thus, X is regular and XlT = BT(BA*)(B*). According to Remark 2.2 we can write
X=X1+Xo0+X3+Xy=PXP+PXP,+PRXP +PRXP,
where
Xy = PLXP, = B'TBX(1 — B'B) = B*(BA*)'BV (1 — ATA),
X3=P,XP,=(1-B'B)XB'B = (1- ATA)V*B*(BA*)'B,
X, =PXP,=(1-B'B)X(1-B'B)=2(1 - ATA)V*B*(BA*)IBV(1 — ATA)+
+(1—ATAW (1 — ATA).
Evidently, X3 = X3 and X; X| X, = X,. Furthermore, we have
Xy — X3X] Xy =2(1 — ATA)V*B*(BA*) BV (1 — ATA) + (1 — ATA)W (1 — ATA)—
—((1 = ATA)V*B*(BA*)'B)(BY(BA*)(B*)")(2B*(BA*)'BV (1 — ATA)) =
= (1-ATAW (1 - ATA) € L(X),.

Applying Lemma 2.3, we derive that X is positive and any arbitrary positive solution to Eq. (1.3)
can be expressed as (5.1).
Theorem 5.1 is proved.
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