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SECOND ORDER PARALLEL TENSORS ON S-MANIFOLDS
AND SEMI-PARALLEL HYPERSURFACES OF S-SPACE FORMS

ITAPAJIEJIBHI TEH30PHU APYI'OI'O MNIOPAJKY HA S-MHOT'OBHUJAX
TA HAIIIBITAPAJIEJIBHI I'IMTEPITIOBEPXHI S-ITPOCTOPOBUX ®OPM

We study a second order parallel symmetric tensor in an S-manifold and we deduce that there is no semi-parallel
hypersurface in S-space forms M2""*(c) with ¢ # s.

BuBYa€eThCsI MapasebHA CUMETPHYHUE TEH30p APYTOro mopsaKy Ha S-MHOTOBH[II. BcTaHOBNIEHO, 10 HE iCHY€E HamiBIa-
paNenbHOI TieproBepxHi B S-npocToposux (opmax M2"T%(c) 3 ¢ # s.

1. Introduction. In [19], Yano introduced the notion of ¢-structure on a (2n + s)-dimensional ma-
nifold as a tensor field ¢ of type (1, 1) and rank 2n satisfying ¢ + ¢ = 0. Almost complex (s = 0)
and almost contact (s = 1) structures are well-known examples of f-structure. In the context, Blair
[3] defined K -manifolds as the analogue of Kachlerian manifolds in the almost complex geometry
and of quasi-Sasakian manifolds in the almost contact geometry and he showed that the curvature of
S-manifolds is completely determined by their (-sectional curvatures.

In 1923, Eisenhart [11] proved that if a positive definite Riemannian manifold (M, ¢g) admits a
second order parallel symmetric covariant tensor other than a constant multiple of the metric tensor,
then it is reducible. In [17], Levy proved that a second order parallel symmetric non singular tensor
in real space forms is proportional to the metric tensor. Since then, many authors investigated the
Eisenhart problem of finding symmetric and skew symmetric parallel tensors on various spaces and
obtained fruitful results.

We know from [13] that a second order parallel symmetric tensor in generalized Sasakian space
forms is proportional to the metric tensor.

In this paper, we generalize this result for an S-manifold M2+ with s > 1. Further, we
investigate the existence of parallel and semi-parallel hypersurface in S-space forms M nts(c) with
c#s.

2. Preliminaries. 2.1. Semi-parallelism. Let M™ be an n-dimensional Riemannian manifold
and M™ an m-dimensional submanifold of AM™. Let g be the metric tensor field on M" as well
as the metric induced on M™. We denote by V the covariant differentiation in AM™ and by V the

covariant differentiation in M™. Let T'(M) (resp. T'(M)) be the Lie algebra of vector field on
M™ (resp. on M™) and T(M)* the set of all vector fields normal to M™. The Gauss — Weingarten
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formulas are given by
VxY =VxY +0(X,Y), VxV=-AyX+V%V, X,Y eT(M), VeT(M)",

where V= is the connection in the normal bundle, o is the second fundamental form of M™ and
Ay is the Weingarten endomorphism associated with V. Ay and o are related by g(Ay X,Y) =
— 9(o(X,Y), V). N

The submanifold M™ is said to be fotally geodesic in M™ if its second fundamental form is
identically zero and it is said to be minimal if H = 0, where H is the mean curvature vector defined

1 ~ ~
by H = — trace (o) [6]. We denote by R and R the curvature tensors associated with V and V,
m

respectively.
The basic equations of Codazzi and Gauss are

(R(X,Y)2)" =Vxo(Y,Z) — Vyo(X,Z)

and

R(X,Y)Z = R(X,Y)Z — g(AvY, 2)AvX + g(Av X, Z) Ay Y,
respectively, X, Y, Z € T(M).

Now, the submanifold is said to be parallel if
Vxo(Y,2) = Vx(o(Y,Z)) = o(VxY, Z) = o(Y,Vx Z) =0 (1)
forall X, Y, Z € T(M), and semi-parallel if
Bo— (Vx¥y — Oy Vx = Vixa))o =0,

Semi-parallel immersions are defined as extrinsic analogue for semi-symmetric space (ﬁ R = 0)
and as a direct generalization of parallel immersions [7].

In [12, 13], the authors showed that there is no parallel (and no semi-parallel) hypersurfaces in
Sasakian space forms M>2""!(c) with ¢ # 1.

2.2. S-manifold. Let M?27+5 bea (2n+ s)-dimensional Riemannian manifold endowed with an
p-structure [19] (that is a tensor field of type (1, 1) and rank 2n satisfying 034 = 0). If moreover
there exist on M?2"*¢ global vector fields &1, ..., &, (called structure vector fields), and their duals
1-forms 71, ...,ns such that [14], for all XY € T(M) and o, 8 € {1,...,s},

Na(68) = 0aps P€a =0, Na(@X) =0, @’X = =X+ na(X)éa, )
a=1

then there exists on M a Riemannian metric g satisfying

9(X,Y) = g(pX,0Y) + > na(X)na(Y)

a=1

and
Na(X) = g(X, &), a€{1,...,s}.
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M is then said to be a metric p-manifold. The ¢-structure is normal if

S
N¢+2Z§a®dna207

a=1

where N, is the Nijenhuis torsion of ¢.
Let ¢ be the fundamental 2-form on M defined for all vector fields X, Y on M by

P(X,Y) = g(X,pY).

A normal metric ¢-structure with closed fundamental 2-form will be called K -structure and M2nts
called K -manifold. Finally, if d; = ... = dns = ¢, then the K -structure is called S-structure and
M is called S-manifold. In the case s = 1 the S-manifold is a Sasakian manifold.

The Riemannian connection V of an S-manifold satisfies [3]

Vxéa = —¢X, 3)

(Vx@)Y =Y (90X, Y )ea +1a(Y)9?X), X,Y € T(M),

a=1

and

RX,Y)éa = [ D _m(X) | &Y — [ D ma(Y) | ¢°X 4)
p=1 B=1

forall « € {1,...,s}.

A plane section 7 is called an @-section if it is determined by a unit vector X, normal to the
structure vector fields and pX. The sectional curvature of 7 is called an -sectional curvature. An
S-manifold is said to be an S-space form if it has constant ¢-sectional curvature ¢ and it is denoted
by M2nts (¢) (n > 1) and its curvature tensor has the form [16]

c+35

R(X,Y)Z = {9(0X,0Z) %Y — g(pY, 0 Z)p* X} +

cC— S
+T{g(<pY, Z)pX — (X, Z)pY +29(X, Y )pZ}+

+<Z%(X)> > () ¢2Y—<Zna(Y)> Y ms(Z) | X+
a=1 p=1 a=1 B=1

S

(Y, pZ) (Zna ) ng — glpX,0Z) (Zna@f)) > & (5)
B=1

a=1

forall X, Y, Z € T(M).
For s = 1 the S-space form is reduced to Sasakian-space form.
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Example2.1 [14]. Let R?>"*3(—3s) be a Euclidean space with Cartesian coordinates (', ...

coat oyl g 2t L. 2%), then an S-structure on R?"15(—3s) is defined by
0
£a:2aza, a=1,...,s,

1 oo
na::2<dza2yzdx’>, a=1,...,s,
=1

pX ::—ZX/ 8xi+;X ﬁyi_ (ZX’y) (;M)’

=1 i=1

S n
1 . 4 . .
g::E ’7a®77a+15 (dz' ® dx' + dy* @ dy'),
a=1

i=1
where
n n S
. 0 . 0 0
— 1 4 oo~
X = ZX o’ +ZX oy’ +ZX 0zo
i=1 =1 a=1
With this structure R?"+* is an S-manifold of constant ¢-sectional curvature ¢ = —3s.

Let M™ be an m-dimensional submanifold immersed in M 2"5. For any vector field X tangent
to M, we put

¢X =TX + NX, (6)

where 7'X is the tangential part and N X the normal part of X. Then T' is an endomorphism on
the tangent bundle 7'M and N is a normal bundle valued 1-form on the tangent bundle.

Lemma 2.1 [18]. Let M be a submanifold of an S-manifold. Then, for X, Y, &, € TM, we
have

TX = —Vx&, NX=-0(X,E)

M™ is said to be invariant submanifold of M if all of o, = 1,..., s, are always tangent to
M™ and pX € T(M) for any X € T(M). It is easy to show that an invariant submanifold of an
S-manifold is an S-manifold too. If M is invariant, then N in (6) vanishes identically. On the other
hand, M™ is said to be an antiinvariant submanifold if X € T(M)* for any X € T'(M). If M is
antiinvariant, then 7" in (6) vanishes identically.

3. Second order parallel tensor. Let B be a (0,2)-symmetric tensor field on S-manifold
M?"+s such that VB = 0, then it follows that

B(R(X,Y)Z,W) + B(Z,R(X,Y)W) =0 (7)

for arbitrary vector fields X,Y, Z, W € T(]T/f ).

Theorem 3.1. On an S-manifold M?"** a second order parallel symmetric tensor is propor-
tional to the metric tensor if s = 1, and it is a linear combination (with constant coefficients) of the
underlying metric tensor and 1-forms of structure vector fields if s > 2.
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Proof. Substituting X =Z =W =¢&,, forall y € {1,...,s} and s > 1, in (7) gives

B(R(&,,Y)&,,&) + B(&, R(&,Y)&,) = 0.

Then it follows from the symmetry of B that

B(E(gw Y)é“/? 57) =0

and from (4) we obtain N
R(&,Y)E, = ‘PQY-

From (8) and (9) we have
B(¢*Y, &) = 0.

By using (2), we get
B(Y,&) = Y ns(Y)B(£,&) =0
B=1

forany v € {1,...,s}.
By differentiating covariantly along X, we obtain

B(VxY,&) + B(Y,Vx&,) — > {9(VxY,&) + 9V, Vx&s)} B(E5, &)~

p=1

s

= " 9(V.&){B(VxEs.&) + B(£s, Vx&y)} =0
p=1

forany v € {1,...,s}. Put Y = VxY in (10), we get
B(VxY,&) = > g(VxY,&3)B(£s,&) = 0.
B=1
From (11), (12) and (3) we have
—B(Y,0X) +g(Y,9X)> B(&s,&) + Y 9(V,E){B(pX, &) + B(¢X, &)} =0
B=1 p=1
for any v € {1,...,s}. Replacing Y by ¢ X in (10), we obtain
B(<)0X7 f"/) = 0
for any v € {1,...,s}. From (13) and (14) we get
—B(Y,pX) + g(Y,9X) > B(£s,&) =0
B=1

forany v € {1,...,s}. Replace X by X in (15) and, by using (2) and (10), we have

@®)

©)

(10)

(11)

(12)

(13)

(14)

(15)
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B(X,Y)—g(X,Y) Y B(&s,&)— Y ma(X)ns(Y)B(Es,éa)+ Y na(X)na(Y)B(Es, &) =0
B=1 a,f=1 a,f=1
(16)
forany v € {1,...,s}.
For s = 1 (that means M is Sasakian manifold), it suffices to put & =& = ... =& = £ and
N =1n2 =...=ns =7, then from (16) we obtain

B(Xa Y) = B(Ev‘f)g(Xv Y)

For s > 2, since VB = 0 and from (14) we can easily show that B(,,&g) is constant, for any
a,f €{1,...,s}, get the Theorem 3.1.

4. Semi-parallel hypersurfaces in an S-space form. In [12] and [13], the authors proved the
following theorems.

Theorem 4.1 [12]. There are not a parallel connected hypersurface in a Sasakian space form
M2+ (¢) withn > 2 and ¢ # 1.

Theorem 4.2 [13]. There are no semi-parallel hypersurfaces in a Sasakian space form M2t (c)
with ¢ #£ 1 and n > 2.

For a parallel and semi-parallel hypersurfaces in an S-space form, we have the following results.

Theorem 4.3. Let M be an hypersurface of an S-space form M?"*3(c), tangent to the structure
vector fields with ¢ # s, then M is not parallel.

Proof. We suppose that M is a parallel hypersurface of an S-space form M n+s(c) and o is
the second fundamental form of M.

Denote by C' the unit normal of M in M and let U = —¢C. Then, since Na(C) = 0, for all «,

g(U,U) = g(pC,C) =1
and

g(U,C) = —g(eC,C) =0.
Moreover, if X € T'(M), we have

X = TX +u(X)C, (17)

where v and T are tensor fields on M of type (0,1) and (1,1), respectively, also T'X represents the
tangent part of p.X.

In the sequel we set u # 0, clearly from (17), u(X) = ¢g(U, X). Moreover, it is easy to verify
that U = C.

By Codazzi equation, (17) and (5) we obtain

0=Vyxo(Y,Z)—Vyo(X,2) = (R(X,Y)Z)" =

C —

S
1 19(0Y, 2)pX — g(pX, Z)pY +29(X, oY )pZ} =

c—s
=~ 1Y, 2)u(X) = g(pX, Z)u(Y) +29(X. Y )u(2)}C = 0.
If we put Z = U, we deduce that
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cC— S

4

g(X,TY) =0.

Since ¢ # s, then TY = 0, so dim¢T, (M) = 1 for all x € M. Moreover, we have Tx(M) =
=T,(M) @ T,(M)* and rank ¢ = 2n, then we obtain

2n — 1 < dim T, (M)* < 2n,

which is impossible because n > 1 and dim T,,(M)*+ = 1.
Theorem 4.3 is proved.
Theorem 4.4. There are no semi-parallel hypersurfaces tangent to the structure vector fields in
an S-space form M*"5(c) with ¢ # s.
Proof. 1f M is a semi-parallel hypersurface and o is the second fundamental form of M, we
have
(R.0)(Z,W;X,Y) = —0(R(X,Y)Z,W) — o(Z,R(X,Y)W) = 0.

By using the same argument as in Theorem 3.1, we deduce that

S S
c=Kg or c=K'g+ Z K, @15 — Z K0 @ 1,
a,f=1 a,f=1

where K, K/, K% K®7 are constants, so clearly

which contradicts Theorem 4.3.
Theorem 4.4 is proved.
Corollary4.1. There is no semi-parallel hypersurfaces in R*"*%(—3s).
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