Р. В. Бородич (Гомел. гос. ун-т им. Ф. Скорины, Беларусь)

О ПЕРЕСЕЧЕНИИ МАКСИМАЛЬНЫХ ПОДГРУПП КОНЕЧНЫХ ГРУПП

We establish the structure of normghal subgroups in θ -Frattini extensions, where θ is a subgroup functor. For a local Fitting structure $\mathfrak F$ containing all nilpotent groups, it is shown that, in a solvable group, the crossing of $\mathfrak F$ -abnormal maximal θ -subgroups not containing $\mathfrak F$ -radicals and not belonging to $\mathfrak F$ coincides with the crossing of $\mathfrak F$ -abnormal maximal θ -subgroups and belongs to the structure of $\mathfrak F$.

Встановлено будову нормальних підгруп у θ -фраттінієвих розширеннях, де θ — підгруповий функтор. Для локальної формації Фіттінга \mathfrak{F} , що містить усі нільпотентні групи, показано, що у розв'язуваній групі перетин \mathfrak{F} -абнормальних максимальних θ -підгруп, що не містять \mathfrak{F} -радикала і не належать \mathfrak{F} , збігається з перетином \mathfrak{F} -абнормальних максимальних θ -підгруп і належить формації \mathfrak{F} .

1. Введение. В теории конечных групп хорошо известна классическая работа Фраттини [1], получившая свое развитие в различных направлениях. В работе [2] Гашюцем исследовались пересечения абнормальных максимальных подгрупп. Дескинс [3] описал пересечения максимальных подгрупп с ограничениями на индексы. Пересечение всех ненильпотентных максимальных подгрупп изучал Л. И. Шидов [4]. В. А. Ведерников и Н. Г. Дука [5] установили строение пересечения всех абнормальных ненильпотентных максимальных подгрупп группы. В. С. Монахов [6] исследовал пересечение максимальных подгрупп, не содержащих подгруппу Фиттинга.

Следующий этап в исследовании данного направления связан с развитием теории формаций и введением понятия \mathfrak{F} -абнормальной максимальной подгруппы [7, 8]. Пересечения таких максимальных подгрупп для разрешимых групп изучил В. В. Шлык [9], а для произвольных групп — Л. А. Шеметков [8] и М. В. Селькин [10]. Далее пересечения различных \mathfrak{F} -абнормальных подгрупп группы были детально рассмотрены Л. А. Шеметковым и А. Н. Скибой [11], М. В. Селькиным [10], Баллестером-Болинше и Перес-Рамош [12] и др.

Дальнейшее развитие теории пересечений максимальных подгрупп связано с применением функторного метода (см. [10, 13-15]).

Данная работа посвящена объединению формационного и функторного методов в исследовании пересечений максимальных подгрупп.

2. Определения и обозначения. Подгруппа H группы G называется:

пронормальной, если для любого $x\in G$ подгруппы H и H^x сопряжены между собой в $\langle H, H^x \rangle$;

абнормальной, если $x \in \langle H, H^x \rangle$ для любого $x \in G$.

Формацией называют класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений.

Пусть \mathfrak{X} — произвольный непустой класс групп. Сопоставим с любой группой $G \in \mathfrak{X}$ некоторую систему подгрупп $\tau(G)$. Согласно [14] будем говорить, что τ — подгрупповой \mathfrak{X} -функтор (подгрупповой функтор на \mathfrak{X}), если для любого эпиморфизма $\phi: A \mapsto B$, где $A, B \in \mathfrak{X}$, выполнены включения $(\tau(A))^{\phi} \subseteq \tau(B), \ (\tau(B))^{\phi^{-1}} \subseteq \tau(A)$ и, кроме того, для любой группы $G \in \mathfrak{X}$ имеет место $G \in \tau(G)$.

Если $\mathfrak{X} = \mathfrak{G}$ — класс всех групп, то подгрупповой \mathfrak{X} -функтор называют просто подгрупповым функтором.

В дальнейшем функтор θ будем называть:

- 1) абнормально полным, если для любой группы G среди множества $\theta(G)$ содержатся все абнормальные подгруппы группы G;
 - 2) абнормальным, если $\theta(G) \setminus \{G\}$ совпадает с множеством всех абнормальных подгрупп;
 - 3) тривиальным, если функтор θ выделяет в группе G все ее подгруппы;
- 4) N-свободным, если в группе G функтор θ выделяет все подгруппы группы G вместе с самой группой, не содержащие нормальную подгруппу N группы G.

Через M_G обозначают ядро подгруппы M в группе G (т.е. пересечение всех подгрупп из G, сопряженных с подгруппой M).

Максимальные подгруппы оказывают существенное влияние на строение конечных групп. Рассмотрим максимальные подгруппы среди подгрупп, имеющих заданное свойство, и изучим их пересечения и влияние на строение группы.

В дальнейшем для каждой группы G будем фиксировать некоторую ее группу операторов. Несложно заметить, что так как операторы действуют как соответствующие им автоморфизмы, то каждая характеристическая подгруппа является A-допустимой для произвольной группы операторов.

Подгруппа H группы G называется максимальной A-допустимой подгруппой в G, если H является A-допустимой и любая собственная A-допустимая подгруппа из G, содержащая H, совпадает с H.

Пусть θ — подгрупповой функтор. Обозначим $\Phi_{\theta}(G,A) = \cap M_G$, где M пробегает множество всех максимальных A-допустимых θ -подгрупп из G. Если в G таких подгрупп нет, то положим $\Phi_{\theta}(G,A) = G$.

В случае, когда θ — тривиальный функтор, подгруппа $\Phi_{\theta}(G,A)$ совпадает с подгруппой $\Phi(G,A)$, некоторые свойства которой были описаны в [18]. Если функтор θ абнормальный, то подгруппу $\Phi_{\theta}(G,A)$ будем обозначать $\Delta(G,A)$ (операторный аналог подгруппы Гашюца $\Delta(G)$, введенной в [2]).

Через M_G обозначают ядро подгруппы M в группе G (т. е. пересечение всех подгрупп из G, сопряженных с подгруппой M).

Необходимо отметить, что не всегда множество всех максимальных подгрупп группы G будет совпадать со множеством всех максимальных A-допустимых подгрупп группы G относительно некоторой группы операторов A (см. работу [19]).

Все рассматриваемые группы конечны. В дальнейшем будем использовать терминологию, принятую в монографиях [10, 13, 14, 16].

Если θ — некоторый подгрупповой функтор, то через $\bar{\theta}$ будем обозначать дополнительный к θ функтор, т. е. $M \in \bar{\theta}(G)$ тогда и только тогда, когда максимальная подгруппа M группы G не входит в $\theta(G)$ и всегда $G \in \bar{\theta}(G)$.

Пусть \mathfrak{F} — формация. Тогда через $G^{\mathfrak{F}}$ обозначим \mathfrak{F} -корадикал группы G — пересечение всех нормальных подгрупп N группы, для которых $G/N \in \mathfrak{F}$. Если \mathfrak{F} — формация, замкнутая относительно произведений нормальных \mathfrak{F} -подгрупп, то наибольшую нормальную \mathfrak{F} -подгруппу называют \mathfrak{F} -радикалом группы G и обозначают $G_{\mathfrak{F}}$.

Пусть \mathfrak{X} — класс групп. Главный фактор H/K группы G называется фраттиниевым, если $H/K \subseteq \Phi(G/K)$. Главный фактор H/K группы G называется \mathfrak{X} -центральным [11], если

 $[H/K](G/C_G(H/K) \in \mathfrak{X}.$ Произведение всех нормальных подгрупп из G, у которых G-главные факторы являются \mathfrak{X} -центральными в G, называется \mathfrak{X} -гиперцентром группы G и обозначается через $Z_{\mathfrak{X}}(G)$.

Формация Фиттинга — это нормально наследственная в смысле А. И. Мальцева формация \mathfrak{F} , замкнутая относительно произведений нормальных \mathfrak{F} -подгрупп.

Формацию \mathfrak{F} называют насыщенной, если всегда из $G/\Phi(G) \in \mathfrak{F}$ следует $G \in \mathfrak{F}$.

Введем следующие обозначения:

```
\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A) = \cap \{M_G \mid M \not\supseteq G^{\mathfrak{F}}, \ M \notin \mathfrak{F}, \ M \in \theta(G), \ M-A-допустимая подгруппа\};
```

$$\Phi_{\theta}^{\mathfrak{F}}(G,A)=\cap \{M_G\mid M\not\supseteq G^{\mathfrak{F}},\ M\in \theta(G),\ M-A$$
-допустимая подгруппа $\};$

$$\Phi_{\theta}(G,A) = \bigcap \{ M_G \mid M \in \theta(G), M - A$$
-допустимая подгруппа $\}$.

Рассмотрим частные случаи. В случае тривиальности группы операторов A определенные выше подгруппы превращаются соответственно в $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G), \ \Phi_{\theta}^{\mathfrak{F}}(G), \ \Phi_{\theta}(G).$

Пересечение всех \mathfrak{F} -абнормальных максимальных θ -подгрупп группы G (и не принадлежащих формации \mathfrak{F}) обозначаем $\Phi_{\theta}^{\mathfrak{F}}(G)$ $\left(\overline{\Phi}_{\theta}^{\mathfrak{F}}(G)\right)$ [17].

Подгруппу $\Phi_{\theta}^{\mathfrak{F}}(G)$ в случае, когда θ — абнормальный функтор, обозначим $\Phi_{\Delta}^{\mathfrak{F}}(G)$ [17]. Если вместо функтора θ рассматривать тривиальный функтор, то подгруппа $\Phi_{\theta}^{\mathfrak{F}}(G)$ совпадает с подгруппой $\Delta^{\mathfrak{F}}(G)$ [10, 13, 14], а если к тому же \mathfrak{F} — формация всех нильпотентных групп, то подгруппа $\Phi_{\theta}^{\mathfrak{F}}(G)$ совпадает с подгруппой Гашюца $\Delta(G)$ [2], равной пересечению всех абнормальных максимальных подгрупп группы G.

Всегда полагаем, что пересечение пустого множества подгрупп из G совпадает с самой группой G.

В общем случае подгруппа $\Phi^{\mathfrak{F}}_{\Lambda}(G,A)$ отлична от подгруппы $\Delta^{\mathfrak{F}}(G,A)$.

Пример. Пусть \mathfrak{F} — формация единичных групп, A — единичная группа операторов, G — группа, в которой $\Delta(G) \neq \Phi(G)$. Тогда в группе G существуют как \mathfrak{N} -нормальные, так и \mathfrak{N} -абнормальные \mathfrak{F} -абнормальные подгруппы группы G.

3. Вспомогательные результаты.

Лемма 3.1 [18, с. 64]. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = 1. Если G имеет свойство C_{π} , то G содержит A-допустимую S_{π} -подгруппу.

Лемма 3.2 [16, с. 179]. Если подгруппа H пронормальна в G, то подгруппа $N_G(H)$ абнормальна в G.

Лемма 3.3. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\;\theta-$ абнормально полный подгрупповой функтор, $K\subseteq N \triangleleft G,\; K \triangleleft G,\; N-A$ -допустимая подгруппа группы G и $K\subseteq \Phi_{\theta}(G,A)$. Тогда справедливы следующие утверждения:

- 1) если N/K π -замкнута, то и N π -замкнута;
- 2) $O_{p'}(N/K) = O_{p'}(N)/K$.

Доказательство. Пусть N/K имеет нормальную S_{π} -подгруппу H/K. Нетрудно заметить, что $S_{\pi'}$ -подгруппа R из K является $S_{\pi'}$ -подгруппой в H. По лемме 3.1 H содержит A-допустимую S_{π} -подгруппу S и любые две такие подгруппы сопряжены в H. По обобщенной лемме Фраттини $G = N_G(S)H$. С учетом того, что H = SR, получаем $G = N_G(S)R$. Тогда по лемме 3.2 подгруппа $N_G(S)$ является абнормальной подгруппой группы G. Следовательно, $N_G(S)$ содержится в некоторой максимальной θ -подгруппе M из G. Поэтому G = MR. Так как $R \subseteq \Phi_{\theta}(G,A) \subseteq M$, то G = M. Получили противоречие. Следовательно, S нормальна в G.

Второе утверждение леммы является следствием первого при $\pi = p'$.

Лемма 3.3 доказана.

Лемма 3.4 [16, с. 38]. Пусть f — локальный экран формации \mathfrak{F} . Группа G тогда и только тогда принадлежит \mathfrak{F} , когда $G/F_p(G) \in f(p)$ для любого $p \in \pi(G)$.

Теорема 3.1 [16, с. 96]. Для любой группы G и любой ступенчатой формации $\mathfrak F$ имеет место равенство $\Delta^{\mathfrak F}(G)/\Phi(G)=Z_{\mathfrak F}(G/\Phi(G)).$

Теорема 3.2 [16, с. 41]. Пусть f — максимальный внутренний локальный экран формации \mathfrak{F} . Формация \mathfrak{F} S-замкнута (S_n -замкнута) тогда и только тогда, когда для любого простого p формация f(p) S-замкнута (S_n -замкнута).

- **Лемма 3.5.** Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-$ ступенчатая формация, $\theta-$ абнормально полный регулярный функтор, K- некоторая нормальная A-допустимая подгруппа группы G. Пусть каждая максимальная θ -подгруппа группы G, не содержащая K, является \mathfrak{F} -нормальной. Тогда справедливы следующие утверждения:
 - 1) $K \cap G^{\mathfrak{F}} \subseteq \Phi_{\theta}(G, A)$;
 - 2) $K/K \cap \Phi_{\theta}(G, A) \subseteq Z_{\mathfrak{F}}(G/(K \cap \Phi_{\theta}(G, A)))$.

Доказательство. Очевидно, $K \cap G^{\mathfrak{F}}$ содержится во всех максимальных θ -подгруппах, содержащих $G^{\mathfrak{F}}$ и не содержащих $G^{\mathfrak{F}}$, а следовательно, и в $\Phi_{\theta}(G,A)$.

Пусть R/S — главный фактор группы G, причем $R\subseteq K,\ K\cap \Phi_{\theta}(G,A)\subseteq S.$ Поскольку

$$R \cap G^{\mathfrak{F}} \subseteq K \cap G^{\mathfrak{F}} \subseteq S$$
,

то имеем G-изоморфизм

$$RG^{\mathfrak{F}}/SG^{\mathfrak{F}}\simeq R/(R\cap SG^{\mathfrak{F}})=R/S(R\cap G^{\mathfrak{F}})=R/S.$$

Так как $G/SG^{\mathfrak{F}} \in \mathfrak{F}$, то $RG^{\mathfrak{F}}/SG^{\mathfrak{F}}$ \mathfrak{F} -централен в $G/SG^{\mathfrak{F}}$, а значит, и в G. Но тогда R/S \mathfrak{F} -централен в G.

Лемма 3.5 доказана.

Лемма 3.6. Пусть группа G имеет группу операторов A, θ — подгрупповой функтор и \mathfrak{F} — непустая формация. Тогда $\Delta^{\mathfrak{F}}(G) \subseteq \Phi^{\mathfrak{F}}(G,A) \subseteq \Phi^{\mathfrak{F}}_{\theta}(G,A)$.

Доказательство. Второе включение очевидно. Докажем первое. Предположим, что $\Delta^{\mathfrak{F}}(G) \not\subseteq \Phi^{\mathfrak{F}}(G,A)$. Тогда существует максимальная A-допустимая подгруппа M, не содержащая $G^{\mathfrak{F}}$, такая, что $M \not\supseteq \Delta^{\mathfrak{F}}(G)$. Так как $\Delta^{\mathfrak{F}}(G)$ является характеристической подгруппой, то $M\Delta^{\mathfrak{F}}(G) = G$. Поскольку M — максимальная A-допустимая подгруппа, не содержащая $G^{\mathfrak{F}}$, то она содержится в некоторой \mathfrak{F} -абнормальной максимальной подгруппе K группы G. Тогда получаем

$$G=M\Delta^{\mathfrak{F}}(G)=K\Delta^{\mathfrak{F}}(G)=K.$$

Полученное противоречие и доказывает лемму.

Лемма 3.7. Пусть группа G имеет группу операторов A, θ — подгрупповой функтор, N — нормальная A-допустимая подгруппа из G и \mathfrak{F} — непустая формация. Тогда справедливы следующие утверждения:

- 1) $\Phi_{\theta}^{\mathfrak{F}}(G,A)N/N \subseteq \Phi_{\theta}^{\mathfrak{F}}(G/N,A);$
- 2) если $N \subseteq \Phi_{\theta}^{\mathfrak{F}}(G,A)$, то $\Phi_{\theta}^{\mathfrak{F}}(G,A)/N = \Phi_{\theta}^{\mathfrak{F}}(G/N,A)$.

Доказательство. Пусть N — нормальная A-допустимая подгруппа группы G. Так как θ — подгрупповой функтор, то из $M \in \theta(G)$ следует, что $MN/N \in \theta(G/N)$. Если $M - \mathfrak{F}$ -абнормальная максимальная A-допустимая подгруппа группы G, то $MN/N - \mathfrak{F}$ -абнормальная максимальная A-допустимая подгруппы G/N.

Допустим, что N-A-допустимая нормальная подгруппа группы G и $N\subseteq\Phi^{\mathfrak{F}}_{\theta}(G,A)$. Поскольку θ — подгрупповой функтор, то из того, что $M/N-\mathfrak{F}$ -абнормальная A-допустимая максимальная θ -подгруппа группы G/N, следует, что $M-\mathfrak{F}$ -абнормальная A-допустимая θ -подгруппа группы G.

Лемма 3.7 доказана.

4. О пересечении А-допустимых максимальных подгрупп.

Теорема 4.1. Пусть \mathfrak{F} — насыщенная формация, группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\; \theta$ — абнормально полный подгрупповой функтор, N — нормальная A-допустимая подгруппа группы G и $N/N\cap\Phi_{\theta}(G,A)\in\mathfrak{F}$. Тогда N представима в виде прямого произведения $N=N_1\times N_2$, множители которого удовлетворяют следующим условиям:

- 1) $N_1 \in \mathfrak{F}$;
- 2) $\pi(N_2) \cap \pi(\mathfrak{F}) = \varnothing$;
- 3) $N_2 \subseteq \Phi_{\theta}(G, A)$.

Доказательство. Пусть $D=N\cap\Phi_{\theta}(G,A),\ \omega=\pi(\mathfrak{F}).$ Поскольку N/D является ω -группой, то по лемме 3.7 подгруппа N представима в виде $N=N_1\times N_2,$ где N_1-S_{ω} -подгруппа из N. Так как $N_2\subseteq\Phi_{\theta}(G,A),$ то $N/D \cong N_1/D_1\in\mathfrak{F},$ где $D_1=N_1\cap\Phi_{\theta}(G,A).$ Пусть $p\in\omega.$ Так как $N_1/D_1\in\mathfrak{F},$ то, используя леммы 3.3 и 3.4, получаем

$$(N_1/D_1)/F_p(N_1/D_1) = N_1/D_1/F_p(N_1)/D_1 \le N_1/F_p(N_1) \in f(p).$$

Поскольку последнее справедливо для любого $p \in \pi(N_1)$, то по лемме 3.4 подгруппа N_1 входит в \mathfrak{F} .

Теорема 4.1 доказана.

Следствие 4.1. Пусть \mathfrak{F} — насыщенная формация, содержащая все нильпотентные группы, группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\;\theta$ — абнормально полный подгрупповой функтор. Если N — нормальная A-допустимая подгруппа группы G и $N/N\cap\Phi_{\theta}(G,A)\in\mathfrak{F},\;$ то $N\in\mathfrak{F}.$

Следствие 4.2. Пусть \mathfrak{F} — насыщенная формация, группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ N$ — нормальная A-допустимая подгруппа группы G и $N/N\cap \Delta(G,A)\in \mathfrak{F}$. Тогда N представима в виде прямого произведения $N=N_1\times N_2$, где $N_1\in \mathfrak{F}$, $\pi(N_2)\cap \pi(\mathfrak{F})=\varnothing,\ N_2\subseteq \Delta(G,A)$.

Следствие 4.3. Пусть \mathfrak{F} — насыщенная формация, содержащая все нильпотентные группы, группа G имеет группу операторов A такую, что (|G|,|A|)=1. Если N — нормальная A-допустимая подгруппа группы G и $N/N\cap\Delta(G,A)\in\mathfrak{F}$, то $N\in\mathfrak{F}$.

Следствие 4.4 [20, с. 65]. Пусть \mathfrak{F} — насыщенная формация, группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ N$ — нормальная A-допустимая подгруппа группы G и $N/N\cap\Phi(G,A)\in\mathfrak{F}$. Тогда N представима в виде прямого произведения $N=N_1\times N_2$, где $N_1\in\mathfrak{F},\ \pi(N_2)\cap\pi(\mathfrak{F})=\varnothing,\ N_2\subseteq\Phi(G,A)$.

Спедствие 4.5. Пусть \mathfrak{F} — насыщенная формация, θ — абнормально полный подгрупповой функтор, N — нормальная подгруппа группы G и $N/N \cap \Phi_{\theta}(G) \in \mathfrak{F}$. Тогда N представима в виде прямого произведения $N = N_1 \times N_2$, где $N_1 \in \mathfrak{F}$, $\pi(N_2) \cap \pi(\mathfrak{F}) = \emptyset$, $N_2 \subseteq \Phi_{\theta}(G)$.

Следствие 4.6. Пусть \mathfrak{F} — насыщенная формация, содержащая все нильпотентные группы, θ — абнормально полный подгрупповой функтор. Если N — нормальная подгруппа группы G и $N/N \cap \Phi_{\theta}(G) \in \mathfrak{F}$, то $N \in \mathfrak{F}$.

Следствие 4.7 [16, с. 38]. Пусть \mathfrak{F} — некоторая насыщенная формация, N — нормальная подгруппа группы G и $N/N \cap \Phi(G) \in \mathfrak{F}$. Тогда N представима в виде прямого произведения $N = N_1 \times N_2$, где $N_1 \in \mathfrak{F}$, $\pi(N_2) \cap \pi(\mathfrak{F}) = \varnothing$, $N_2 \subseteq \Phi(G)$.

Теорема 4.2. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = 1, \mathfrak{F} — насыщенная формация, θ — подгрупповой функтор. Тогда

$$\Phi_{\theta}^{\mathfrak{F}}(G,A)/\Phi_{\theta}(G,A) = Z_{\mathfrak{F}}(G/\Phi_{\theta}(G,A)).$$

Доказательство. Несложно заметить, что $\Phi_{\theta}^{\mathfrak{F}}(G,A) \cap G^{\mathfrak{F}}$ содержится во всех \mathfrak{F} -абнормальных максимальных A-допустимых θ -подгруппах и \mathfrak{F} -нормальных максимальных A-допустимых θ -подгруппах, а следовательно, в $\Phi_{\theta}(G,A)$.

Пусть R/S — главный фактор группы G, причем $R\subseteq \Phi_{\theta}^{\mathfrak{F}}(G,A),\ S\supseteq \Phi_{\theta}(G,A)$. Поскольку $R\cap G^{\mathfrak{F}}\subseteq \Phi_{\theta}^{\mathfrak{F}}(G,A)\cap G^{\mathfrak{F}}\subseteq S$, то имеем G-изоморфизм

$$RG^{\mathfrak{F}}/SG^{\mathfrak{F}} \simeq R/(R \cap SG^{\mathfrak{F}}) = R/S(R \cap G^{\mathfrak{F}}) = R/S.$$

Так как $G/SG^{\mathfrak{F}} \in \mathfrak{F}$, то $RG^{\mathfrak{F}}/SG^{\mathfrak{F}}$ \mathfrak{F} -централен в $G/SG^{\mathfrak{F}}$, а значит, и в G. Но тогда R/S \mathfrak{F} -централен в G. Отсюда заключаем, что $\Phi_{\theta}^{\mathfrak{F}}(G,A)/\Phi_{\theta}(G,A)\subseteq Z_{\mathfrak{F}}(G/\Phi_{\theta}(G,A))$.

Докажем обратное включение. Поскольку подгруппа Фраттини фактор-группы $G/\Phi_{\theta}(G,A)$ единична, то, применяя теорему 3.1 и леммы 3.6, 3.7, получаем

$$\Phi_{\theta}^{\mathfrak{F}}(G,A)/\Phi_{\theta}(G,A) = \Phi_{\theta}^{\mathfrak{F}}(G/\Phi_{\theta}(G,A),A) \supseteq D^{\mathfrak{F}}(G/\Phi_{\theta}(G,A),A) = Z_{\mathfrak{F}}(G/\Phi_{\theta}(G,A)).$$

Теорема 4.2 доказана.

Следствие 4.8. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-S_n$ -замкнутая насыщенная формация, θ — подгрупповой функтор. Тогда $\Phi_{\theta}^{\mathfrak{F}}(G,A)/\Phi_{\theta}(G,A)\in\mathfrak{F}.$

Теорема 4.3. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-S_n$ -замкнутая насыщенная формация, $\theta-$ абнормально полный подгрупповой функтор. Тогда $\Phi^{\mathfrak{F}}_{\theta}(G,A)=A\times B$, где $A\in\mathfrak{F},\ B\subseteq\Phi_{\theta}(G,A),\ \pi(B)\cap\pi(\mathfrak{F})=\varnothing$.

Доказательство. Согласно теореме 4.2, $\Phi_{\theta}^{\mathfrak{F}}(G,A)/\Phi_{\theta}(G,A)$ является \mathfrak{F} -гиперцентром в $G/\Phi_{\theta}(G,A)$. По следствию 4.8 $\Phi_{\theta}^{\mathfrak{F}}(G,A)/\Phi_{\theta}(G,A)\in \mathfrak{F}$. Теперь остается применить теорему 4.1.

Следствие 4.9. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ \mathfrak{F}-S_n$ -замкнутая насыщенная формация, содержащая все нильпотентные группы, $\theta-$ абнормально полный подгрупповой функтор. Тогда $\Phi^{\mathfrak{F}}_{\theta}(G,A)\in\mathfrak{F}$ для любой группы G.

Следствие 4.10 [16, с. 96]. Пусть $\mathfrak{F} - S_n$ -замкнутая насыщенная формация. Тогда $\Delta^{\mathfrak{F}}(G) = A \times B$, где $A \in \mathfrak{F}, \ B \subseteq \Phi(G), \ \pi(B) \cap \pi(\mathfrak{F}) = \varnothing$.

Теорема 4.4. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-S_n$ -замкнутая насыщенная формация, $\theta-$ абнормально полный подгрупповой функтор, N- нормальная подгруппа группы G. Если $N/N\cap\Phi^{\mathfrak{F}}_{\theta}(G,A)\in\mathfrak{F}$, то N представима в виде прямого произведения $N=N_1\times N_2$, множители которого удовлетворяют условиям:

1)
$$N_1 \in \mathfrak{F}$$
;

- 2) $\pi(N_2) \cap \pi(\mathfrak{F}) = \emptyset$;
- 3) $N_2 \subseteq \Phi_{\theta}(G, A)$.

Доказательство. Применим индукцию по порядку группы G. Предположим, что $\Phi_{\theta}(G,A) \neq 1$. Тогда для $G/\Phi_{\theta}(G,A)$ теорема справедлива и $N/\Phi_{\theta}(G,A) = N_1/\Phi_{\theta}(G,A) \times N_2/\Phi_{\theta}(G,A)$. Остается показать, что $N_1 \in \mathfrak{F}$. Пусть $p \in \pi(N_1)$. Так как $N_1/\Phi_{\theta}(G,A) \in \mathfrak{F}$, то, используя леммы 3.3 и 3.4, получаем

$$(N_1/\Phi_{\theta}(G,A))/F_p(N_1/\Phi_{\theta}(G,A)) = N_1/\Phi_{\theta}(G,A)/F_p(N_1)/\Phi_{\theta}(G,A) \simeq$$
$$\simeq N_1/F_p(N_1) \in f(p).$$

Поскольку последнее справедливо для любого $p \in \pi(N_1)$, то по лемме 3.4 подгруппа N_1 входит в \mathfrak{F} .

В результате индуктивных рассуждений можно считать, что $\pi(N_1)\subseteq \pi(\mathfrak{F})$ и $N_2=1.$ Поэтому достаточно доказать, что $N=N_1\in\mathfrak{F}.$

Пусть $K = N \cap \Phi_{\theta}^{\mathfrak{F}}(G,A)$. Каждая максимальная θ -подгруппа, не содержащая K, содержит $G^{\mathfrak{F}}$. Следовательно, в силу леммы 3.5 имеем

$$K/K \cap \Phi_{\theta}(G, A) \subseteq Z_{\infty}^{\mathfrak{F}}(G/K \cap \Phi_{\theta}(G, A)).$$

Если $K \cap \Phi_{\theta}(G, A) \neq 1$, то по индукции $N/K \cap \Phi_{\theta}(G, A) \in \mathfrak{F}$, а значит, согласно теореме 4.1, $N \in \mathfrak{F}$.

Пусть $K \cap \Phi_{\theta}(G,A) = 1$. Тогда подгруппа K \mathfrak{F} -гиперцентральна в группе G. Докажем, что K \mathfrak{F} -гиперцентральна и в подгруппе N. Пусть L/S - G-главный pd-фактор группы K. Тогда $G/C \in f(p)$, где $C = C_G(L/S)$, f — максимальный внутренний локальный экран формации \mathfrak{F} . Так как по теореме 3.2 формация f(p) является нормально наследственной, то

$$NC/C \simeq N/C_N(L/S) \in f(p)$$
.

Следовательно, подгруппа N f-стабилизирует G-главный ряд группы K. Это означает, что $K\subseteq Z^{\mathfrak{F}}_{\infty}(N)$. Отсюда и из $N/K\in\mathfrak{F}$ следует, что $N\in\mathfrak{F}$.

Теорема 4.4 доказана.

Следствие 4.11. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, \mathfrak{F} — нормально наследственная насыщенная формация, содержащая все нильпотентные группы, θ — абнормально полный подгрупповой функтор, N — нормальная подгруппа группы G. Если $N/N\cap\Phi^{\mathfrak{F}}_{\theta}(G,A)\in\mathfrak{F}$, то $N\in\mathfrak{F}$.

Следствие 4.12. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, \mathfrak{F} — нормально наследственная насыщенная формация, N — нормальная подгруппа группы G. Если $N/N\cap\Phi^{\mathfrak{F}}_{\Delta}(G,A)\in\mathfrak{F}$, то N представима в виде прямого произведения $N=N_1\times N_2$, где $N_1\in\mathfrak{F}$, $\pi(N_2)\cap\pi(\mathfrak{F})=\varnothing$, $N_2\subseteq\Delta(G,A)$.

В случае, когда функтор является тривиальным, из теоремы 4.4 следует результат работы [10].

Замечание. Условие нормальной наследственности локальной формации в теореме является существенным, и его отбросить нельзя. Действительно, если формация $\mathfrak F$ не является нормально наследственной, то в ней найдется такая группа G, у которой некоторая нормальная подгруппа N не входит в $\mathfrak F$. Так как $G \in \mathfrak F$, то $\Phi_{\theta}^{\mathfrak F}(G,A) = G$. Поэтому $N/N \cap \Phi_{\theta}^{\mathfrak F}(G,A) = N/N \in \mathfrak F$. Но отсюда не следует, что $N \in \mathfrak F$.

Теорема 4.5. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-\phi$ ормация, $\theta-$ абнормально полный подгрупповой функтор. Если в группе G существуют \mathfrak{F} -абнормальные максимальные θ -подгруппы, не принадлежащие \mathfrak{F} , то пересечение всех таких подгрупп совпадает с $\Phi_{\theta}^{\mathfrak{F}}(G,A)$.

Доказательство. Предположим, что пересечение $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$ всех \mathfrak{F} -абнормальных максимальных θ -подгрупп группы G, не принадлежащих формации \mathfrak{F} , совпадает с подгруппой $\Phi_{\theta}(G,A)$. Так как $\Phi_{\theta}(G,A)\subseteq\Phi_{\theta}^{\mathfrak{F}}(G,A)\subseteq\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$, то $\Phi_{\theta}^{\mathfrak{F}}(G,A)=\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$.

Пусть $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$ не совпадает с подгруппой $\Phi_{\theta}(G,A)$. Тогда $G=M\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$, где M- некоторая максимальная A-допустимая θ -подгруппа группы G. Если $M\in\mathfrak{F}$, то $G/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)\in\mathfrak{F}$. Отсюда $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$ содержится только в тех максимальных A-допустимых θ -подгруппах, которые содержат $G^{\mathfrak{F}}$, что невозможно. Поэтому M не входит в \mathfrak{F} и является максимальной A-допустимой θ -подгруппой, содержащей $G^{\mathfrak{F}}$. Итак, любая максимальная A-допустимая θ -подгруппа, не содержащая $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$, содержит $G^{\mathfrak{F}}$. Следовательно, $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)\subseteq\Phi_{\theta}^{\mathfrak{F}}(G,A)$.

Теорема 4.5 доказана.

Спедствие 4.13. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-S_n$ -замкнутая насыщенная формация, содержащая все нильпотентные группы, $\theta-$ абнормально полный подгрупповой функтор. Если в группе G существуют \mathfrak{F} -абнормальные максимальные θ -подгруппы, не принадлежащие \mathfrak{F} , то пересечение всех таких подгрупп $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$ принадлежит \mathfrak{F} .

В случае, когда θ — тривиальный функтор, из теоремы 4.5 получаем результат работы [10].

5. О пересечении A-допустимых максимальных подгрупп, не содержащих \mathfrak{F} -радикал. Введем в рассмотрение подгруппу

$$\overline{\Phi}_{\theta_{\overline{N}}}^{\mathfrak{F}}(G,A) = \cap \big\{ M_G \mid M \not\supseteq N, \ M \not\supseteq G^{\mathfrak{F}}, \ M \notin \mathfrak{F}, \ M \in \theta(G), \ M \ - \ A$$
-допустимая подгруппа \big\.

Будем рассматривать случай, когда $N=G_{\mathfrak{F}}$, где \mathfrak{F} — формация, замкнутая относительно произведений нормальных \mathfrak{F} -подгрупп. В этом случае подгруппу $\overline{\Phi}_{\theta_{\overline{N}}}^{\mathfrak{F}}(G,A)$ будем обозначать $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)$. В случае тривиальности группы операторов A определенная подгруппа превращается в $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G)$.

Если в качестве функтора θ рассмотреть тривиальный функтор, то $\overline{\Phi}_{N}^{\mathfrak{F}}(G)$ — пересечение всех \mathfrak{F} -абнормальных максимальных подгрупп группы G, не принадлежащих формации \mathfrak{F} и не содержащих нормальную подгруппу N. В случае, когда \mathfrak{F} — формация единичных групп, строение указанной подгруппы исследовалось в работах [10, 17].

Подгруппа $\Phi_{\theta_N}^{\mathfrak{F}}(G)$ совпадает с пересечением \mathfrak{F} -абнормальных максимальных θ -подгрупп группы, не содержащих нормальную подгруппу N. В случае, когда N совпадает с \mathfrak{F} -корадикалом группы G, строение указанной подгруппы рассматривалось в работе [18].

Теорема 5.1. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-$ насыщенная формация Фиттинга, содержащая все нильпотентные группы, $\theta-$ абнормально полный подгрупповой функтор. Тогда справедливы следующие утверждения:

- 1) $\Phi_{ heta}^{\mathfrak{F}}(G,A) \subseteq G_{\mathfrak{F}}$; если G- разрешимая неединичная группа, то $\Phi_{ heta}^{\mathfrak{F}}(G,A) < G_{\mathfrak{F}}$;
- 2) $(G/\Phi_{\theta}^{\mathfrak{F}}(G,A))_{\mathfrak{F}} = G_{\mathfrak{F}}/\Phi_{\theta}^{\mathfrak{F}}(G,A).$

Доказательство. Из следствия 4.9 получаем, что $\Phi_{\theta}^{\mathfrak{F}}(G,A) \in \mathfrak{F}$. Следовательно, $\Phi_{ heta}^{\mathfrak{F}}(G,A)\subseteq G_{\mathfrak{F}}.$ Пусть G — разрешимая неединичная группа. Тогда $G/\Phi_{ heta}^{\mathfrak{F}}(G,A)$ разрешима и неединична. Пусть $K/\Phi_{ heta}^{\mathfrak{F}}(G,A)$ — минимальная нормальная подгруппа в $G/\Phi_{ heta}^{\mathfrak{F}}(G,A)$. Так как $K/\Phi^{\mathfrak{F}}_{\theta}(G,A)-p$ -группа для некоторого простого p, а $\mathfrak{F}-$ нормально наследственная насыщенная формация, содержащая все нильпотентные группы, то по теореме 4.4 $K \in \mathfrak{F}$, а

это значит, что $K\subseteq G_{\mathfrak{F}}$. Следовательно, $\Phi^{\mathfrak{F}}_{\theta}(G,A)\subseteq G_{\mathfrak{F}}$. Если $\left(G/\Phi^{\mathfrak{F}}_{\theta}(G,A)\right)_{\mathfrak{F}}=K/\Phi^{\mathfrak{F}}_{\theta}(G,A)$, то на основании теоремы 4.4 $K\in\mathfrak{F}$, поэтому $K\subseteq G$ и $(G/\Phi_{\theta}^{\mathfrak{F}}(G,A))_{\mathfrak{F}}\subseteq G_{\mathfrak{F}}/\Phi_{\theta}^{\mathfrak{F}}(G,A)$. Обратное включение следует из определения \mathfrak{F} -радикала.

Следствие 5.1. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = $=1,\ \mathfrak{F}$ — насыщенная формация Фиттинга, содержащая все нильпотентные группы. Тогда справедливы следующие утверждения:

- 1) $\Phi^{\mathfrak{F}}(G,A) \subseteq G_{\mathfrak{F}}$; если G разрешимая неединичная группа, то $\Phi^{\mathfrak{F}}(G,A) < G_{\mathfrak{F}}$; 2) $\big(G/\Phi^{\mathfrak{F}}(G,A)\big)_{\mathfrak{F}} = G_{\mathfrak{F}}/\Phi^{\mathfrak{F}}(G,A)$.

Следствие 5.2. \H{D} усть \mathfrak{F} — насыщенная формация Фиттинга, содержащая все нильпотентные группы. Тогда справедливы следующие утверждения:

- 1) $\Phi^{\mathfrak{F}}(G) \subseteq G_{\mathfrak{F}}$; если G разрешимая неединичная группа, то $\Phi^{\mathfrak{F}}(G) < G_{\mathfrak{F}}$;
- $2) \ \left(G/\Phi^{\mathfrak{F}}(G)\right)_{\mathfrak{F}} = G_{\mathfrak{F}}/\Phi^{\mathfrak{F}}(G).$

Теорема 5.2. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = 1, $\mathfrak{F}-$ насыщенная формация Фиттинга, содержащая все нильпотентные группы, G- разрешимая группа, θ — абнормально полный подгрупповой функтор. Тогда справедливы следующие утверждения: $\Phi_{\theta_{G_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)=\Phi_{\theta}^{\mathfrak{F}}(G,A),$ а если G — не \mathfrak{F} -группа, то $\Phi_{\theta_{G_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)\in\mathfrak{F}^{2}.$

Доказательство. Подгруппы $\Phi^{\mathfrak{F}}_{\theta_{\overline{G}_{\mathfrak{F}}}}(G,A)$ и $\Phi^{\mathfrak{F}}_{\theta_{G_{\mathfrak{F}}}}(G,A)$ являются характеристическими в G и $\Phi^{\mathfrak{F}}_{\theta_{\overline{G}_{\mathfrak{F}}}}(G,A)\cap\Phi^{\mathfrak{F}}_{\theta_{G_{\mathfrak{F}}}}(G,A)=\Phi^{\mathfrak{F}}_{\theta}(G,A).$

Для фактор-группы $G/\Phi_{\theta}(G,A)$ выполняется $\left(G/\Phi_{\theta}^{\mathfrak{F}}(G,A)\right)_{\mathfrak{F}}=G_{\mathfrak{F}}/\Phi_{\theta}^{\mathfrak{F}}(G,A)$. Поэтому $\Phi_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}\left(G/\Phi_{\theta}^{\mathfrak{F}}(G,A)\right)=\Phi_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G)/\Phi_{\theta}^{\mathfrak{F}}(G,A)$. Предположим, что $\Phi_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)/\Phi_{\theta}^{\mathfrak{F}}(G,A)\neq 1$. Пусть $K/\Phi_{\theta}^{\mathfrak{F}}(G,A)$ — минимальная нормальная подгруппа в $G/\Phi_{\theta}^{\mathfrak{F}}(G,A)$, содержащаяся в $\Phi_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)/\Phi_{\theta}^{\mathfrak{F}}(G,A)$. Так как $\mathfrak{F}\supseteq\mathfrak{N}$, то $K/\Phi_{\theta}^{\mathfrak{F}}(G,A)\in\mathfrak{F}$ и по теореме 4.4 $K\in\mathfrak{F}$. Следовательно, $K\subseteq G_{\mathfrak{F}}$. Тогда $K\subseteq \Phi^{\mathfrak{F}}_{\theta_{G_{\mathfrak{F}}}}(G,A)\cap \Phi^{\mathfrak{F}}_{\theta_{G_{\mathfrak{F}}}}(G,A)$. Получили противоречие. Значит, допущение ошибочно и $\Phi_{\theta_{\overline{G}z}}^{\mathfrak{F}}(G,A)/\Phi_{\theta}^{\mathfrak{F}}(G,A)=1$, а значит, $\Phi_{\theta_{\overline{G}z}}^{\mathfrak{F}}(G,A)=\Phi_{\theta}^{\mathfrak{F}}(G,A)$.

Пусть G — разрешимая не $\mathfrak F$ -группа. Из того, что $G_{\mathfrak F}\subseteq\Phi^{\mathfrak F}_{\theta_{G_{\mathfrak F}}}(G,A)G_{\mathfrak F}$ и $\Phi^{\mathfrak F}_{\theta_{G_{\mathfrak F}}}(G,A)/G_{\mathfrak F}=$ $=\Phi^{\mathfrak{F}}_{ heta}(G/G_{\mathfrak{F}},A),$ следует, что подгруппа $\Phi^{\mathfrak{F}}_{ heta_{G_{\mathfrak{F}}}}(G,A)\in \mathfrak{F}^{2}.$

Следствие 5.3. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = 1, \mathfrak{F} — насыщенная формация Фиттинга, содержащая все нильпотентные группы, θ — абнормально полный подгрупповой функтор, G- разрешимая группа. Тогда $\Phi_{\theta_{\overline{G}_x}}^{\mathfrak{F}}(G,A)\in \mathfrak{F}.$

Следствие 5.4. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = 1, $\mathfrak{F}-$ насыщенная формация Фиттинга, содержащая все нильпотентные группы. Тогда для разрешимой группы G справедливы следующие утверждения:

- 1) $\Phi_{\overline{G}_x}^{\mathfrak{F}}(G,A) = D^{\mathfrak{F}}(G,A);$
- 2) если $G \notin \mathfrak{F}$, то $\Phi_{G_2}^{\mathfrak{F}}(G,A) \in \mathfrak{F}^2$.

Следствие 5.5. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, \mathfrak{F} — насыщенная формация Фиттинга, содержащая все нильпотентные группы. Тогда в разрешимой группе G подгруппа $\Phi_{\overline{G}_{\mathfrak{F}}}^{\mathfrak{F}}(G,A)$ принадлежит \mathfrak{F} .

Следствие 5.6. В разрешимой группе G пересечение абнормальных максимальных подгрупп, не содержащих F(G), совпадает с $\Delta(G)$, а пересечение абнормальных максимальных подгрупп, содержащих F(G), метанильпотентно.

Теорема 5.3. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, \mathfrak{F} — насыщенная формация Фиттинга, содержащая все нильпотентные группы, θ — абнормально полный подгрупповой функтор, G — разрешимая группа. Если $\overline{\Phi}^{\mathfrak{F}}_{\theta_{\overline{G}_{\mathfrak{F}}}}(G,A) \neq G$, то $\overline{\Phi}^{\mathfrak{F}}_{\theta_{\overline{G}_{\mathfrak{F}}}}(G,A) = \Phi^{\mathfrak{F}}_{\theta}(G,A) \in \mathfrak{F}$.

 ${}^{\mathfrak{F}}$ оказательство. Пусть G имеет \mathfrak{F} -абнормальные максимальные θ -подгруппы, не принадлежащие \mathfrak{F} и не содержащие \mathfrak{F} -радикал. Несложно заметить, что $\Phi^{\mathfrak{F}}_{\theta}(G,A)\subseteq \overline{\Phi}^{\mathfrak{F}}_{\theta}(G,A)\subseteq \overline{\Phi}^{\mathfrak{F}}_{\theta}(G,A)$ и согласно теореме 4.5 $\Phi^{\mathfrak{F}}_{\theta}(G,A)=\overline{\Phi}^{\mathfrak{F}}_{\theta}(G,A)$.

Пусть подгруппа $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)$ не совпадает с подгруппой $\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$. Тогда $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$ $A) \neq 1$. Пусть $K/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$ — минимальная нормальная подгруппа в $G/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$, содержащаяся в $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A)$. Так как $\mathfrak{F} \supseteq \mathfrak{N}$, то $K/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A) \in \mathfrak{F}$. Тогда из теорем 4.4, 4.5 следует, что $K \in \mathfrak{F}$. Следовательно, $K \subseteq G_{\mathfrak{F}}$. Тогда $K \subseteq \overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A) \cap \overline{\Phi}_{\theta_{G_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)$. Получили противоречие. Значит, допущение ошибочно и $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A)/\overline{\Phi}_{\theta}^{\mathfrak{F}}(G,A) = 1$. Следовательно, $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A) = \Phi_{\theta}^{\mathfrak{F}}(G,A)$. Применяя теорему 4.3, получаем, что $\overline{\Phi}_{\theta_{\overline{G}_{\mathfrak{F}}}}^{\mathfrak{F}}(G,A) \in \mathfrak{F}$.

Следствие 5.7. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, $\mathfrak{F}-$ насыщенная формация Фиттинга, содержащая все нильпотентные группы, G- разрешимая группа. Если $\overline{\Phi}_{G_{\mathfrak{F}}}^{\mathfrak{F}}(G,A)\neq G$, то $\overline{\Phi}_{G_{\mathfrak{F}}}^{\mathfrak{F}}(G,A)=D^{\mathfrak{F}}(G)\in \mathfrak{F}$. **Следствие 5.8.** Пусть G- разрешимая группа. Если в группе G существуют ненильпо-

Следствие 5.8. Пусть G — разрешимая группа. Если в группе G существуют ненильпотентные абнормальные максимальные подгруппы, не содержащие подгруппу Фиттинга F(G), то пересечение всех таких подгрупп совпадает с подгруппой Гашюца $\Delta(G)$.

Литература

- 1. Frattini G. Intorno alla generasione dei gruppi di operazioni // Atti Accad. Lincei. 1885. 1. P. 281 285.
- 2. Gaschütz W. Über die Φ-Untergruppen endlicher Gruppen // Math. Z. 1953. № 58. S. 160 170.
- 3. Deskins W. E. A condition for the solvability of a finite group // III. J. Math. 1961. 5, № 2. P. 306–313.
- 4. Шидов Л. И. О максимальных подгруппах конечных групп // Сиб. мат. журн. 1971. 12, № 3. С. 682 683.
- 5. *Ведерников В. А., Дука Н. Г.* Конечные группы с обобщенной подгруппой Фраттини // Материалы IX Всесоюз. алгебр. коллок., Гомель, 1968 г. Гомель, 1968 г. С. 44.
- 6. *Монахов В. С.* Замечания о максимальных подгруппах конечных групп // Докл. НАН Беларуси. 2003. **47**, № 4. С. 31 33.
- 7. Carter R., Hawkes T. The F-normalizers of a finite soluble group // J. Algebra. 1967. 5, № 2. P. 175 202.
- 8. Шеметков Л. А. Ступенчатые формации групп // Мат. сб. 1974. 94, № 4. С. 628 648.
- 9. *Шлык В. В.* О пересечении максимальных подгрупп в конечных группах // Мат. заметки. 1973. **14**, № 3. С. 429 439.
- 10. *Селькин М. В.* Максимальные подгруппы в теории классов конечных групп. Минск: Беларус. навука, 1997. 144 с.

- 11. Шеметков Л. А., Скиба А. Н. Формации алгебраических систем. М.: Наука, 1989. 253 с.
- 12. *Ballester-Bolinches A., Perez-Ramos M. D.* On \mathfrak{F} -subnormal subgroups and Frattini-like subgroups of a finite group // Glasgow Math. J. 1994. **36**. P. 241–247.
- 13. *Каморников С. Ф., Селькин М. В.* Подгрупповые функторы и классы конечных групп. Минск: Беларус. навука, 2003. 254 с.
- 14. Скиба А. Н. Алгебра формаций. Минск: Беларус. навука, 1997. 240 с.
- 15. *Васильев А. Ф., Каморников С. Ф., Семенчук В. Н.* О решетках подгрупп конечных групп // Бесконечные группы и примыкающие алгебраические системы: материалы междунар. алгебр. конф., Киев, 1993 г. Киев, 1993. С. 27 54.
- 16. Шеметков Л. А. Формации конечных групп. М.: Наука, 1978. 267 с.
- 17. *Бородич Е. Н., Бородич Р. В.* О пересечении \mathfrak{F} -абнормальных максимальных θ -подгрупп // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2007. № 3. С. 47 52.
- 18. Поляков Л. Я. О конечных группах с заданной группой операторов // Вопросы алгебры. 1987. Вып. 3. С. 63-67.
- 19. *Бородич Р. В., Бородич Е. Н., Селькин М. В.* Об \mathfrak{F} -достижимых подгруппах в группах с операторами // Проблемы физики, математики и техники. 2015. № 2 (23). С. 33 39.

Получено 29.11.17