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SYSTEMS OF VARIATIONAL INEQUALITIES

AND MULTIPLE-SET SPLIT EQUALITY FIXED-POINT PROBLEMS

FOR COUNTABLE FAMILIES OF MULTIVALUED TYPE-ONE MAPPINGS
OF THE DEMICONTRACTIVE TYPE

CHUCTEMM BAPIAIIMHUX HEPIBHOCTEM TA 3AJIAUI

ITPO HEPYXOMY TOYKY 3 BATATOMHO>KMHHOIO PO3LIEIIJIEHOIO
PIBHICTIO JJ151 3JITYEHHUX CIMEN BATATO3HAYHHUX
HAIIIBCTUCKAIOYMX BIIOBPA’KEHD ITIEPIIOT'O THUITY

Our main aim is to introduce an iterative algorithm for the approximation of a common solution to a split-equality problem
for finite families of variational inequalities and the split equality fixed-point problem. By using our iterative algorithm,
we state and prove a strong convergence theorem for the approximation of an element in the intersection of the set of
solutions of the split-equality problem for finite families of variational inequalities and the set of solutions of the split
equality fixed-point problem for countable families of multivalued type-one mappings of the demicontractive type. Finally,
we apply our result to study related problems. Our result supplements and extends some recent results in the literature.

3ampornoHOBAHO ITEPATUBHUNA ANTOPUTM Ul HAONM)KEHHS CHUIBHOTO PO3B’SA3KYy 3aJadi MPO PO3MICIVICHY DIBHICTH Ui
CKIHYEHHMX CiMell BapialifHMX HepiBHOCTEH Ta 3ajadi Mpo HEpyXOMy TOYKY 3 PO3IIEIIEHOIO PIBHICTIO. 3a JOMOMOTOI0
PO3pO0ICHOTO aNropuT™My cHOPMYIHOBAHO Ta JOBEAECHO TEOPEMY MO CHIIBHY 30DKHICTH AJISI HAONMM)KEHHS eJIEMEHTa, IO
HaJIOKHUTh NEPETHHY MHOKHHU PO3B’sI3KiB 33/1a4i PO PO3LICIUICHY PiBHICTb JJIsl CKIHYEHHUX CiMei BapialliifiHUX HepiBHOC-
Teil Ta MHOXKHHH PO3B’S3KIB 3a/1a4i PO HEPYXOMY TOYKY 3 PO3MICIUICHOIO PIBHICTIO IJIS 3JIUYCHHUX CiMeil Oarato3HaqyHUX
HAITBCTHCKAIOYNX BiZI0OpakeHb MEPIIOro TUIly. Pe3ynbTar, 110 OTprMaHo, 3aCTOCOBAHO /10 BUBUCHHS CIIOPiJHEHHX 3a1ad.
Hamr pe3ynbrar JONOBHIOE Ta y3arajbHIOE A€sKi HOBI pe3y/ibTaTh B JIiTepaTypi.

1. Introduction. Let (X, d) be a metric space and C'B(X) be the family of all closed and bounded
subsets of X. Let H denote the Hausdorff metric induced by the metric d, then, for all A, B €
€ CB(X),

H(A, B) :max{supd(a, B),supd(b, A)}, (1.1)
acA beB

where d(a, B) := infpep d(a,b).

Let C be a nonempty, closed and convex subset of a real Hilbert space H and 2 be the family
of all nonempty subsets of C. Let T: C' — 2¢ be a multivalued mapping, then Pra := {u € Tx:
|z —ul| = d(z,Tz)}. A point z € C is called a fixed point of T" if z € Tx. If Tz = {x}, then x
is called a strict fixed point of 7. We denote the set of fixed point of 7" by F(T).

A multivalued mapping 7T is said to be L-Lipschitzian if there exists L > 0 such that

H(Tz, Ty) < L||lz—y|, =z,yeC. (1.2)

In (1.2), if L € (0,1), then T is called a strict contraction while 7" is called nonexpansive if L = 1.
T is said to be

(1) of type-one if
lu—v|| <H(Tz,Ty) Vr,yecC, ue€Prz, ve Pry,
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(ii) quasinonexpansive if F(T) # & and
H(Tz, Ty) <|lz -yl VeeC, yeF(),

(iii) k-strictly pseudocontractive in the sense of [23] if there exist k& € (0,1) such that, for all
x, y € C and u € Tx, there exists v € Ty satisfying ||u — v|| < H(Tz,Ty) and

H (T, Ty) < |l =yl + kllz —u — (y —v)|%,
(iv) demicontractive-type in the sense of [24] if F(T') # @ and
H:(Tz,Ty) < ||z —y||> + kd*(z,Tz), z€C, yeF(T) and ke (0,1).

Remark1.1. Every multivalued quasinonexpansive mapping is a multivalued demicontractive-
type mapping.

We give an example to show that the converse of Remark 1.1 is not true.

Example1.1. Let H = R (endowed with the usual metric) and 7': R — 2% be defined by

2 1
|:—((X+1)$, - @t $:|, LS [0,00),
Ty =
2 1
[— a2+ z, —(a+ 1)3;} Va >0, z € (—00,0).
Then F(T') = {0}. For each z € (—00,0) U (0, 00),
H*(T2,T0) = | — (a+ D) —0]* = (a+1)?|z — 0]* = |z — 0> + (a® + 2a) [z — 0]>.  (1.3)
Also
2a+1 | (2 2
d*(z,Tz) = |z + ot x| = < a2+3> ’x—OQ,
which implies
2 2
-0 = ——=d°(z,Tx). 1.4
[z~ 0F = Gagpd (@ T2) (1.4)
Substituting (1.4) into (1.3), we obtain
4(a? + 2ar)
2 2 2
Tz, T0) = |x — —d"(x,T
H*(Tz,T0) = |x — 0]* + (20 +3)° (z,Tx),
4(a®+2
which implies that 7' is a demicontractive-type multivalued mapping with k& = m
o

€ (0,1) for all @ > 0. However, we see in (1.3) that 7" is not a quasinonexpansive multivalued
mapping. Hence, the class of quasinonexpansive mappings is properly contained in the class of
demicontractive-type multivalued mappings.

A single valued mapping 1': C' — C is said to be L-Lipschitzian if there exist a constant L > 0
such that | Tz —Ty|| < L||z—y| Yz, ye€ C. If L =1, then T is called a nonexpansive mapping.
T is called an a-inverse strongly monotone (or a.-cocoercive) operator if there exists a > 0 such
that (Tx —Ty,x—y) > o||Tx—Ty||*> Va,y € C. If a = 1, then T is called a firmly nonexpansive
mapping (see [22] for more information on firmly nonexpansive mappings).
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Remark 1.2. 1t is obvious that any «-inverse strongly monotone operator 1" is l-Lipschitz
continuous. “

A single valued mapping 7': C' — C' is said to be strongly nonexpansive if T’ is nonexpansive
and for all bounded sequences {x,}, {yn} in C, lim,, oo (||zy, — Ynl|| — [|Txrn — Tyn||) = 0 implies
limy, o0 || (20, — Yn) — (Txn, — Tyyn)|| = 0. This class of mapping was first introduced by Bruck and
Riech in [7]. T is said to be cutter if (v —Tx,z —Tx) <0 forall x € C and z € F(T).

A mapping T': C — C is said to be averaged nonexpansive if, forall z, y € C, T = (1 —a)I +
+ «S holds for a nonexpansive operator S: C' — C and « € (0,1). The term “averaged mapping”
was coined by Biallon et al. [4].

Remark1.3. In a Hilbert space, 1" is firmly nonexpansive if and only if it is averaged with
1

a=_.
The metric projection Pc is a map defined on H onto C which assigns to each z € H, the
unique point in C, denoted by Pox such that

|z — Pox|| = inf{flz —yl|: y € C}.

It is well known that Pox is characterized by the inequality (z — Pox, z — Pox) < 0, forall z € C,
and P is a firmly nonexpansive mapping. We also know that if f is S-inverse strongly monotone
mapping with A € (0,23), then Po(I — Af) is averaged nonexpansive (see [14], Lemma 2.9).
Hence, Po(I — \f) is firmly nonexpansive. For more information on metric projections, see ([22],
Section 3).

Let M: H — 2" be a set-valued operator defined on a real Hilbert space H. M is called a
maximal monotone operator if M is monotone, i.e.,

(u—v,x—y)> Ve,ye H, ue M(z)andy € M(y),
and the graph G(M) of M defined by
GM) :={(z,y) e Hx H: ue M(x)},

is not properly contained in the graph of any other monotone operator. It is easy to see that a
monotone operator is maximal if and only if for each (z,u) € H x H, (u—v,z—y) >0V (v,y) €
€eGM) = ue M(x).

Let C be a nonempty, closed and convex subset of H. The normal cone of C at the point z € C
is defined

Nez:={de H: (d,y—=z) <0 forall y e C}.
The Split Feasibility Problem (SFP) introduced in 1994 by Censor and Elfving [10] is to find a point
x € C suchthat Ax € Q, (1.5)

where C and @ are nonempty closed convex sets in R and R™, respectively, and A is an m X
x n real matrix. The SFP has wide applications in many fields such as phase retrieval, medical
image reconstruction, signal processing and radiation therapy treatment planning (see, for example,
[5,9-11, 37, 42] and the references therein).
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Censor et al. [11] introduced the Multiple-Sets Split Feasibility Problem (MSSFP) which is to find

N M
el = ﬂCi such that Az* € Q = ﬂQ]’,
i=1 j=1
where N and M are positive integers, {C1,...,Cn} and {Q1,...,Qn} are nonempty closed and
convex subsets of real Hilbert spaces Hi and Hs, respectively, and A: H; — Hs is a bounded
linear map (see also [33] for more information on MSSFP).

In 2009, Censor and Segal [12] presented an important form of the SFP called the Split Common
Fixed Point Problem (SCFPP), which is to find a point

x* € F(T) suchthat Ax* € F(S), (1.6)

where T and S are some nonlinear operators on R™ and R™, respectively, A is a real m x n matrix.
They presented the following algorithm for solving the SCFPP:

Tpp1 = T(xy +yAT(S — 1)Az,) VYn>1, =z €R", 1.7)

2
where v € <0, ‘AH2> . They also established a convergence result for this algorithm.

Recently, Moudafi and Al-Shemas [32] introduced the following Split Equality Fixed Point Prob-
lem (SEFPP) which generalizes the SFP (1.5): find

zreC: =F(T), ye@:=F(S) suchthat Ax = By, (1.8)

where C C Hy, Q C H» are two nonempty, closed and convex sets, A: Hy — Hs, B: Hy — Hs
are two bounded linear operators, F'(T") and F'(S) denotes the sets of fixed points of operators 7’
and S defined on H; and Hs, respectively. Note that if Hy = H3 and B = I (where [ is the
identity map on Hs) in (1.8), then problem (1.8) reduces to problem (1.5). Furthermore, Moudafi
established the weak convergence result for problem (1.8). Some other authors have studied SEFPP
for single-valued mappings in Hilbert spaces (see, for example, [6, 17, 21, 31, 34, 35, 38, 41, 46]).

The approximation of fixed point of multivalued mappings with respect to Hausdorff metric has
been an area of great research interest due to its numerous applications in various fields such as game
theory and mathematical economics. Thus, it is ideal to extend the known results on SEFPP for
single-valued mappings to multivalued mappings.

Wau et al. [43] introduced the Multiple-Set Split Equality Fixed Point Problem (MSSEFPP) for
finite families of multivalued quasinonexpansive mappings, which is to find

N N
reC=()F(R]) and yeQ=()F(R)) suchthat Az= By, (1.9)
Jj=1 J=1
where N is a positive integer, A: Hy — Hs and B: Hy — Hj are two bounded linear operators,
Rf: H — CB(H;), i = 1,2, j = 1,2,...,N, is a family of multivalued quasinonexpansive
mappings. They established strong convergence result to a solution of problem (1.9).
Chang et al. [15] studied the MSSFP for a countable family of multivalued quasinonexpansive
mappings S; and a total asymptotically strict pseudocontractive mapping 7', which is to find

ISSN 1027-3190. Vkp. mam. scypn., 2019, m. 71, Ne 11



1484 C. IZUCHUKWU, C. C. OKEKE, O. T. MEWOMO

oo
x* € C=()F(S) suchthat Az* € Q=F(T), (1.10)
i=1
where A: Hi — Hs is a bounded linear map.
Shehu [40] introduced the following MSSEFPP for infinite families of multivalued quasinonex-
pansive mappings: find

oo o0

x € ﬂ F(S;) and y€ m F(T;) suchthat Az = By, (1.11)
i=1 i=1

where A: Hy — Hs and B: Hy — Hjs are bounded linear operators, S;: Hy — CB(H;) and T; :

Hy — CB(H3), i =1,2,..., are two infinite families of multivalued quasinonexpansive mappings.

With these assumptions, he proposed the following algorithm for finding a solution of problem (1.11):

Up = Tp — ’YnA*(Awn - Byn)a

o0
Tpt1 = thw + (@on — tn)un + Z O Wiy, Wip € Siln,
=1
' (1.12)
Un = Yn — ’YnB*(Axn - Byn)7

0o
Ynt1 = thv + (CLO,n - tn)vn + E QinZin, Zin € Tiup,
i=1

where
2| Az, — Bynl|® >
€ |, —e], neq,
On) € (& T = Byl 18- ~ BT
otherwise 7, = v (v being any nonegative value), where the set of indexes 2 = {n: Ax,, — By, #
# 0}. Shehu [40] established the strong convergence result for problem (1.11) using algorithm (1.12).

Based on the works of Chidume et al. [17], Wu et al. [43], Chang et al. [15] and Chidume
et al. [18] introduced the following algorithm for solving the MSSEFPP for countable families of

multivalued demicontractive mappings:

o
Tn1 = ao (vn — VA" (Azy — Byn)) + Z iz,
=1

(1.13)
o
Ynt1 = ao (yn — yB*(Axy, — Byy)) + Z@jw% forall n>1,

i=1

where 2! € S; (x, — yA*(Azx, — By,)), wl € T, (yn — vB*(Azy, — Byy)), A: H — Hs and
B: Hy — H3 are bounded linear maps, S;: Hy — CB(H,),i=1,2,...,and T;: Hy — CB(H>),
7 =1,2,..., are two families of multivalued demicontractive mappings. Chidume et al. [18] proved
weak and strong convergence result for problem (1.11) using the iterative scheme (1.13).

The theory of Variational Inequality Problems (VIP) is well known, developed and has been
applied to solve numerous problems in many fields such as; sciences, social sciences, engineering
and management. There are several monographs on variational inequalities, we mention here a few
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[1, 3, 20, 26, 27]. Let C' be a nonempty, closed and convex subset of a real Hilbert space H and f :
H — H be an operator. The VIP defined for C' and f is to find z* € C such that

e (VIC, f)), ie, (f(z"),z—2")>0 VaeCl. (1.14)

Let T: H — H be an operator such that F(T') # @ and f: H — H be an operator. The
Hierarchical Variational Inequality Problem (HVIP) is to find z* € F(T") such that

(f(z"),x —a*) >0 VYaxe F(T). (1.15)

Let f be an a-inverse strongly monotone operator on C' and Ngz be the normal cone of C' at
the point z € C, we define the following set-valued operator M : C' — 2¢ by

Mz = fz+ Nez.

Then M is maximal monotone. Furthermore, 0 € M (z*) <= z* € VI(C, f) (see [39], Theorem 3).
Several other methods for solving (1.14) and (1.15) have been investigated in the literature (see,
for example, [2, 28 —30, 25, 45] and the references therein).
In 2014, Ansari et al. [1] introduced a split-type problem by combining a Split Fixed Point
Problem (SFPP) and a HVIP; thus, presenting the Split Hierarchical Variational Inequality Problem
(SHVIP), which is to determine x* € F'(T") such that

(f(x*),x — 2"y >0 Vxe F(T), (1.16)
and such that Az* € F(5) satisfies
(h(Az7),y — Az") =20, y e F(5), (1.17)

where H;, Hy are two real Hilbert spaces, T': H; — H; is a strongly nonexpansive operator such
that F/(T') # @, S: Hy — Hy is a strongly nonexpansive cutter operator such that F'(S) # @, A:
H; — H> is a bounded linear operator with R(A) N F(S) # &, f(resp., h) is a monotone and
continuous operator on H1(resp., H2). With these assumptions, they proposed the following iterative
scheme for finding a solution of problem (1.16), (1.17):

x1 € Hy,
Yn = Ty — YA (I — S(I — Brh))Azy, (1.18)

Tp4+1 = T(I - anf)yna

2
where v € <0, ||AH2>7 {an}, T{Br} C (0,400). They proved that the sequence generated by
(1.18) converges weakly to a solution of (1.16), (1.17).
Censor et al. [14] introduced the general Common Solutions to Variational Inequalities Problem
(CSVIP), which consist of finding common solutions to unrelated variational inequalities for a finite

number of sets. That is, find z* € ﬂfil K; such that, foreach¢=1,2,..., N,

(Aj(z*),x —2*) >0 forall z€K;, i=1,2,...,N, (1.19)
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where A;: H — H is any operator for each i = 1,2,..., N and K; is a nonempty, closed and
convex subset of H. They obtained the solution of problem (1.19) by considering first, a case where
1 = 1,2 and later obtain the result of the problem for : = 1,2,..., N.

Let Hi, Ho, H3 be real Hilbert spaces and for each [ = 1,2,...,N, r = 1,2,...,m, let (j
and @, be nonempty, closed and convex subsets of Hy, Ho, respectively. Let T;: Hy — CB(H;),
i=1,2,...,and S;: Hy — CB(H3), j = 1,2,..., be two countable families of multivalued
mappings with (o2, F(T;) # @ and ﬂ;’;l F(S;) # @. Let f1: C; — Cy, hy: Qr — Qr be oy,
(resp., - )-inverse strongly monotone operators, and A: Hy — Hs, B: Hy — H3 be bounded linear
operators. Motivated by the works of Zhoa [46], Shehu [40], Chidume et al. [18], Ansari et al. [1]
and Censor et al. [14], we study the following problem: find

(z,9) € [ F(T) x [ F(S))
i=1 Jj=1

such that
(filz),z—2)>0 Vze(C, [=12,...,N, (1.20)

(he(§), y—y) >0 Vye@, r=1,2...,m, andsuchthat Az = Bj. (1.21)
Problem (1.20), (1.21) is equivalent to finding (Z,y) € (;2; F/(T3) x (;2; £'(S;) such that

N m
(z,9) € (\VI(Ci, fi) x [\ VI(Qr hy) and Az = By. (1.22)
=1 r=1

Furthermore, we propose an iterative scheme and using the iterative scheme, we state and prove a
strong convergence result for the approximation of a solution of (1.22). Finally, we applied our result
to study related problems. Our theorem extends and complements the result of Shehu [40], Ansari
et al. [1], Censor et al. [14] and a host of other results.

2. Preliminaries. We state some known and useful results which will be needed in the proof

of our main theorem. We denote the strong and weak convergence by ”—" and ”—"”, respectively,
and the solution set of (1.22) by I' defined by

00 00 N m
T:={(z,9) €[ |F(T)x [ F(S): (@9) € (\VI(Cy fi) x (| VI(Qr, ) and AZ = By
i=1 j=1 =1 r=1

Let H be a real Hilbert space and 7': H — 2 be a multivalued mapping. Then 7 is said to be
demiclosed at 0 if for any sequence {x,,} C H such that z,, = z* and d(z,Tz,) — 0 as n — oo,
we have that z* € T'z* (i.e., 2* € F(T)).
Lemma 2.1. Let H be a Hilbert space, then
2(z,y) = z? + lyll* = lz = yI? =z + yI? = llz]* — ly|* Vaz.y € H

Lemma 2.2 [19]. Let H be a real Hilbert space and {z;};>1 be a bounded sequence in H. For
o0
a; € (0,1) such that E = 1, the following identity holds:
1=

o 2 o
Yoaill =Y alal® Y aiagla )
=1 =1

1<i<j<oo
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Lemma 2.3 [18]. Let K be a nonempty subset of a real Hilbert space H and let T: K —
— CB(K) be a multivalued k-demicontractive mapping. Assume that for every p € F(T), Tp =

= {p}. Then
1+ vk
el
Lemma 2.4 [16]. Let H be a real Hilbert space and C' be a nonempty, closed and convex subset
of H. Let f be a mapping of C into H and x* € C, then for p > 0, x* = Po(I — pf)x* if and
only if x* € VI(C, f).
Lemma 2.5 [16]. Let H be a Hilbert space, then, for all x, y € H and o € (0, 1), we have

H(Tz,Tp) < Ve e K, pe F(T).

la + (1 = a)y||? = allz|* + (1 = @)lly[* — a(l = a) |z — y|*.
Lemma 2.6 [44]. Assume that {a,} is a sequence of nonnegative real numbers such that
ap41 < (1 - 'Vn)an + ’Vn(sn» n >0,

where {7y} is a sequence in (0,1) and {6,,} is a sequence in R such that:

. o

(1) ano Tn = OO, .

(if) limsup,,_. 0n <0 or Z |8 yn] < oo

n=0

Then lim,,_,~ a, = 0.

3. Main result.

Theorem 3.1. Let Hy,Hs and Hj3 be real Hilbert spaces and, for each | = 1,2,... . N,
r=12...,m, let C; and Q, be nonempty, closed and convex subsets of Hi and H,, respec-
tively. Let T;: Hi — CB(H:), i = 1,2,..., and Sj: Hy — CB(H>), j = 1,2,..., be two
Sfamilies of multivalued type-one demicontractive-type mappings, with constants k; and k;, respec-
tively, such that T; and S; are demiclosed at 0. Let f;: C; — Cj, hy: Q — Q. be py (resp.,
vy )-inverse strongly monotone operators and A: Hy — Hs, B: Hy — H3 be bounded linear ope-
rators. Assume that the solution set T' # & and that the stepsize sequence {~,} is chosen in such a
way that, for some € > 0,

c < 2|| Aw,, — Bzy||? ) cQ

g, — &), n 9

7T AT (A, = B[P + (1B (Aw, — Bz)|P

otherwise ~, = ~ (v being any nonegative value), where the set of indexes Q = {n: Aw, —

— Bz, # 0}.
Let u, x1 € Hy and v, y1 € Ha be arbitrary and the sequence ({x,}, {yn}) be generated by

wy, = (1 — an)xn + anu,
zn = (1 — an)yn + anu,
un, = Poy, (I = ANfn)oPoy_ (I = Afn-1)o...0Pc (I — Af1)(wn, — v A" (Aw, — Bzy,)),
v = Po,, (I = )0 Py, (I = M_1)o ... 0Po, (I — A1) (20 + B (Aw, — Bz,)), G-D

[ee] .
Tn+1 = Boun + Zi:l /Big;L’N
o0 .
Yni1 = Bovn + Zj:l Bihd,  forall n>1,
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where 0 < X\ < 2u, 2v, p:=min{y, | =1,2,...,N}, v :=min{y,, r = 1,2,...,m} and A*,
B* are the adjoint of A and B, respectively, gfL € Pruy, z,% S ngvn and Pr,u, = {gﬁl € Tiuy :
gt — unl| = d(un, Tiun)}, with conditions:

(i) {an} is a sequence in (0, 1) such that lim,,_,~ o, = 0 and Zzo_l oy, = 00,

(i) k€ (0,1), where k := max{ky, ka}, k1 = sup;>1{ki}, ka = sup;>{k;} € (0, 1),

(i) Bo € (ks1), BBy € (0,1), 4,5 = 1,2,...., such that Y~ B; =1 and Z;";O B =1,

(iv) foreach x* € (2, F(T;); Tz* = {z*} and for each y* € (2 F'(S;); Sjy* ={y*}.
Then ({xn},{yn}) converges strongly to (z,y) in T.

Proof.  First, we show that, for each i = 1,2,..., {g’} is bounded. By using Lemma 2.3, we
have e
: * 1 + kl «
llgr, — ™| < H(Tjup, Tix™) < ﬁ”un —z*|| := P,.

Hence, {g/ };>1 is bounded. Similarly, {h%}jzl is bounded.

Let (z*,9*) €T, @ = Po, (I = Afn)oPoy_ (I —=Afn—1)0...0Pc, (I —\f1), where ®° = T
and U™ = Py, (I — Ahy) o Pg,, (I — Ahpm—1) o...0 Pg,(I — \hy), where U0 = I, then, from
(3.1), we obtain

lun —a*(1? = | @Y (w — ynA*(Awn — Bzy)) — 2*||* =
= || Poy (I = AfN)@N 1 (wy, — 4 A" (Awy, — Bzy)) — o*|| <
< H<I>N_1 (wn, — MA*(Aw, — Bzy,)) — :r*H2 <...
oo < lwp — WmA*(Aw,, — Bz,) — z*||* =
= [lwp — 2*|* = 23 (wn — 2%, A*(Awy — Bzn)) + 72l A*(Awn — By,)|*. 3.2)
From Lemma 2.1 and noting that A* is the adjoint of A, we get
—2(w, — x*, A*(Aw, — Bz,)) = —2(Aw,, — Ax™, Aw,, — Bz,) =
= —||Aw,, — Az*||? — | Aw, — Bz,||* + || Bz, — Az*|)?. (3.3)
Substituting (3.3) into (3.2), we have
lun — (1> < flwp — 2*|* = Yl Awy — Ax*||? = 3| Awn — Bz >+
+nl|Ban — A2™|[* + 7| A" (Awn — Bzy)|*. (3.4)
Similarly, from (3.1), we obtain
lon = 512 < ll2n = ¥ = Wl B2n — By*|I* = vl Awn — Bz *+
+yal Awn — By*[|* + 12| B* (Aw, — Bz, (3.5)

From (3.1), Lemma 2.5 and adding inequality (3.4) and (3.5) together with the fact that Az* = By*,
we get

lun = 2% + llon = y*[1* < flwn = 2| + 20 = y*|I* = 70 [2]| Awn — Bzn|*~
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~n (IlA*(Awn — Bz)|? + |B*(Awn — Bza)|?) ] <
< lwn = 2| + llzn — y*|* =

=11 = an)an + anu — 2*|* + [[(1 = an)yn + onv — y*||* =
— )+ an(v —y")|?

IN

=11 = an)(wn — &™) + an(u = 2")* + (1 — an) (yn

< (1= a)llea — 22+ anllu — "2 + (1 = an)llgn — 5° I + anllo — v
= (1= a) [Jan — @I + llym — "17] + cn [llu— "> + o — 5[] (3.6)

From (3.1), Lemma 2.2 and the fact that 7" is of type-one demicontractive-type mapping, we have

oo
|Tn41 — 33*||2 = [|Botn + Zﬁzg;z - x*HQ =

=1

= [1Bo(un — 2*) + Y _ Bilgn — 2)|* =
=1

o o
= Bollun — 2|7+ Billgh — =17 =D BoBillun — gill> = > BiBllgh — ghll* <
i=1 i=1 1<i<j<o0

o0 o0
< Bollun — ">+ BH (Tiun, Tix™) = BoBillun — gi|* <
i=1 i=1

o [oe)
< Bollwn — 22 + 37 Bi [llun — 21> + kd®(un, Tow)] = 3 BoBillun — g1 =
i=1 =1

o oo
= Bollun — a*|1> + Y Bi [llun — 21> + killun — gill*] =D BoBillun — gnll* =

i=1 i=1
0 .
= Jlun — %[> + (k1 = B0) Y _ Billun — gi|* <
i=1
< lun — =¥, 3.7)
Similarly, we obtain
(3.9)

lyner =y 11 < llon — |1
Adding (3.7) and (3.8), and using (3.6), we get
a1 = 212 + lyns1 = y*II° < llun — 2| + lon — y7|* <
< (L= an) [len =« + llyn — v 1] + an [llu =2 + o —y*|°] <
< max {[|lzn — 2| + lyn — v, lu — 2| + [lo =y} < ...

- S max {[lzo — 21 + llyo — y7II, llu — 21 + o - y7|*} -
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Therefore, {||z, — z*|* + |lyn — y*[|*} is bounded. Consequently, {z}, {yn}, {wn}, {zn}, {un},
{vn}, {Az,}, and {By,} are bounded.

We consider two cases.

Case 1.  Assume that {||z, — 2*||? + |lyn — y*||*} is monotone decreasing, then
{lzn — z*[|? + llyn — y*||*} is convergent, thus

Jim [([lone = 217 + lynar = 7117) = (lza = 2™ + llyn — y*[*)] =0
From (3.6) and (3.8), we have
zns1 =&+ [Yn41 =y I1* < Nwn — 22 + |20 — y*[|* = yn[2l| Awp — Bz |*~
— v (14" (Awy — Bzy)|? + || B* (Awy — Bza)[?) ] <
< (1= an) [llzn = 2" + lyn = y*II°] + an [lu = 2*|* + [Jo = y*|°] =
—Yn [2| Aw, — B2y ||* — v (|| A*(Aw, — Bzy)|* + || B*(Aw, — B2,)|%)], (3.9)
which implies
Y (|4 (Awn — Bza)|I” + [|B* (Awy — Bzy)|?) <
< (1= an) [llzn =212 + lyn — y*1I°] + an [llu = 2"|* + [0 = y*|°] -
—[Nznt1 — 2*I° + |lynt1 — y*[?] = 0, as n— . (3.10)
By the condition

7€<€ 2|| Aw,, — Bz®
" 1A (Awy = Bz)|? + | B (Aw, — Bz |2

— 6), n € €,
we obtain (||A*(Aw, — Bzy)||* + || B*(Aw, — Bz,)||?) — 0 as n — oo. Since Aw,, — Bz, =0,
if n ¢ Q, we get

hmHA%Mme%MZ:@@HB%MMfB%WQZQ (3.11)

n—oo

From (3.1), we have

lim [|w, — 2,]]* = lim o2||u —2,]* =0 (3.12)
n—oo n—oo
and
lim Hzn—ynH2 = lim ai\|v—yn||2 =0. (3.13)
Let
an = Wy, — Y A*(Aw, — Bz,)
and

bn, = zn + B (Awy, — Bzy).
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Then
i [lan — w? = lim 43[4 (4w, — Bz, =0
and
im by — z[? = lim 23] B*(Aw, — Bz,)||* = 0.
From (3.12) and (3.14), we obtain
lim [|a, — z,|* = 0.
n—oo
Also, from (3.13) and (3.15), we get
lim ||b, — ya|/* = 0.
n—oo
From (3.1) and Lemma 2.1, we have
lun — 2> = | Pey (I = Afw) @™ tan —2*|* <

< (up — %, ®N"ta, — 2*) =

N

which implies

= @V tan|? < @8 ay — 27 — flun — 27|,
Similarly, we obtain

e A [ e A e [
Adding (3.19) and (3.20), we get

l|n — (I)]\Llan”2 + [|vn — \I/milan2 <

<N an — 2|7 4 10 b =y (P = (lun — 27 + [lon — y7%) <
<lan =212+ 11bn = y* (I = ([lun — 2*| + [lvn — y*[1?) <
< lan = 212+ 1160 = v = (lzns1 = 2 + lyns1 — y*IP) =
_ *112 * 12 * 12 *112 * (|12
= [lan — 271" = llzn — 27 + [|bn — ¥ I° = llyn — y*II7 + llzn — 277+

Hlyn =4I = (lznsr = 271 + g = y*[1?) =0 as n— oo,

which implies

lim H‘I’Nan - q)NilanH = ILIII "™ by, — (I)milan =0.

n—oQ

By the same argument as (3.18)-(3.21), we have
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H(I)N—lan _ <I>N_2an||2 + ||\I,m—1bn _ \Iim_anH2 <
< lan = 2*[1* + 1on — y*[I* = (1Y an — a2 + [ €0, — y*|1?) <
< llan = 2*[1* + [lbn — y*|I* = (llun — 2*[* + [lvn — y*[|*) <
< llan = 2|12 + 1bn = y*1* = (l2nsr — 27 + a1 —y*[%) =0,
which implies

lim @V, — N2, = lim_ ™ 1b, — 2y, || = 0.

Continuing in the same manner, we obtain

lim ||®V2a, — N 3a,| = ... = lim ||®3%a, — ®la,| =0
n—o0 n—o00

and
lim [|U"%b, — U5, || = ... = lim [|¥?b, — U'b,[ =0.
n—o0 n—o00

From (3.22), (3.24), (3.25) and (3.26), we conclude that
lim ||®la, — ®'la,||=0, 1=1,2,...,N,
n—oo
and
lim [|¥7b, — U™ 1b,|| =0, r=1,2,...,m.
n—oo

Since f; and h, are Lipschitz continuous (by Remark 1.2), from (3.27) and (3.28), we have

lim | f;®'a, — i a,| =0
n—oo
and
lim ||79"b, — hy U™ 1b,|| = 0.
n—oo
Also

|un — anll < [Jun — (I)NilanH + H(I)Nilan - (I)N72an||+
+|8V2a, — N Bay | + ... 4 ||®ran —an]| > 0 as n — oo,

which implies

lim |u, — ay| = 0.
n—oo
Similarly, we have
lim (v, — by = 0.
n—oo

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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From (3.14) and (3.31), we obtain
lim |ju, —wy| = 0.
n—oo

Also, from (3.15) and (3.32), we get

lim ||v, — z,|| = 0.
n—oo

From (3.12) and (3.33), we have

lim ||z, — uy|| < lim [Hxn — wy|| + [Jw, — unH] = 0.

Similarly, from (3.13) and (3.34), we obtain
nh_{go [yn — vnl| = 0.
From (3.7), we get
e .
> Bi(Bo = k)llun — ghll* < flun — 2*|* = [|lzps1 — 2.
i=1
Similarly, we have
e .
> Bi(Bo = ka)llva = B> < flon = 4*11* = llyns1 — y*[I*.
j=1
Adding (3.37) and (3.38), and from (3.6) we obtain
S BuBo — k) lun — Gl + 3 8580 — ka)l[on — B2 <
i=1 j=1
< fun =212+ lon = * 17 = (lzne1 = 21 + llyntr — y*[1?) <
< (1= an) [llzn — 2| + llyn — y*II°] +
+an [[lu =2 + o = y*II°] = (lznsr = 21 + lynsr — y* %)
and, for each i, j =1,2,..., we get
Bi(Bo — kn)llun — gnlI” + B (Bo = k2)lon = |1* < (1 = aw) [ll#n — 2*[1” + [lyn — y7||7]
o [[lu =22+ [Jo = y*1°] = (lzner =2 + lynsr = y7[I*) = 0, as n— oo

Hence, ' '
Jim 880 — kn)llun — gplI* = lim B;(Bo — ka)llon — B3, [|* = 0.

By condition (iii), we have

nh_EI;O l|n — 9;”2 = nh_{go |vn, — h%HZ =0.
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Hence, we obtain

lim d(up, Tiup) = lim |lu, — g =0 (3.39)
n—oo n—oo
and
i . - 1 _ R =
nh_}n;od(vn,SJvn) _nh—>Holo”U" Rl = 0. (3.40)

Since {x,,} is bounded, there exists a subsequence of {x,} (without loss of generality, still denoted
by {z,}) such that {x,} converges weakly to = € ﬂfi 1 Ci. By (3.35) and (3.12), we have that
{un} and {w,} converges weakly to z and by the demicloseness of T; at 0 and (3.39), we get
that £ € F(T;) for each ¢ = 1,2,.... Similarly, since {y,} is bounded, there exists a subsequence
of {yn} (without loss of generality, still denoted by {y,}) such that {y,} converges weakly to
g € (-, Qr. By (3.36) and (3.13), we obtain that {v,,} and {z,} converges weakly to  and by
the demicloseness of .S; at 0 and (3.40), we have that § € F(S;), for each j = 1,2,.... Hence,

(z,9) € N2y F(T3) x N2 F(S))-
Next, we show that Az = By. Since A and B are bounded linear operators, we get that
Aw, — Az and Bz, — By. Using the condition on {7,} and (3.11) in (3.9), we obtain
lim ||Aw, — Bz,||* = 0.
n—oo
By weakly semicontinuity of the norm, we have
|Az — By|| < liminf ||Aw, — Bz, = 0.
n—oo
That is,
Az = Bj.

We now show that (z, ) € (., VI(Cy, fi) x 'y VI(Qy, ), that is Z satisfies (f;(Z),z — &) >
>0V e N, C, and 7 satisfies (h,(4),y —7) > 0Vy € O™, Q-
Let N¢,z be the normal cone of Cj at a point z € Cj, [ = 1,2,..., N, we define the following
set-valued operator M;: C; — 2¢1, for each [ = 1,2,..., N, by
Mz = fiz+ NCZZ-

Then M; is maximal monotone for each [ = 1,2,..., N. Let (z,w) € G(M;), then w— fjz € N¢, 2.
For ®la,, € Cj, we have

(z—®lay,w— fiz) >0, 1=1,2,...,N. (3.41)

From ®la,, = Pg,(I — \f;)®'"'a,, we obtain (z — ®la,, ®la, — (®'"La, — \f;®ta,)) > 0 for
each [ =1,2,..., N, which implies

(pl _ (pl—l
<z — dla,, Zn T T o + fl<I>llaR> >0
foreach [ =1,2,..., N. From (3.41), we get
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(z — ®lan, w) > (z — Dlay, fiz) >

(I)l _ (I)lfl
> (o= @lan, i) = (= - Doy, TEET0 ol ) =
<I>l _ (I)l_l
= <Z - q)lanvflz - fl(bl_lan - an)\an> =
(I)l _ (I)l—l
= (2 = ®lan, fiz = fidlay) + (2 = Blan, fi®lan — 18" an) - <z - alay, ‘LA‘L> >
! ! -1 . Pla, — @' a,
> (z — Day, fiPa, — 1P an>—<z—<I>an,>\>. (3.42)

Using (3.27) and (3.29) together with the fact that {u,} = {®'a,} converges weakly to Z, from
(3.42), we obtain that (z — z,w) > 0. Also M; is maximal monotone for each | = 1,2,..., N,
this gives us that z € M, '(0), which implies that 0 € M;(z) for each [ = 1,2,..., N. Hence,

z e N, VI(C, fi), that is (f(T),z —Z) > 0 ¥z € ()., C;. In the same manner, we have that
(hy(9),y —7) >0 Yy € (', Qr. Hence, we obtain that (Z,7) € I'.
Next, we show that ({z,}, {y,}) converges strongly to (Z, 7). From (3.6), we get

Zn1 = Z1% + [[yns1 = GII° < wn — 2| + [120 — 71I* =
= (1 —an)Yzn — 2|2 + 2|ju — Z||? + 2(1 — o) (@0 — T, u — T)+
+(1 = an)?llyn — 9l + adllv — g% + 201 — an)an(yn — 5,0 — §) <
< (1= an) [on = 2 + lyn — 71I°] + o [anllu — 2|+
+2(1 — ap)(Tp — T,u — T) + apllv — ZJHQ +2(1 — an){yn — y,v — gj>] (3.43)

Applying Lemma 2.6 to (3.43), we have that ({z,}, {y,}) converges strongly to (z,7) .
Case 2. Assume that {||z, — z*||> + ||lyn — y*||*} is not monotone decreasing. Set T, = ||z, —
— 2*||2 4+ |lyn — v*||* and let 7: N — N be a mapping defined for all n > ng (for some large ng)
by
7(n) :=max{k e N: k <n, Ty <Tyy1}.

Clearly, 7 is a nondecreasing sequence such that 7(n) — oo as n — oo and
Ly S Try4r forall  n > mng.
From (3.10), we have
(I A (Awr(ny = Bz ()| + 1 B* (Awr () — Bzrn))|I?) <
< Nrmy = @12+ ey — 0717 = [y 1 — 7P+
HYrye1 = I+ argy lllw = 2|7 + [lv = 5|17 <
< arylllu — 27| + v =y,
Therefore,
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'772—(71) (HA*(AwT(n) - Bzr(n))||2 + HB*(AwT(n) - BzT(n))HQ) —0 as n— oo
By the condition on {7,(,)}, we obtain
(HA*(AwT(n) - Bz’r(n))H2 + HB*(AwT(n) - BZT(TL))H2) —0 as n— oo
Note that Aw,(,) — Bz,(,) = 0, if 7(n) ¢ €. Hence,

lim | A* (Aw, (n) — B2 = 0

n—oo

and

lim HB*(AwT(n) - Bz‘r(n))H2 =0.

n—oo

Following the same line of argument as in case 1, we can show that

lim [|®'a, ) = ' argyll = lm [ 970, ) — ¥ | = 0,

n—oo

I=12,....N, r=12,....,m,
lim d(uq—(n)aTluT(n)) = lim d(UT(n)a Sjvr(n)) =0 and ({xﬂ'(n)}a {yr(n)})

n—o0 n—o0

converges weakly to (z,y) € I
Now, for all n > ng, from (3.43), we have

0 < [lzrmys1 = 1P + 19rey+1 = ¥* 1% = ey = 212 + [1yrmy) — 9*11%] <
< (1= ) lll@rmy = 212 + 1Yre) — G111 = ey — 21 + Yrm) — ¥ 171+
[ lle = 27 + [lv = 9117 + 201 = ar) (rn) = Tt = B) + (Yrn) — 5,0 — §))];
which implies
|27y = 2% + lyrmy = 8l < arllle = Z[* + [lo = g%+
+2(1 = ar(n)) ((Tr(n) — Ty u = Z) + (Yr(n) — §5v — 7)) = 0.

Hence,
Jim ([l ) — Z* 4 1Yy — 9lI*) = 0.
Therefore,

35 Ty = B Ty =0

Moreover, for n > no, it is clear that I'z(,,) < T'ry41 if n # 7(n) (that is 7(n) < n) because
Pj>F]‘+1 forr(n)+1 S]Sn
Consequently, for all n > ny,

0 < Ty <max{T ), [rmy+1} = Drn)41-

Thus, lim,, o I';, = 0. That is {(xy,, yn)} converges strongly to (Z,y).
Theorem 3.1 is proved.
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Corollary3.1. Let H, Hs and Hs be real Hilbert spaces, C and () be nonempty, closed and
convex subsets of Hy and H», respectively. Let T;: Hy — CB(Hy), i =1,2,..., and S;: Hy —
— CB(Hs2), j = 1,2,..., be two families of multivalued type-one demicontractive-type mappings
with constants k; and k;, respectively, such that for i,j = 1,2,...,T; and S; are demiclosed
at 0. Let f:C — C, h: Q — Q be u (resp., v)-inverse strongly monotone operators and A:
H, — Hs, B: Hy — Hj be bounded linear operators. Assume that the solution set

"= {(M) e F(T) x (F(S)): @.3) € VIC, f) x VI(Q,h) and Az = Bg} £ 0
1=1 =1

and that the stepsize sequence {vy,} is chosen in such a way that for some € > 0,

Yn € | € 2l Awn — Bz —€ n € )
" " | A*(Awn — Bzy)|? + || B*(Awn — Bzy)||? ’ ’

otherwise v, = v (v being any nonegative value), where the set of indexes Q0 = {n: Aw,, — Bz, #
# 0}.

Let u, x1 € Hy and v, y; € Ha be arbitrary and the sequence ({x,}, {yn}) be generated by
wp, = (1 — ap)xn + apu,
2n = (1 — an)yn + anv,
un = Po(I = Af)(wn — 1 A*(Awn — Bzy)),
vy, = Po(I — Ah)(zn + B (Aw, — Bzy,)),

o
Tnt1 = Botn + > _ Bigh,

i=1

o
Ynt1 = Bovp + Zﬁjh% forall n>1,
j=1

where 0 < \ < 2u,2v and A*, B* are the adjoint of A and B, respectively, g, € Prup, Z e
€ Ps,vn, Proun :={g}, € Tyun : ||g, — unll = d(un, Tyuyn)}, with conditions:

(1) {an} is a sequence in (0,1) such that lim,,_,o o, = 0 and Zzo_l oy = 00,

(i) k€ (0,1), where k := max{ki, ka}, k1 = sup;>1{ki}, k2 = sup;>1{k;} € (0,1),

(i) fo € (k. 1), Bi. B € (0.1), ij=1.2... suchthat Y~ fy=1and Y~ =1,

(iv) for each x* € (2, F(Ti); Tya* = {*} and for each y* € (2, F(S)); Sjy* = {y*}.
Then ({xn},{yn}) converges strongly to (Z,y) in T*.

Corollary3.2. Let Hy, Hy and Hs be real Hilbert spaces and for each | = 1,2,... N, r =
=1,2,...,m, let C; and Q, be nonempty, closed and convex subsets of H| and Hs, respectively.
Let T;: Hh — CB(Hy), i = 1,2,...,and Sj: Hy — CB(H>), j = 1,2,..., be two families of
multivalued type-one quasinonexpansive mappings, such that T; and S; are demiclosed at 0. Let f; :

Cy— Cp, hy: Qr — Qp be yy (vesp., v, )-inverse strongly monotone operators and A: Hy — Hs,
B: Hy — Hs be bounded linear operators. Assume that the solution set I' # &, and for each
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a* € N2y F(Ty); Tiz* = {a*} for each y* € (2, F(S)), Siy* = {y*}. Let the stepsize sequence
{n} be chosen in such a way that

Yn € | € 2|l Awn — Bz —€ n €
! " | A*(Awn — Bzy)|? + || B*(Awn — Bzy)||? ’ ’

otherwise v, = (v being any nonegative value), where the set of indexes
Q={n: Aw, — Bz, # 0}.
Let u, x1 € Hy and v, y1 € Ha be arbitrary and the sequence ({x,}, {yn}) be generated by
wp, = (1 — ap)x, + apu,
zn = (1 — an)yn + anv,

Up = PCN(I — )\fN)OPCN,l(I — )\fN—l) Oo... OPC1 (I — )\fl)(wn — 'ynA*(Awn — an»,
(3.44)
v = Pg,,(I = Ahpm)oPg,, (I — A1) o...0Py, (I — Ah1)(zn + v B*(Aw, — Bz,)),

oo
Tn+l1 = /Boun + Z Bzg;u

i=1

o0
YUn+1 = Povn + > _Bihd, forall n>1,
j=1

where 0 < X\ < 2p,2v, p = min{y,l =1,2,...,N}, v:=min{v,,r = 1,2,...,m} and A*, B*

are the adjoint of A and B, respectively, giL € Pryuy, 2 € Pg;vp and Pru, = {gﬁl € Tiuy :

g% — unl| = d(un, Tyuy)}. Suppose {a,} is a sequence in (0,1) such that lim, o0 o, = 0 and
[ee]

Oy = 00.
D

Then ({xn},{yn}) converges strongly to (z,y) in T

4. Applications. 4.1. Application to multiple-set split equality convex minimization problem.
Let Hi, Ho and Hj be real Hilbert spaces and foreach [ =1,2,..., N, r=1,2,...,m, let C; and
@, be nonempty, closed and convex subsets of H; and Ho, respectively. Let 7;: H; — CB(H,),
i=1,2,...,and Sj: Hp — CB(H>), j = 1,2,..., be two countable families of multivalued type-
one demicontractive-type mappings with (;2, F(T;) # @ and ()2, F(S;) # @. Let fi: C; — C,
hr: Qr — Q. be convex continuously differentiable operators and A: Hy — Hs, B: Hy — Hj
be bounded linear operators. Consider the following problem which we call the Multiple-Sets Split
Equality Fixed Point Convex Minimization Problem (MSSEFPCMP): find (z,y) € (2, F(T;) x
x (;=1 F'(S;) such that foreach [ =1,2,..., N and r = 1,2,...,m,

T = i 4.1
T = arg QICIéICI}Z fi(z), 4.1
y = arg min h,(y) and Az = Bjy. 4.2)
yGQr

We can formulate the MSSSEFPCMP (4.1), (4.2) as follows; find (z, ) € (2, F'(T3:) x(;2, F(S;)
such that, foreach [ =1,2,..., Nandr=1,2,...,m,
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(Vfi(z),z—z) >0 Vzedl,
(Vh(9),y—9) >0 VyeQ, and AT = By,

where V f; and Vh, are the gradient of f; and h,, respectively. If we assume that for each
l=1,2,....,N, r=1,2,...,m, Vf; and Vh, are inverse strongly monotone, then, we can apply
algorithm (3.1) to obtain the solution of SESFPCMP (4.1), (4.2). Furthermore, by applying Theo-
rem 3.1, we have that the sequence ({x,},{y,}) converges to a solution of SESFPCMP (4.1), (4.2).

4.2. Application to systems of split equality variational inequalities over the solution set of
monotone variational inclusion problem. Let Hy, H> and Hj3 be real Hilbert spaces. Let A:
H, — H3, B: Hy — Hs be bounded linear operators and ¢;: Hy — Hi, ¥, : Hy — Hy be o
(resp., i )-inverse strongly monotone mappings and M;: H; — 21, K, : Hy — 2"2 be maximal
monotone mappings, for [ = 1,2,..., N and r = 1,2,...,m. We consider the following System
of Monotone Variational Inclusion Problem (SMVIP) which is to find z € H; such that for each
1=1,2,...,N,

0 € fi(z) + My(z).

Let SOL (¢, M;) be the solution set of SMVIP. The operator JMt(I —\¢;) is single valued, averaged
nonexpansive operator and F'(JM:(I — A\¢y)) =SOL(¢y, M), | = 1,2,..., N, where 0 > 0, A €
€ (0,2qy) and JMi(I — \f;) is the resolvent of M; with parameter o (see, for example, [1, 36]).
Let us consider the following Systems of Split Equality Variational Inequality Problem (SSEVIP)
which is to find (z,y) € SOL(¢;, M;)xSOL(¢,, K,), (I =1,2,...,N, r=1,2,...,m) such that

(filz),z—xz) Vwel, (4.3)

(hy(y),y—9y) Vye@Q, and Az = By. 4.4)

We know that every averaged nonexpansive mapping with nonempty fixed point set is quasinonex-
pansive and that single valued operators are special cases of multivalued mappings. By using these
facts and adding the assumption that the resolvent operators are of type-one, we can apply algorithm
(3.44) and Corollary 3.2 to obtain a solution of problem (4.3), (4.4).

Remark4.1. Our result extends and complements some recent results by making the following
contributions:

1. We saw that the example of the multivalued mapping considered in Example 1.1 is not quasi-
nonexpansive. Hence, the class of multivalued quasinonexpansive mappings considered in [40] is a
proper subclass of the class of multivalued mappings considered in this paper.

2. In [18], the author imposed the hemi-compactness condition on the multivalued mappings to
obtain strong convergence result. However, our result showed that this condition can be dispensed
with.

3. In[1], the author proved weak convergence result for SHVIP, while in this paper, we obtained
strong convergence result for systems of SEVIP. Furthermore, the class of operators considered in
this paper is more general than the class of operators considered in [1].

4. In[14], the author obtained a general common solution to VIP, while in this paper, we obtained
a common solution to both MSSEFPP and systems of SEVIP.

5. Our example (Example 1.1) generalizes the example given in [18].
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