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FORCED FREQUENCY LOCKING FOR DIFFERENTIAL EQUATIONS
WITH DISTRIBUTIONAL FORCINGS

BUMYUIEHE 3AMUKAHHSA YACTOTH J1JIAA JU®EPEHIIAJIBHUX PIBHSHD
3 AMCTPUBYTUBHUMHU ®OPCYBAHHAMMU

This paper deals with forced frequency locking, i.e., the behavior of periodic solutions to autonomous differential equations
under the influence of small periodic forcings. We show that, although the forcings are allowed to be discontinuous (e.g.,
step-function-like) or even distributional (e.g., Dirac-function-like), the forced frequency locking happens as in the case
of smooth forcings, and we derive formulas for the locking cones and for the asymptotic phases as in the case of smooth
forcings.

Po3mIsiHyTO BHMYILICHE 3aMHMKaHHS 4acTOTH, TOOTO IMOBEHIHKY NMEPiOAMYHHMX PO3B’S3KIB aBTOHOMHHX AH(epeHIianbHUX
PIBHSHB il BILTHBOM MaJiMX NepiogndHuX (opcyBanb. [loka3aHo, 10, HE3BaXKalO4W Ha TOHM (akT, MmO I (opcyBaHHS
MOXYTb OyTH PO3PMBHHUMH (THUIY CXiq4acTHX (YHKIIH) a00 HaBiTh AUCTPUOYTUBHUMHM (THITY IebTa-(pyHKIH), BUMYyIIC-
Hi 3aMHKaHHS 4acTOTH BiJOyBalOThCS, SIK 1 Yy BHIAIKy DIAAKUX (OpcyBaHb, 1 MOXHA OTpUMAaTH (GOPMYIH JUIS KOHYCIB
3aMHUKaHHS Ta ACHMIITOTHYHHX (a3, SK 1 y BHMAAKY DIAAKUX (OPCYBaHb.

1. Introduction and main results. This paper is dedicated to A. M. Samoilenko on the occasion
of his 80th birthday. The author gratefully acknowledges many years of friendship and scientific
cooperation with Anatolii Mykhailovych, in particular of scientific cooperation concerning forced
frequency locking [9, 11-13].

The following phenomenon is usually called forced frequency locking (or injection locking
or master-slave synchronization or master-slave entrainment): If x( is a Ty-periodic solution to an
autonomous evolution equation and if this equation is forced by a periodic forcing with intensity € ~ 0
and period T' = Tj, then generically the following is true: If the pair (¢, T") belongs to a certain open
conus-like subset of the plane, then there exist T'-periodic solutions z(t) ~ xo(tTy/T + ¢) to the
forced equation. Moreover, if xg is an exponentially orbitally stable periodic solution to the unforced
equation, then at least one of the locked periodic solutions to the forced equation is exponentially
stable.

Forced frequency locking appears in many areas of natural sciences, and it is used in diverse
applications in technology. Moreover, since a long time it is mathematically rigorously described for
ODEs and parabolic PDEs with smooth forcings (see, e.g., [S—7, 14, 15, 17]). It turns out that this
phenomenon appears also in dissipative hyperbolic PDEs, functional-differential equations (cf. [8]) as
well as in evolution equations with discontinuous or even Dirac-function-like forcings, but for those
cases there is no rigorous mathematical description available up to now.

As an example, in the present paper we describe forced frequency locking for smooth differential
equations with possibly distributional forcings of the type

&= f(z)+eg(T). (L.1)

Here z: R — R" is a T-periodic function to be determined, f: R™ — R" is a C?-smooth vector
field, ¢ > 0 and 7" > 0 are the intensity and the period of the forcing, respectively, and ¢g(7') is a
linear functional on the vector space of continuous 7'-periodic functions R — R", which works as
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116 L. RECKE

T
/ h(t/T)-y(t)dt +d-y(0) for all continuous T'-periodic y: R — R"
0

with h € L'((0,1);R") and d € R™, where “-” is the Euclidean scalar product in R”. Hence, we
suppose that the Dirac-function-like part of the forcing is supported in the times ¢ = 0, &1, +2, ...,
and the function h describes the shape of the regular part of the forcing (over one period).

Of course, (1.1) has to be understood in the weak sense: A T'-periodic function z € L*°(R;R")
is called a solution to (1.1) if

T
/ (z(t) - 9(t) + (f(2(t) + eh(t/T)) - y(t)) dt + ed - y(0) =0
J (1.2)

for all smooth T-periodic y: R — R".

In order to describe our results we introduce a new scaled time and new scaled unknown functions

as follows:
1
thew 1= Ttoldu xnew(tnew) = xold(told)-
Then (1.2) is transformed into
1
/ (&) +T(f(z(t) +eh(t)) -y(t) dt +ed-y(0) =0 03
9 .

for all smooth 1-periodic y: R — R".

Problem (1.3) can be formally written in the form
#(t) = T(f(x(t)) +eh(t)) +ed > 5(t+k),
keZ

where ¢ is the Dirac function supported in zero.

Let us formulate our assumptions. We suppose that there exists a non-constant 1-periodic solution
xg to the unforced problem, i.e., to (1.1) with € = 0, or, what is the same, to (1.3) with ¢ = 0 and
T=1:

Zo(t) = f(zo(t),  wo(t+1)=ua0(t),  do#0. (1.4)

We are going to show that generically the following is true: For all (¢,7") =~ (0, 1), which belong to
a certain open conus-like subset of the plane, there exist 1-periodic solutions

z(t) ~ xo(t + ¢) (1.5)

to (1.3). Moreover, we describe how this conus-like subset of the plane looks like and how the
asymptotic phase ¢ depends on the period 7. Finally, we prove certain local uniqueness result
for (1.3). We solve (1.3) for € = 0 and 7" = 1 and (1.5) by means of a Liapunov — Schmidt reduction,
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FORCED FREQUENCY LOCKING FOR DIFFERENTIAL EQUATIONS WITH DISTRIBUTIONAL FORCINGS 117

by scaling techniques and by means of the implicit function theorem. Remark that we do not use any
results about an initial value problem corresponding to (1.1).

From assumption (1.4) it follows that x = @ is a nontrivial solution to the linear homogeneous
boundary-value problem

i) = Flao)z(®),  alt+1) = z(0). (1.6)
We suppose that
any solution to (1.6) is a scalar multiple of . (1.7

In other words, we suppose that the vector space of all solutions to (1.6) is one-dimensional. Therefore
the vector space of all solutions to the adjoint linear homogeneous boundary-value problem

—i(t) = fao()T2(t),  a(t+1)= () (1.8)

is one-dimensional also. Here f’(zo(t))” is the transposed to f’(zo(t)) matrix. We suppose that
1
there exists a solution z =z, to (1.8) with /x*(t)-jso(t) dt = 1. (1.9)
0

In other words, we suppose that the eigenvalue A = 0 to the eigenvalue problem (t) = ()\ +
+ f(xo(t)))x(t), z(t 4+ 1) = x(t), is not only geometrically simple, but also algebraically simple.
Finally, we introduce a 1-periodic function ®: R — R by

1
B(p) = —/:c*(t—i—go)-h(t)dt—x*(go)-d (1.10)
0

and, for given g > 0 and 79 € R, open conus-like sets
K(Eo,To) = {(E,T) eR?: cc (0,80), T=1+e¢er, TE (7'0 —Eo,To—i-E())}

and the Banach space Lpg, := {r € L®(R;R"): z(t + 1) = z(¢) for almost all ¢ € R} with its
norm ||z /oo := esssup{||z(¢)||: ¢ € R}. Here || - || is the Euclidean norm in R".

Now we formulate our results:

Theorem 1.1. Suppose (1.4), (1.7) and (1.9), and let (s}, T}, 1) € (0,00)% x LZ,, k € N, be

per»
a sequence of solutions to (1.3) with

lim <€k + Ty — 1| + inf ||zk — x0(- — cp)Hoo> =0.
k—o00 peR

Then there exist @o € [0,1] and a subsequence (ey,, T, , zr,), | € N, such that

Ty, — 1
lim “FL = = () (1.11)
l—oo €,
and
Jim ok, = 2o(- + )|, =0. (1.12)
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118 L. RECKE

Theorem 1.2. Suppose (1.4), (1.7) and (1.9), and let po € [0, 1] and 19 € R be given such that

(o) = 70, ' (o) # 0. (1.13)

Then the following is true:
(i) existence and local uniqueness: there exist €9 > 0 and 0 > 0 such that for all (¢,T) €
€ K(eo,m0) there exists exactly one solution x = (¢, T') to (1.3) with

|z — zo(- 4+ o) ||, < 6;

(i) smooth dependence: the map (¢,T) € K(go,7) — #(¢,T) € L, is C*-smooth;

per
(iii) asymptotic behavior: it holds

1
sup — inf ||Z(e,T) — zo(- + @) || . < o0; (1.14)
(e,T)eK (c0,m0) € #ER | I

(iv) asymptotic phases: there exists ¢ € C*([1o — €0, 70 + €0); R) with ¢(10) = o such that
Jorall T € (19 — €0, 70 + €) it holds

;ig%uﬁr(a,ugr)—xo(-+¢(7))||oo:o and  ®(¢(1)) =T (1.15)

Remark 1.1. If (¢,T) € K(eo,70), then T =1+ e7 with € € (0,¢0) and 7 € (19 — €9, 70 + €),
1e.,

T =
S

is a scaled period parameter. Hence, the so-called phase equation ®(yp) = 7 describes the relationship
between the scaled period 7 and the corresponding asymptotic phase ¢ = @(7) (cf. (1.15)) of the
solution family Z(e,T).

Remark 1.2. 1f d = 0 and h € C'([0,1;R") with h(0) = h(1) and K'(0) = R/(1) (i.e., if
the forcing is C''-smooth), and if zg is an exponentially orbitally stable periodic solution to Z(t) =
= f(x(t)), then the following is true: if ®’(pg) > 0 (or D'(¢p) < 0), then &(e, T') is an exponentially
stable (or unstable) periodic solution to @(t) = T(f(x(t)) + eh(t)) (for all (e,T) € K(eo, 7o)
with sufficiently small &g) (cf., e.g., [7], Theorem 3, or [10], Theorem 5.1). In other words: the
phase equation ®(y¢) = 7 describes not only the relationship between the scaled period and the
corresponding asymptotic phase, but also the stability of the locked periodic solutions & (e, T"). It is
an open problem if a similar result is true in the case of general distributional forcings.

Remark 1.3. Assertion (ii) of Theorem 1.2 claims that the data-to-solution map & of the prob-

lem (1.3) is C''-smooth from K (g, 79) into L7, But the corresponding data-to-solution map

(e,T) € K(co,70) = ¥(g,T) € Lpe, with  Z(e,T)(t) := z(e, T)(t/T)
to (1.2) is not smooth, even not continuous, in general!
Remark 1.4. Assertion (iii) of Theorem 1.2 claims that Z(e,1 + e7) tends, for ¢ — 0, to a

phase shift of z(, and this phase shift depends on 7. In particular, Z(e,T") does not converge, for
(6,T) — (0,1) with (¢,T) € K(eo,70), in L,
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FORCED FREQUENCY LOCKING FOR DIFFERENTIAL EQUATIONS WITH DISTRIBUTIONAL FORCINGS 119

2. Transformation of (1.3) into an equation in L;‘;r. In this section we show that the
variational problem (1.3) is equivalent to a smooth equation in the Banach space L7, . For that
reason we introduce a function G : R? — R, which is 1-periodic with respect to both its variables,
by defining it in the square [0,1] x [0, 1] as below and then extending it 1-periodically on R?:

C e for 0<t<s<I,
1—e

1
1—e

G(t,s) :=

e for 0<s<t<lI.

It is easy to verify that G is a Green’s function, i.e., for any 1-periodic functions y,z: R — R" it
holds

1
y—y==z and only if  y(t) = /G(t, s)z(s)ds 2.1
0
and
1 1 1
/ (g(t) —y(t))/G(s,t)z(s) ds | dt = /y(t)z(t) dt. (2.2)
0 0 0

Lemma 2.1. A4 function © € L3, is a solution to (1.3) if and only if for almost all t € R it holds

per

1
x(t) + /G(S, t) (x(s) +T(f(x(s)) +eh(s)))ds+eG(0,t)d = 0. (2.3)
0

Proof. Take x € Ly, and smooth 1-periodic functions y, z: R — R™ with y—y = z. Then (2.1)
yields

1
[ (o960 + T(1(a(0) + <h(0) - y(®)) de + - y(0) =
0
1
= [ (30 (50 +50) + (20) + TS 0) +<hi6) -9(0)) di + = d-(0) =
0

:/ x(t)-z(t)—l—(x(t)+T(f(x(t))+sh(t)))~/G(t,s)z(s)ds dt +d - y(0) =
0 0

1 1
= /z(s) | x(s) + /G(t, s)(x(t) + T(f(z(t)) +eh(t))) ds + eG(0, s)d | ds.
0 0
Hence, x is a solution to (1.3) iff the left-hand side vanishes for all smooth 1-periodic y: R — R"”,
and this is the case iff the right-hand side vanishes for all smooth 1-periodic z: R — R", i.e., iff (2.3)

holds for almost all ¢ € R.
Lemma 2.1 is proved.
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It follows from Lemma 2.1 that any solution = € Lp¢,

the points ¢t = k, k € Z, where it jumps from x(k — 0) to

to (1.3), i.e., to (2.3), is continuous up to

z(k+0)=x(k—0)—ed.

In order to analyze equation (2.3), let us introduce maps F € C?(R x Loey Lpey) and G €
€ C*(R; LS2,) by defining for almost all ¢t € R

per

1
F(T,x)(t) := /G(s,t)(ac(s) + T f(z(s))) ds,
0

1
G(T)(¢t) := T/G(s,t)h(s) ds + G(0,t)d.
0

Then the variational problem (1.3), which is equivalent to the integral equation (2.3), is equivalent to
the abstract equation

r+F(T,z)+eG(T) =0. (2.4)
For ¢ € R we define S, € L(Lpe,) by
Spx(t) :=z(t+ ¢) for almost all ¢ € R.

The map ¢ ~ S, is a representation of the rotation group SO(2) on the vector space Lg,, but this
representation is not strongly continuous because the map ¢ € R — S,z € L3, is continuous if and
only if the function z is continuous, i.e., not for all x € L77,. But the maps ¢ € R — S,x € L,

and p € R — Sy, € L, are C3-smooth and C?-smooth, respectively, because the functions
and z, are C®-smooth and C?-smooth, respectively (because the vector field f is supposed to be
C?-smooth). This will be used repeatedly in what follows.
It is easy to verify that
SeF(T,x) = F(T,Syx) forall T,p€eR and ze€ L3

per*

(2.5)

Because of (2.5) equation (2.4) is a symmetry breaking problem. If x is a solution to (2.4) with
€ = 0, then S,z is a solution also for all ¢ € R. But for ¢ # 0 this is not the case, in general.

We are going to use well-known techniques for treating symmetry breaking problems, which are
developed, e.g., in [1-3, 10, 16]. The main ingredient for that is the Fredholm property of the
operator I + 0,F (1, o).

Lemma 2.2. The operator 0,F (1,xq) is completely continuous from LS2. into LSS, and it

per per>’
holds
ker (I + 0, F(1, .’Eo)) = span{Xo}, (2.6)
1
im (I +0,F(1,x0)) =z € Loe:: /(:L‘*(t) —x(t)) - x(t)dt =0 ». (2.7
0
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FORCED FREQUENCY LOCKING FOR DIFFERENTIAL EQUATIONS WITH DISTRIBUTIONAL FORCINGS 121
Proof. We have (0,F(1,z0)z / G(s,t)(I + f'(zo(s)))z(s) ds. Therefore (2.1) yields

%&U}"(l,wo)x = 0, F(Lzo)z + (I + f'(z0))z. (2.9)

Hence, 9,F(1,70) is a linear bounded operator from L%, into the function space

Wgefo ={r el : ieLyX} with norm  ||z]|co + ||%]|cc-
But Wpléﬁo is compactly embedded into Lgg,. Hence, 9, F (1, o) is completely continuous from Lpg,
into Lpg,..

Because of zg + F(1,29) = 0 and of (2.5) we have S,xo + F(1,S,29) = 0 for all ¢ € R.
Differentiating this identity with respect to ¢ in ¢ = 0 we get &g € ker (I + 9, F(1,x0)).
Now, take = € ker(I + 35,;]-'(1,930)), ie, + 0y F(l,z0)xr = 0. Then = € Wgéﬁo, and (2.8)
yields
d
7 0 F (L, z0)x = 0, F (1, z0)z + (I + f'(z0))z = f'(z0)z.

Hence, assumption (1.7) yields (2.6).

In order to prove (2.7) we consider the Hilbert space Lpe with its scalar product (z,y) =

T

it follows that

er

1
= / a(t) - y(t) dt. Because of the continuous and dense embedding L33, — L2

0
L%er is continuously and densily embedded into the dual space (Lge,)*, where a function x € Lger

has to be understood as an element of (L3g,)* by means of

(z,y) = (z,y)  forall ye€ Ly,

where (-, ) : (Lge;)™ X L, — R is the dual pairing. The Fredholmness of I + 0, F(1,zo) yields

m(I + 0,F(1,20)) = {x €L (¢,y) =0 forall ¢ e ker(l + 893]:(1,900))*}7
dimker (I + 9,F (1, )" = 1.

Hence, in oder to prove (2.7) we have to prove that &, — x, € ker (I + 0, F(1, xo))*. But this is easy
to verify because for any smooth 1-periodic function y: R — R"™ we have

((I+0,F(1,20))" (ix — 24),y) = (&s — 24, [ + O F (1, 20)y) =

= (0 = 20, (T + 0 F (1, m0)y) =

1

:/(x*(t) —x.(t /G s,t)(y(s) + f'(zo(s))y(s))ds | dt =
0
1 1
— [0 (~90) + £ aoNu®) de = [ 5(0)- (6.0) + 7). 1) dt =0,
0 0

Here we used (1.9) and (2.2).
Lemma 2.2 is proved.
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3. A parametrization of a neighbourhood of xy. Let us define a closed codimension one
subspace Y of LSS by

per
1

Yi=qy€ Lpy: /y(t)-m*(t)dt:O
0

o0

per can be smoothly parametrized

In this section we show that any small neighbourhood of zg in L
by small (p,y) € RxY via x = S,z0 +y.
Lemma 3.1. The map (¢,y) € RxY = f(p,y) := S,m0 +y € Lpg, is a diffeomorphism of a

neighbourhood of zero in R x'Y" onto a neighbourhood of x¢ in Ly, .

Proof. 1t holds f(0,0) = ¢ and f'(0,0)(¢,y) = —pio +y for all (p,y) € R x Y. On the
other hand, assumption (1.9) yields that o ¢ Y. Hence,

Lo, = span{io} @Y. 3.1

Therefore f'(0,0) is bijective from R x Y onto Lge.. Hence, the local diffeomorphism theorem
yields the claim.

Lemma 3.1 is proved.

4. An a priori estimate. If x ~ {Syx¢: 1 € R} is a solution to (2.4), then there exists
¢ € [0,1] with  ~ Syxo and, hence, S_yz ~ . Therefore Lemma 3.1 yields that there exist
p~0andy €Y with y =~ 0 such that S_yz = S 20 + y, i.e.,

z = 5y(Spro +y).
Inserting this into (2.4) and using (2.5) we get
Sexo +y+ F(T,Spxo+y)+eS_yG(T) = 0. 4.1)

Lemma 4.1. Forall o, T € R and y € L2, it holds

per
1
Sexo+y+ F(T,Spxo+y)= |1+ /833}'(1, Sexo +ry)dr |y + (T —1)0rF (1, Spxo + v).
0

Proof. We have S,xo + F (T, Spxo) = 0 for all ¢ € R. Therefore

1
Sexo+y+ F(T,Sp,xo+y)= |1+ /81.7-"(1, Sexo + ry)dr | y+
0
1
+(T — 1)/8T.7-"(1 +7r(T —1),Spxo + y)dr.
0
But F(-, S,xo + y) is affine, hence

1
/87“./—"(1 + T(T — 1), S¢$o + y) dr = 8T]-"(1, S¢x0 + y).
0

Lemma 4.1 is proved.
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Lemma 4.2. There exist 6 > 0 and ¢ > 0 such that for all solutions (¢, T, p,,y) € (0,00)% x
x [0,1]? x Y to (4.1) with e + |T — 1| + ||y||ec < & it holds

T — 1| + [Jy|loo < ce.

Proof. Suppose the contrary. Then there exist solutions (g4, Tk, 0k, Yk, Yx) € (0,00)? x [0, 1]? x
xY k=1,2,...,to (4.1) with

. €k
lim (ex 4 k| + [T — 1| + ||y + ) =0. 4.2)
H,o< il 1T = 2+ llwelloe + = T

Because of Lemma 4.1 it holds

Yk
I+/8}“1,S xo + ryg)dr +
PP S0 £ T | I Tl
Tk -1 Ek
orF(1,S8, xo+ yi) = —
T =1+l 7 o0 ) =
Without loss of generality we may assume that there exists 7 € R with
lim T, — 1
koo [T — 1+ [gklloo

Sy G(T)- (4.3)

(4.4)

Moreover, because the operator 0,F(1,x0) is completely continuous, without loss of generality
we may assume that the sequence 0, F(1,20)y/(|Tk — 1| + [[yklloo), k € N, converges in L32,.
Hence, (4.2) —(4.4) yield that there exists y € Y with
Yk

iy T T -
and
I+ /am]-'(l,mo)dr y + 70rF (1, 2) = 0. 4.6)
Because of (1.9), (2.2) and (2.7) it follows
o_T/an (1,20) - (e — ) dit =
L
:TO/ O/G(s,t)f(xo(s))ds (a(t) — 2 (1)) dt =
1 1
- T/f(:):o(t))- - TO/xO —r @7)

Therefore (2.6) and (4.6) imply that y € Y Nker(I + 9, F(1,x9)) =Y Nspan{&}, and (3.1) yields
y=0.

Let us summarize: We got 7 = 0 and y = 0. But from (4.4) and (4.5) it follows |7| + ||y|lcc = 1,
this is the needed contradiction.

Lemma 4.2 is proved.
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5. Proof of Theorem 1.1. Suppose (1.4), (1.7) and (1.9), and take a sequence (ey, T, zx) €
€ (0,00)% x L., k € N, with

per»
xk+]-"(Tk,xk)+ekg(Tk) =0 (5.1)

and
li T, — 1| + inf -8 =0. 52
tim (04 73~ 11+ duf o~ Syzol (52)
For any k there exist ¢ € [0, 1] with
Inf lzx = Suwolloo = llzn = Sy zolloo = [S—vimr = 2ofloo, (5.3)
and without loss of generality we may assume that there exists o € [0, 1] with
k—oo

Hence, (5.3) yields ||z — Sy ||cc — 0 for & — o0, i.e., assertion (1.12) of Theorem 1.1 is proved.
Because of Lemma 3.1 and of (5.3) for large & there exist ¢y € [0, 1] and y; € Y with

S_yptk = Spxo+yr  and (lek] + llykllss) = 0.

lim =
k—o0
Inserting x, = Sy, (Sp, %0 + yx) into (5.1) and using (2.5) we get

S0 + Yk + F(Th, Sp o + yr) + €xS—y, G(Tk) = 0. (5.5

Further, from Lemma 4.2 it follows that there exists a bounded sequence (7%, 2x) € R x Y, k € N,
such that T, = 14,7 and y, = ezx. Inserting this into (5.5), dividing by ¢, and using Lemma 4.1
we get

1
I+ /895.7:(1, Sepxo + repzr)dr | 2k + 0 F (1, Sy 20 + ex2r) = —S—9, G(1 + ex7). (5.6)
0

Without loss of generality we may assume that there exists 79 € R such that 7, — 7y for k& — oc.
Moreover, (2.7) yields

1 1
Hm [ (s —x4) - | 26 + /855]-"(1, Sy To + regzy) drzy | dt =0,
0

k—o0
0

and (4.7) implies
1

k;lim (T — x4) '8T]:(17Sgok330+5k2k) dt = 1.
—00
0

Hence, from (1.10), (2.2), (5.4) and (5.6) it follows
1
T0=—1lim [ S_y, G(1+epm) - (s — x4)dt =

k—o0
0

ISSN 1027-3190.  Vkp. mam. scypn., 2018, m. 70, Ne 1



FORCED FREQUENCY LOCKING FOR DIFFERENTIAL EQUATIONS WITH DISTRIBUTIONAL FORCINGS 125
1

1
= — lim g(l—i-Eka)'ka(' —.1‘* dt /g —x*)dt:
0

k—o0
0

1 /1
= —/ /G(s,t)h(s) ds + G(0,t)d | - (&4(t + o) — 24 (t * @o)) dt =
0 \0

1

—/h(t)~x* /11
0

0

~(#u(t + @0) — 24 (t + @o)) dt =

1
/h t)dt —d - x(po) = P(po)- (5.7)
0

Therefore, assertion (1.11) of Theorem 1.1 is proved.

6. Proof of Theorem 1.2. Suppose (1.4), (1.7) and (1.9), and let ¢y € [0,1] and 79 € R be
given such that (1.13) is true.

We have to determine all solutions = ~= S, xo to (2.4) with (¢,7) € K(eg,70) and g9 ~ 0.
Because of Lemma 3.1 we are allowed to make the ansatz

x = Sy, (Spzo +y) with o=~0, y=~0, yeVY.
Inserting this ansatz into (2.4) we get
Sexo +y+ F(T,Spwo+y)+eS_,G(T) = 0. (6.1)
Further, because of Lemma 4.2 we are allowed to make the ansatz
T=1+4er, Y =€z,

and we get, after deviding by ¢ and using Lemma 4.1,
I+ /83[;]-“(1, Sexg +rez)dr |z + 107 F (1, Spwo +€2) + S_p,G(1 + 1) = 0. (6.2)

We are going to solve equation (6.2) with respect to (¢, z) ~ (¢0,20) (20 € Y is defined below,
see (6.6)) for given (e,7) ~ (0,79) by means of the implicit function theorem. Remark that ¢ and
To are given by assumption (1.13).

Let us define z1 € L33, by = (¢ / G(s,t)xo(s)ds. Then (1.9) and (2.2) imply

/lxl(t) (@ (t) — @it jxo T (t)dt = 1.
0 0

Hence, (2.7) yields
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LY. = span{zi} ®im (I + 0. F(1, :L‘o)), (6.3)

per

1
and P = P? € L(L%,), defined by Pz := / x(t) - (Z4(t) — z4(t)) dtzq, is the projection cor-

per

responding to the topological sum (6.3), i.e.,
ker P =im (I + 0,F(1, z0)), im P = span {z1 }.

Finally, for ¢ € R we define L, € £(L5%,; R x im(I + 9, F(1,z0))) by

per»’

1
Lyx = /x - Sp(@y — xy) dt, (I — P)x

0

Lemma 6.1. (i) The operator I + 0, F (1,z0) is bijective from Y onto im (I + 0,F(1,z0)).

(ii) There exists 6 > 0 such that for all ¢ € R with || < 0 the operator L is bijective from
L33, onto R x im (I + 8, F(1,20)).

Proof. (i) If for y € Y we have (I + (%;f(l,xo))y =0,1ie,y €Y N ker (I + 8xf(1,x0)) =
=Y N span{ig}, then (3.1) yields y = 0. Hence, I + 0,F(1,x0) is injective.

If & € im (I + 0,F(1,0)) is given, then there exists z € Lg3, with & = (I + 0, F(1,x0))x.
Moreover, because of (3.1) there exist £ € R and y € Y with x = {2y + y. Because of (2.6) it
follows

T = (I+0,F(1,20)) (&0 +y) = (I + 0. F(1,20))y.

Hence, I + 0, F(1,z0) is surjective from Y onto im (1 + 9, F (1, z)).
(ii) If Loz = 0, then Pz = (I — P)x = 0, i.e.,, z = 0. Hence, Ly is injective. Moreover, for
arbitrary (£,Z) € R x im (I + 9,F(1,z0)) it holds

1

Lo(§x1 +2) = /(&31 +&) - (e — i) dt, (I = P)(Ex1 +7) | = (&,7).

0

Hence, Lo is surjective from L3;, onto R X im (I+0,F(1,0)).

But themap p € R+—= L, € £((Lg‘;r, R x im(I + 8, F(1,z0))) is continuous (even C-smooth)
with respect to the operator norm, and the set of all bijective maps is open in E(( ;R x im(I +
+ 8, F(1,x0))). Hence, assertion (ii) is proved.

Lemma 6.1 is proved.

Define by H(e, T, ¢, z) the left-hand side of (6.2). Because of Lemma 6.1 (ii) the equation (6.2)

with ¢ ~ 0 is equivalent to

per’

LADH(E':? T, ¥, Z) = (H1(€, T, ¥, Z)a H2(57 T, ¥, Z)) =0. (6.4)
The maps H1 € C'((0,00) x R? x Y;R) and Hy € C((0,00) x R? x YV;im(I + 9,F(1,20))),
which are defined in (6.4), satisfy

1
1(0, 7, ¢, 2 / I—|—8 F(1,8,20))z + TOrF (1, Spwo) + S—y,G(1 )) Se(&e — x4) dt,
0
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H5(0,7,0,2) = (I — P) ((I + 0, F(1, Sypo)) 2 + 707 F (1, S,px0) + S_q,ogu)).

But (2.5) yields S,0,F (1, z0) = 0, F (1, S4x0)S, and OrF (1, Spx0) = S,0rF (1, x¢). Therefore

1
/ (I +0:.F(1,S,w0)) 2 - Sp(ds — xs) dt =
0

S o (I + 0, F(1, Spg) )2 - (i — ) dt =

O\H

1
/ (I+0,F(1,20))Spz - (4 — x4)dt =0
0
and (cf. (4.7))

/an (1, Spa0) - Sp(itn — ) dt =

= /SwaT]:(l, Spxq) - (T4 — x4) dt =

/OT}'lxo «—Ty)dt =1
and (cf. (5.7))
/S—cpo (T — ) dt = —P(po + ).
Hence,
H1(0,7,9,2) =7 — (g0 + ). (6.5)

Therefore ¢ =0, 7 = 19, ¢ = 0, z = zg is a solution to (6.4), i.e., to (6.2) with
20 = — (I + 0. F(1,20)) " (I = P) (1007 F (1, 20) + S—oG(1)). (6.6)

Here (I + 896]:(1,.%))_1 € L(im (I + 9,F(1,0));Y) is the inverse operator to the operator
I+ 0,F(1,z0) € L(Y;im(I 4+ 8, F(1,20))), cf. Lemma 6.1 (i).
Further, we have

8a,o/Hl (07 T, 0, ZO) = _(I)/(Qpﬂ)v
8Z/}-ll(ov 70, 0) ZO) = 07
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azHQ(Oa T0, 07 ZO) =1 + 81]:(17 1'0)-

Hence, assumption ®'(pp) # 0 (cf. (1.13)) and Lemma 6.1 (i) imply that the partial derivative with
respect to (¢, z) of L, H(e, T, ¢, 2) in the point € = 0,7 = 79,0 = 0,2 = g is bijective from
R x im (I + 0, F(1, a:o)) onto Lpg,. Therefore the implicit function theorem yields that there exist
g0 > 0 and § > 0 such that for all € € [0,59] and 7 € [19 — €0, [0 + €0] there exists exactly one

solution
90:95(577)7 222(677—)

to (6.4) with|p| + [|z]lcc < 6. Moreover, the data-to-solution maps ¢ and # are C'-smooth. Hence,
for all (¢,T") € K(g9,70) we have a solution z = #(e,T’) to (2.4), where the data-to-solution map &
is defined as

Z(e,1+e7) := S (Sp(e,ryro + £2(e, 7).
The map & is C'-smooth because the maps maps ¢ and Z are C''-smooth. Moreover,
Inf |l2(e, 1 +e7) — Syolloo < Inf [1(Sgo+g(er) = Su)Tolloo +ellZ(e, T)llo0 = ellZ(e, T)lloo,

i.e., assertion (1.14) of Theorem 1.2 is proved.
Let us fix 7 € [19 — €0, 70 + €0] and define ¢(7) := o + ¢(0, 7). Then ®(p(7)) = 7 (cf. (6.5)),
and

Hi(é, 1+er)— S@(T)x()HOO = H (S¢O+¢(€’T) — S@OJ’,@(O’T))"EO + 65(6,7‘)“00 —0 for ¢—0,

i.e., assertion (1.15) of Theorem 1.2 is proved also.

Finally, let us prove the uniqueness assertion of Theorem 1.2 (i). We have to show that for any
solution (¢,7’,z) € (0,00)* x L2, to 24) with T = 1+e7 and e = 0, 7 = 79, & S0 it holds
x=z(e,T).

Let (eg, Ty, x1) € (0,00)% x Lers k € N, be a sequence of solutions to (2.4) with T}, = 1+ e
and

Jm (e + |7 = 70| + [l2k + Sy ol o) = 0.

Then for large k£ we have xj, = S, (Sy, 0 + €2) With 2z € Y and ||2;]|c < const and @3, — 0
(cf. Lemmas 3.1 and 4.2). Hence, for large k& we get H(ek, 7k, vk, 21) = 0 (cf. (6.2)), i.e.,

Ly, H(eks Tis @rs 21) = 0.

In particular, the equation Ha(eg, 7k, @k, 2x) = 0 yields
1
(I—-P) I+ /ai]:(l,&pkxo +regzr)dr | |z =
0

= —(I — P) (TkaT./_"(l, S¢k$0 + Ekzk) + S_¢Og(1 + ngk))y
i.e., |2k — 20/|oc — O (cf. (6.6)). Here we used that
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k—o0

1
lim ||[(I-P) I+ /835./7(1,&%%0 + regzg)dr | — I — 0, F (1, x0) =0,
0

L(LR,)

per

1
and, hence, for large k the operator (I — P) <I + / 0:F (1, 8,20 + rskzk)dr> is bijective from
0

Y onto im (I +8,F(1,20)), and its inverse is bounded with respect to the operator norm (uniformly
with respect to k).

Let us summarize: We got that (g, 7, @k, 2) is a solution to (6.4), which is, for large k, close
to the solution (0, 79, 0, zp). Hence, the uniqueness assertion of the implicit function theorem yields

or = P(ek, k), 2k = Z(k, Tk), 1.€., T = T(ek, Tk)-
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