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EXISTENCE OF GLOBAL SOLUTIONS FOR SOME CLASSES
OF INTEGRAL EQUATIONS

ICHYBAHHA ITTOBAJIBHUX PO3B’SA3KIB JEAKHUX KJIACIB
IHTEI'PAJIBHUX PIBHAHDb

We study the existence of LP-solutions for a class of Hammerstein integral equations and neutral functional differential
equations involving abstract Volterra operators. Using compactness-type conditions, we establish the global existence of
solutions. In addition, a global existence result for a class of nonlinear Fredholm functional integral equations involving
abstract Volterra equations is given.

BuBuaetncs icnyBanHs LY -po3B’s13KiB U1l Kilacy iHTErpaibHUX PiBHAHb [aMMepiITeiiHa Ta HeHTpaibHUX (HYHKIIOHATBHIX
nmudepeHIiadbHIX PIBHAHB 3 a0CTpakTHUMU onepaTopaMu Bomsreppa. IcHyBaHHS m100aibHMX PO3B’S3KiB BCTAHOBIICHO 32
JIOTIOMOTOI0 YMOB THITy KOMITAaKTHOCTi. Kpim Toro, HaBemeHO pe3ynbTaTr mpo IiodaibHe iCHYBaHHS PO3B’S3KY IUIA Kiacy
HEJIHIHNX (YHKLIIOHAJIBHUX IHTerpalbHUX piBHAHE Dpearonabpma 3 abCTpakTHUMH onepaTopaMu Bombreppa.

1. Introduction. Many problems arising in modeling real world phenomena lead to mathematical
models described by nonlinear integral equations in abstract spaces. The theory of nonlinear integral
equations in abstract spaces, is a relatively old theory, but it is also current and has important
applications in physics, engineering and biology. The concept of abstract Volterra operator (or causal
operator), introduced by [47] and [46], plays an important role in physics and engineering [25, 42].
This concept arises naturally in classes of differential equations and integral equations such as ordinary
differential equations, integro-differential equations, differential equations with finite or infinite delay,
Volterra integral equations, neutral functional equations, and so on.

Let E be a real Banach space, LP([0,al], E) be the space of all (classes of) strongly measurable
and Bochner integrable functions u: [0,a] — E, and L(FE) the space of all bounded linear operators
from E into itself. In this paper, we consider the Hammerstein integral equation

u(t) = (Pu)(t) + A / K(t,s)(Qu)(s)ds,  ae. te0,a], (1)
0

and the Volterra— Hammerstein integral equation

u(t) = (Pu)(t) + /K(t,s)(ﬂu)(s)ds, ae. tel0,al, (1.2)
0

where B, Q: LP(]0,a], E) — LP([0,a], E') are continuous abstract Volterra operators, K : [0, a] X
x [0,a] — L(FE) is strongly measurable, A\ € R, and we provide conditions under which these
equations have solutions in LP([0,a], F). In addition, under suitable conditions we establish the
existence of continuous solutions for the following nonlinear Fredholm functional-integral equation:
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a

£(t) = wo(t) + / F(t,s,(Qz)(s)ds, € [0,dl,
0
where F'(-,-,-): [0,a]x[0,a]xY — X is a Carathéodory function, Q: C([0,a], X) — L*([0,a],Y)
is a continuous causal operator, zo(-) € C([0,a], X), and X, Y are infinite dimensional spaces.

We recall that an operator @ : LP([0,al, E) — LP([0,a], E) is called an abstract Volterra ope-
rators (or a causal operator) if, for each 7 € [0,a) and for all u,v € LP([0,a], E) with u(t) = v(t)
for every ¢ € [0, 7], we have Qu(t) = Qu(t) for a.e. t € [0, 7].

The study of differential equations involving abstract Volterra operators can be found in the
monographs [10, 19, 32, 40], and also in the papers [1, 2, 4, 11, 12, 14, 24, 34, 35, 37, 38, 41,
48, 50, 51]. The existence of LP-solutions for different classes of differential equations and integral
equations were studied in [3, 6-9, 16, 26, 30, 31, 33, 36, 39, 43].

2. Preliminaries. Let E be a real Banach space endowed with the norm || -||. If A is a nonempty
subset in E, then A, conv (A) and conv(A) denote the closure of A, the convex hull of A and
the closure of the convex hull of A, respectively. We denote by C([0,a], E') the Banach space of
continuous bounded functions from [0, a] into £ endowed with the norm [|u(-)|| = supg<;<, |lu (t) |-
The space of all (classes of) strongly measurable functions w : [0,a] — E such that

a 1/1’
lull, == / lu@P | < oo
0

for 1 < p < oo, will be denoted by LP([0,al, E'). Then LP([0,al, E) is a Banach space with respect
to the norm ||u||,. Also, we denote by L>°([0,a], E) the space of all (classes of) strongly measurable
functions u(-) : [0,a] — E which are essentially bounded on [0, a]. Then L*>°([0,a], F) is a Banach
space with respect to the norm

|t co := esssup||u(t)|| = inf{M > 0;||u(t)|| < M forae. te€0,a]}.

€[0,a

We recall that, if 1 < p < ¢ < oo, then
£([0,a, ) € L7(0,d), E)

and
lully < a"/P~4ull, forevery u(-) € L0, al, E).

. . . . 11
In the following, for a given p > 1, we shall denote by p’ > 1 its conjugate; that is, — + — =1 We
P

p
denote the space of all bounded linear operators acting on a Banach space E by L£(FE). Then L(F)
is a Banach space with respect to the norm

IT| == inf{M > 0; | Tu| < M|u|| forall we E}, T e L(E).

We denote by 3(A) the Hausdorff measure of non-compactness of a nonempty bounded set A C E,
and it is defined by [27]:

B(A) = inf{e > 0; A admits a finite cover by balls of radius < £}.
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The Kuratowski measure of non-compactness of a nonempty bounded set A C FE is defined
y [29]:

a(A) = inf {5 > 0; A can be expressed as the union of a finite number of sets
such that the diameter of each set does not exceed § },

where the diameter of a bounded set A C E is defined by dim(A) = sup{||z — y||;z,y € A}.

Let v(-) be either « (+) or 5(+). If A, B are bounded subsets of F, then (see [5, 27]):
(1) v(A) = 0 if and only if A is compact;

(2) A(A) = 3(A) = y(comv(4));

(3) vY(AA) = |A\|v(A) for every A € R;

(4) v(A) <~(B) if A C B;

() v(A+ B) <y(A4) +~(B);

(6) if T': E — E is a bounded linear operator, then v(T'A) < ||T'||v(A);

(7) if {A,},~, is a decreasing sequence of bounded closed nonempty subsets of E and
nh_}n(f)l() v(Ay) = 0, then ﬂzo_lAn is a nonempty and compact subset of £ [29].

Remark 2.1. 1In general, for any bounded set A C E, one has 5(A) < a(A) < 23(A) and both
inequalities can be strict. Also, for any bounded set A C E, we have that y(A) < dim(A) and
v(A) < 2d if sup,eq ||z] < d.

We recall the following lemma due to Heinz [21].

Lemma 2.1. Let {u,(-);n > 1} be a sequence in L'([0,a], E) such that there exists m(-) €
€ LY([0,a],Ry) with ||u,(t)|| < m(t) for each n > 1 and for a.e. t € [0,a]. Then the function
t— (t) == y({un(t);n > 1}) is integrable on [0,a] and, for each t € [0,a], we have

(a) (Heinz [21])
¢

t
e /un(s)ds;n >1 < 20/1/1(3)ds

0
(b) (Kisielewicz [28], Lemma 2.2)

t

B /un(s)ds;n >1 < /tw(s)ds
0

0

provided that E is a separable banach space.

In the following, we let c,(-) denote the Kuratowski measures of noncompactness of sets in the
space LP([0,al, E).

Lemma 2.2. Let 1 <p < oo andletV C LP([0,al, E) be a countable set such that there exists
m(-) € LY([0,b],Ry) with ||u(t)| < m(t) for each u(-) € A and for a.e. t € [0, al.

(a) [43, 441 If

lim sup/ |u(t + ) — u(t)||” dt =0, (2.1)
h—)OUGA
0

then
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a 1/p

o) <2 | [lavyra
0
(b) [20] (Theorem 1.2.8) The set V is relatively compact in LP([0,a], E) if and only if (2.1) is
satisfied and V (t) is relatively compact in E for a.e. t € [0, a].
3. A global existence results for Hammerstein integral equations. Let p and ¢ be real
numbers such that ¢ > p > 1 and p(l — 1) > 1. We also assume that

q
(Hp) B, Q: LP([0,a], E) — LP(]0,al, E) are continuous operators such that there exist b(-), c(-) €

€ I7(0,a),R;) and d > 0 with
[(Bu)@) <bt)  and  [[(Qu)(t)]| < ct) +d|u(t)]|  forae. te0,q]

and for every u(-) € LP([0,a], E);
(Hy) K is a strongly measurable function from [0, a] x [0, a] into £(F) and

a 1/q
ess sup /]K(t, s)||9dt =M < 0.
s€[0,a] 9
Lemma 3.1. [f (Hy) holds, then
a a 1/q

lim/ /HK(t—i—h, s) — K(t,s)||%dt ds = 0. (3.1)
h—0

0 0

Proof. For ae. s € [0,a], let us define the function () : [0,a] — L(E) by ¢s(t) = K(t, s),
t € [0,al. From (Hy) it follows that |[1s(-)|lq € L>([0,a],Ry) and ||¢s(:)|lq < M < oo for a.e.
s € [0,al, so that 4(-) € LI([0,al], L(E)) for a.e. s € [0,a]. Let {hy}n>1 be a sequence of real
positive numbers such that h,, — 0 as n — oo, and t + h,, € [0,a) for every ¢ € [0,a) and n > 1.
Also, for a.e. s € [0,al, let

a 1/‘1
() = /wu+mwwwww -
0
a 1/q
| [ 1K has) - K ar ) L n
0

Since ¢5(-) € L1([0,a], L(E)) for a.e. s € [0, a], then from the fact that translations of LP functions
(1 < p < o0) are continuous in norm, we see that

1/q

|9dt =0 forae. se€0,a],

n—o0

lim H%(t + hn) - ws(t)
/

so that lim,, . 0,(s) = 0 for a.e. s € [0, a]. On the other hand, since (H;) implies

0 <0n(s) < [|0n]lec <2M forae. se€[0,a] andall n>1,

a
then, by the Dominated Convergence Theorem, we have lim,, oo / 0, (s)ds = 0, so (3.1) is proved.
0
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Lemma 3.2. [f (Hy) holds, then the function £(-): [0,a] — R, defined by

a 1/q
£t) = /||K(t, 5)||7 ds forae. te€0,al, (3.2)
0
belongs to L9([0,a], Ry.). Moreover, |||, < Ma'/? and |||, < Ma'/P=1/at1/d",
Proof. From (Hy) and Tonelli’s theorem it is easy to see that the function £(-): [0,a] — Ry

1
is measurable on [0, a]. Now, from ¢ > p and p <1 — ) > 1 it follows that ¢’ < p < ¢; that is
q

q/q' > 1. Then, from (Hy) and the integral version of Minkowski’s inequality, we have

q/d

0/§q(t)dt:0/ O/||K(t,s)||q/ds dt <

!
d/q a/q

<[ fieopa) s <arae,
0 0

so that £(-) € L9([0,a],Ry) and ||&]l, < Ma'?. Since p < q, €], < a'/P~V9|¢|, <
< Mql/r=t/a+1/d

Theorem 3.1. Let conditions (H)), (Hy) be satisfied. Suppose that there exist ki € [0,1) and
ko > 0 such that

a((BA)()) < kra(A(t))  and  ((QA)(1)) < k2a(A()) (3.3)
for t € [0,a] and for each bounded subset A C LP([0,al, E).

Then there exists a positive number \g such that for every A € R with |\| < Ao, the integral
equation (1.1) has at least one solution in LP([0,al, E).

Proof. First, we show that each solution of (1.1) is a priori bounded in LP([0,al, E). Indeed,
since

lu(@)]] < b(t) + IAI/IIK(tS)HH(QU)(S)Hd& t € [0,a],
0

then, using the Minkowski’s inequality and the integral version of Minkowski inequality, we obtain

1 P 1/p

a /p a a
< / bPde |+ / / 1K ) 1(Qu)(s)ds | de] <
0 0 0

1/p

< bl + A / / K@) (Qu)() [P dt|  ds <
0 0

1/p

< bllp + A / 1(Qu)(s)] / It )Pt | ds.
0 0
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EXISTENCE OF GLOBAL SOLUTIONS FOR SOME CLASSES OF INTEGRAL EQUATIONS 135

Since g > p then, using (H;), (Hy) and Holder’s inequality, we get
1/p

/ (Q2u)(s)] / IK(ts)Pde | ds <
0 0

1/q

< @l | [IKE | ds<
0 0

1/p

< a7t [ @) < ettt | [@uolas |
0 0

< Ma'? (|lelly + dllully) ,

so that /
[u)llp < [0l + MM (el + dllul)]lp) -

Put

\ . 1 1—Fk

:= min

’ dMaV/7” 2kyallr=1/a ], |

where the function &(-) is defined in (3.2). Then for each |A| < Ao, we have |ul[, < r, where

ri= (1 —=p)~L p = [NdMa? < 1 and ~v := [|b||, + |A\|Ma'/?|¢||,, so that u bounded in

LP([0,a], E). Moreover, we remark that ||[Qu||, < |/c||, + dr if ||ul[, < r. We also notice that
lu()l < b(¢) + [Na P~V i(|le]l, + dr)é(t)  forae. ¢ € [0,al;

that is, for every u € B, we have

lu(®)|| < @(t) forae. te€|0,q, (3.4)

where o(t) = b(t) + [Na/P~Va(||c||, + dr)é(t), t € [0,a] and B := {u(-) € LP([0,a], E); |Jul|, <
< r}. Moreover, from Lemma 3.2 it follows that ¢(-) € LP([0,a], R4 ), and

lellp < bllp + A M@ VP=VOFVE (fe], + dr). (3.5)

Now, define the operator ¥ : LP([0,a], E) — LP([0,a], E') by
(Tu) (t) = (Pu)(t) + )\/K(t, s)(Qu)(s)ds, te€[0,al. (3.6)
0

As above, we can show that
(T < ot)  forae. teoa],

and
1Zullp < [Ibll, + [AIMa"? (||ellp + dllull,) ,
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136 T. JABEEN, R. P. AGARWAL, V. LUPULESCU, D. O'REGAN

for every u(-) € LP([0,a], F), so that T is well defined. Moreover, it is easy to see that T(B) C B;
that is, ¥ is an operator from B into itself. Next, we show that ¥ is a continuous operator. For this,
let {w,(-)}n>1 be a convergent sequence in LP([0, a], E') such that u,(-) — u(-) as n — oo. Since

[ (Fun) () = (Fu) O < | (Bun) (¢) = (Bu) @)+

+|A|/IIK(t,S)IIH(Dun)(S) — (Qu)(s)l|ds
0

for every t € [0, a], then using Minkowski’s inequality we have
1/p

[Fun = Fullp < /H (Bun) (1) = (Pu) (B)[[Pdt | +
0

P 1/p

A / / 1K () Qun)(5) — (Qu)(s)llds | de| 3.7)
0

0
Now, using (H;) and the integral version of Minkowski inequality, we obtain
P 1/p

//IIK(t78)|!\(Dun)(S)—(DU)(S)\dS at| <
0

0
a 11/p

< / U@ @) - @ a| s <

0 J

g/uaun —(Qu)(s)| /HKts\pdt ds <
0

1/q

<a e [ @u)(s) - @) | [ 1K@ ar | ds<
0 0

a 1/17
< MaV/p=Y/ag\ /v / 1(Qua)(s) — (Qu)(s)Pds | =

= Ma'?||Qu,, — Qul,,
so that (3.7) become
|1 Tun — Tully < [[Bun — Rullp + MINa"?[|Quy, — Qull,.

Since P and 9 are continuous operators, from the above inequality it follows that ||Tu,, —Tul|, — 0
as m — 0o, and so ¥ is a continuous operator. In the next step, we will show that
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lim Sup/H (Tu)(t + h) — (Tu)(t)|[Pdt = 0. (3.8)
h—=0yeB

If t € [0,a] and t + h € [0, a], then for every u(-) € B we have

[[(Zu)(t + h) — (Tu)(@)|| < ||(Pu)(t+h) — )|+

+\)\]/HK(t+h,s) K (¢, 8)1(Qu)(s)]|ds.

Using Minkowski’s inequality, we obtain

1/p

a 1/p a
= ( Sl n - <su><t>pdt> < ( Jiuen - msu)(t)pdt) +
0 0
a a p 1/p
+[A] |: ( |K(t+ h,s)— K(t, s)(Du)(s)ds) dt] =Ji1+ Jo. (3.9)
I\

Since Pu € LP([0,al, E), then from the fact that translations of LP-functions (1 < p < o0) are
continuous in norm, we see that J; — 0 as h — 0.
Next, using the integral version of Minkowski inequality, we get

a a 1/p
Jr < / ( / [K<t+h,s>K(t,s><au><s>1pdt> ds =

0 0

a a 1/p
- 1@l ( Ji e+ ns) - K s)Pdt> s <
0 0
a a 1/q
< al/pl/q/H (Qu)(s)]| (/K t+h,s) K(t,s)th) ds <
a 1/q
< gt/r—1/a 1(Qu)(s)]|? ds) |: ( |K(t+ h,s)— K(t, s)th) ds] <
[Jremres) (]
a 1/q
(/K(t Y h,s) - K(t, s)th) ds] ,
0

3 < a1 (el + ary [ ( Ji+hos) - Kt s)th> ds
0

0

< a7V Qull,

O\a

so that

ISSN 1027-3190.  Vkp. mam. scypn., 2018, m. 70, Ne 1
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Then, from Lemma 3.1, we have Jo — 0 as h — 0. Therefore, from (3.9) it follows that
P = /H(zu)(t L) = (Tu)O)|Pdt >0 as h—0,
0

uniformly with respect to u € B, so that (3.8) is proved. Next, let A be a countable subset of B
such that A C @((TA) U {0}). We will use the compactness criteria from Lemma 2.2 to show that
A is a relatively compact set in LP([0, a], E'). First, from (3.8) we have

lim sup/Hu(t—i—h)—u(t)\pdt—O. (3.10)
h%oueA
0

Since A is a bounded set in LP(]0, a], E') then, from (3.10) and Lemma 2.2, we have

a

1/p
ap(A) <2 (/ [a(A(t))]P dt) . (3.11)

0

On the other hand, using the properties of the Kuratowski measures of noncompactness and (3.3), we
have

a(A(t)) < a(eo((TA) (1) U{0}) = a((34) (1) <

<ol may +a / K(t,5)(QA)(s)ds | <

0

< a ((PA)®) + Ma ( / K(t, s><9A><s>ds) <

0

< ka(A®) + N (/ K, s)(QA)(s)ds). (3.12)

0

Next, for each u(-) € A, the function s — || K (¢, s)(Qu)(s)|| is measurable on [0, ¢] fora.e. ¢ € [0, a].
From (3.4) it follows that

K (t,s)(Qu)(s)|| < 1K, 5)[[(c(s) + dlut)]]) < Kt 5)]| (c(s) + de(t)
and consequently

a

a a 1/(1/ l/q
/ 1K (t, 5)(Qu)(s)||ds < ( / K(t,sw’ds) ( / (cls) +d¢<t>>qu) <
0 0

0

< aP 4 (|lellp + dllellp) (),

so that s — || K (t,s)(Qu)(s)|| belong to L'([0,a],Ry) for a.e. ¢ € [0,a]. Hence, from Lemma 3.1,
Holder’s inequality and Lemma 3.2, we have
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EXISTENCE OF GLOBAL SOLUTIONS FOR SOME CLASSES OF INTEGRAL EQUATIONS 139

a

o / K(t, s)(QA)(s)ds | <2 / o (K(t,s)(QA)(s)) ds <
0

0

< ok, / 1K (L, )]l (A)(s)) ds <
0

1/q a 1/q

<oy | [IK@N7ds| | [la(eras)| <
0 0
a 1/19
<2yt | [la(e)ras| e, (.13)
0
so that, from (3.12) and Lemma 2.2, we obtain
a 1/p a 1/p
Jlaeras) <k [laqeras)| +
0 0
a 1/?
2k Na e, | [lae)rs| <
0
a 1/P
< Gk + 2Alkaa ) | [ la () )Pds | (3.14)
0

Since ky + 2|\|koa'/P1/9||€]|, < 1, from the last inequality we obtain
a 1/p

[lateras) o

0

and thus, from (3.11) it follows that «,,(A) = 0; that is, A is a relatively compact set in LP([0, a], E).
Summarizing, we have shown that ¥: B — B is a continuous operator with the property that for a
countable subset A of B such that A C co((TA)U{0}) we have that A is relatively compact. Since
B is a closed and convex set in LP([0, a], E) then, by the Monch fixed point theorem, it follows that
there exists u(-) € B such that u = Tu; that is, the integral equation (1.1) has a least one solution
u(-) € B.

Theorem 3.1 is proved.

Remark 3.1. Suppose that A = 1 and the conditions (H;), (Hy) are satisfied. If (3.3) holds for
some ki, ko > 0 with ky + 2kea'/P~1/4)|¢||, < 1, then from the above proof it is easy to see that the
integral equation (1.1) has at least one solution in L”([0, a], E).

Theorem 3.2. Let conditions (Hy), (Hy) be satisfied and suppose that (3.3) holds for some
k1, ko > 0 with ky + 2kea/P=1/9||€||,, < 1. Then the integral equation (1.2) has at least one solution
in LP([0,a], E).
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Proof. 1f we put

K(t,s) if 0<s<t<a,
K*(t,s) =
0 otherwise,

and A = 1, then the integral equation (1.2) is equivalent to
u(t) = (Pu)(t) + / K*(t,5)(Qu)(s)ds  ae. te€[0.a] (3.15)
0

Since K satisfies (Hy), it follows that K* is a strongly measurable function from [0, a] x [0, a] into
L(E),
1/q

a
ess sup /HK*(t, s)||dt =M < o0,
s€[0,a]
0
and
a a 1/q
lim / K™ (t + b, s) — K*(t,8)|9dt | ds = 0.
h—0
0 \0
Also, it is easy to check that the function £*: [0, a] — R, defined by
a 1/q
(1) = / K (2, )| ds forac. € 0,a,
0

belongs to LI([0,a],Ry), [|€*]l, < Ma'/? and |£*|, < Ma'/P~1/4+1/4 Then, by Remark 3.1, it
follows that the integral equation (3.15) has at least one solution in LP([0, a], E'), so that the integral
equation (1.2) has at least one solution in L?([0, a], E).

Theorem 3.2 is proved.

Remark 3.2. Suppose that there exist mg > 0, k3 > 0 such that

t 1/p
a((PBA)(L) < mo /[@(A(S))]p ds and  a((QA)(1)) < kaa(A(t)) (3.16)
0

for ¢ € [0, a] and for each bounded subset A C LP([0,al, E'). We notice that if there exists m; > 0
such that

a((PBA)()) <my /a(A(s))ds, t €[0,al,
0

then
1/p

a((BA)(H) < myall? / a(A(s)Pds | .
0

so that P satisfies (3.16) with mgo := mia*/?". Now, let A be a countable subset of B such that
A C o((TA) U{0}), where T is defined by (3.6) and B := {u € LP([0,a], E); ||ull, < r}. Then
(3.12) becomes
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t 1/p a
a(A(1)) < mo / a(A)Pds |+ Aa / K(t, 5)(Q4)(s)ds 3.17)
0 0
for all ¢ € [0, a]. Then, by (3.13), (3.14) and (3.17), we obtain
a 1/p a 1/p
Jlateras|  <m| [laaeras)
0 0
a 1/17
2N e | o (P ds | <
0
a 1/1’
< (ma + 2 lkaa/? o)g,) | [l ((A)(s))7ds
0

If mo + 2|A\|k2a'/P~1/9||€||,, < 1, then the last inequality implies

a 1/p

/ o (A)s)Pds| =0,

0

Therefore, under conditions (H;), (H) the result of Theorem 3.1 remains true if (3.16) holds for some
mg > 0. Consequently, the result of Theorem 3.2 remains also true if (3.16) holds for some mg > 0
with mg 4 2koa'/P=14||¢]|, < 1.

4. Neutral functional differential equation. The aim of this section is to apply Theorem 3.2
to a class of neutral functional differential equations involving abstract Volterra equations. Some
interesting results about neutral differential equations can be found in [17, 18, 22, 23]. In the
following, we consider the neutral functional differential equation

%[u(t)—(@u)(t)]:(ﬂu)(t) forae. € [0,a), @1

together the initial conditions u(0) = g, where €, Q: LP([0,al, E) — LP([0, a], E') are continuous
causal operators such that (€u)(0) = @ for every u(-) € LP([0,a], E).

A function u(-) € LP(]0,a], E) is said to be a solution of (4.1) with initial condition u(0) = ug
if t — u(t) — (Cu)(t) is an absolutely continuous function and satisfies (4.1) for a.e. ¢ € [0, a]. Note
that u(-) itself may not be differentiable on the interval of existence. It is easy to see that if u(-) is a
solution of equation (4.1), then it satisfies the integral equation

t
u(t) = (Pu)(t) + /(Qu)(s) ds forae. te€(0,qa, 4.2)
0

where (Pu)(t) := up + (Cu)(t), t € [0,a]. Conversely, if u(-) € LP(]0,a], E) satisfies the integral
equation (4.2), then u(-) is a solution of equation (4.1) with initial value u(0) = ug. Let condition (H;)
be satisfied and suppose that there exists k1 € [0,1) and k2 > 0 such that € and 9 satisfy (3.3).
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Taking K (t,s) = I forall (t,s) € A := {(£,5);0 < s <t < a}, by Theorem 3.2 it follows that
the integral equation (4.2) has at least one solution in L”([0, a], E'). A similar result was obtained by
Corduneanu [10] (Section 6.4) in the finite dimensional case. For instance, the above result can be
applied to the neutral functional differential equation

% u(t) — /K(t, s)u(s)ds| = g(t,u(t)) forae. te€(0,al, (4.3)
0

with the initial conditions u(0) = ug, where K : A — L(E) satisfies (Hy) and g: [0,a] x E — E'is
a Carathéodory function; that is,

(@) g(t,-) € C(E,E) for each t € [0, al;
(b) g(-,u) is strongly measurable for each u € E;
(c) There exist my(-) € LP([0,a],R;) and d > 0 such that

llg(t,w)|| < mgy(t)+ d|ull for every t € [0,d] and ue L.
Also, we assume that the following condition holds:
¢
(H3) t — u(t) — / K(t, s)u(s) ds is an absolutely continuous function on [0, a.
0

Now, it is easy to see that if u(-) is a solution of equation (4.3), then it satisfies the following integral
equation:

u(t) = (Pu)(t) + / (Qu)(s)ds  forae. tel0,adl, 44)
0

where

(Pu)(t) :=uo + /K(t, s)u(s)ds, te[0,al,
0

is a Volterra operator and
(Qu)(t) == g(t, u(t)), tel0,a],
is the Nemitskii operator. Conversely, if u(-) € LP([0, a], E) satisfies the integral equation (4.4), then
u (+) is a solution of equation (4.3) with initial value u(0) = uyg.
Theorem 4.1. Suppose that K: A — L(E) satisfies (Hy) and g(-,-): [0,a] x E — E is a

Carathéodory function such that there exists kg > 0 such that Ma'/P+1/4 4 2kya/P=1/9|¢|,, < 1
and

a(g(t, A)) < kaa(A) (4.5)

Sort €10, a] and for each bounded subset A C E. If (Hz) hold, then the neutral functional differential
equation (4.3) has at least one solution in LP([0, al, E) satisfying the initial condition u(0) = uo.
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Proof. From (H,) and Theorem 9.5.1 in [15] it follows that 3 is a continuous operator from
LP([0,a], E) into itself. If V is a bounded countable set in LP([0, a], E), then we have

t

a((BV)(t) <« /K(t,s)V(s)ds < /a(K(t, s)V(s))ds <
0

0

< / 1K (t,9)l|a (V(s)) ds <

1/¢

¢ e ;¢
< 0/ |K(t,5)||ds 0/ a(V(s)7ds | <

1/p

< Ml/a-1/p / a(V(s)Pds|
0

so that 13 satisfies (3.8). Also, by (c) it follows that the Nemitskii operator £ is a continuous
operator from LP([0,al, E) into itself. Next, using (4.5), for any bounded and countable set in
L?([0,a], E) we have a ((QV)(t)) = a(g(t, V(t)) < koar(V (t)) for ¢ € [0,a], so that Q also
satisfies (3.3). Consequently, (H;), (Hy) and (3.3) are satisfied so that, by Remark 3.2, the neutral
functional differential equation (4.3) has at least one solution in LP([0,al, E) satisfying the initial
condition u(0) = wuo.

Theorem 4.1 is proved

5. A global existence result for nonlinear Fredholm functional integral equations. In this
section we obtain a result on the global existence of solutions for a nonlinear Fredholm functional
integral equation involving an abstract Volterra operator. A similar result was obtained by Warga
[49] ([Theorem II.5.1]) in the finite dimensional case. If X, Y are given real separable Banach
spaces, we denote by C(Y, X) the Banach space of all continuous and bounded functions from Y
into X endowed with the norm | f(-)l[c(v,x) = supyey [[f(y)l|. We shall identify two functions
g(y),h(, ) [0,a] xY — X if g(¢,-) = h(t,-) a.e. on[0, a], and we will denote by Q := Q([0, a] x
x Y, X) the vector space of (equivalence classes of) all functions g(-,-): [0,a] x Y — X such
that:

(c1) g(t,-) € C(Y,X) foreach t € [0, al;

(c2) g(+,y) is strongly measurable for each y € Y;

(c3) there exists a function my(-) € LP([0, a],R) such that

g, Mew,x) < mg(t) for every t € [0,a).

An element of €2 is called a Carathéodory function.
Remark 5.1. 1t is easy to see that the function ¢ +— [|g(t,-)|lc(v,x) is Lebesgue integrable on
[0, a] for every g(-,-) € Q. Moreover, the function g — |[|g||q: 2 — R4, given by

lgle = / L9t Moy dt
0
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is a norm on . Also, for every g(-,-) € Q and for every strongly measurable functions y(-):
[0,a] — Y, the function ¢ — g(¢,y(t)) is Bochner integrable on [0, a].

In the following, if F'(-) € C([0,a],?) is a given function, then we will write F'(t, s,y) instead
of F(t)(s,y) for (s,y) € [0,a] x Y.

Consider the nonlinear Fredholm functional-integral equation

a

Mﬂzw®+/F@&@m@M&tem@, 5.1)

0

where F(-) € C([0,a],©2), Q: C([0,a],X) — L*([0,a],Y), and uy(-) € C([0,al], X) are assumed
to satisfy the following assumptions:
(A) Q: C([0,a], X) = L*=([0,a],Y) is continuous and there exists b > 0 and 0 < ¢ < 1 such
that
1Qulloo < 0(1+[lu()))%  u(-) € C([0,a], X);

(Ap) there exist 0 < d < 1 and an integrable function A(-,-): [0,a] x [0,a] — Ry such that

a

v := sup /h(t, s)ds < oo
0<t<a 5

and
IF(t 5,9 <t )L +[lyl)*  for t,s€[0,a] and yeY;
(A;) there exist k, ko > 0 and ¢(-) € L'([0,a], Ry ) such that

B(F(t, s, B)) < kp(B)

for all ¢, s € [0, a] and any bounded set B C Y, and

BUAQV)(1) < koB(V (1))

for every t € [0, a] and every bounded set V' C C(]0,a], X).

Theorem 5.1. If assumptions (A;)—(Asz) are satisfied, uo(-) € C([0,a], X) and kko < 1, then
the integral equation (5.1) has at least one solution in C(]0,al, X).

Proof. Since F(t,-,-) €  and the function s — (Qu)(s) is strongly measurable on [0, a]
for each u(-) € C([0,a],X), by Remark 5.1 it follows that the function s — F'(¢,s, (Qu)(s)) is
Bochner integrable on [0, a] for every ¢ € [0, a], so that the operator

a

(MMQFWM+/F@&QM@M&tEM@

0

is well defined for every u(-) € C([0,a], X). Since 0 < ¢,d < 1, it is easy to check that, for a given
7 > max{1,v(1 + 2b)°}, we have y[1 + b(1 +7)4]° < 7. Let

W, = {u € C([0,al, X); |lu()] < r},
where r := 7 + ||ug(+)||. First, we remark that, for every u(-) € W,., we obtain
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1(Qu) ()] < b(L + [lu(s)[])* < 7o := b(1 +7)°

fora.e. s € [0, al, so that QW, C {y(:) € L*>([0,a],Y); |ly(-)|]| < ro}. From (A;) and (Ay) it follows
that, for each u(-) € W,., we get

I(Ku)(@)] < o)l +/HF(t,87 (Qu)(s))llds <
0

a

< Jluo()ll + /h(t, $)(1+ [[(Qu)(s)[)%ds <

0

< Juo() | + (1 + |Qulloo)? sup /h(t,S)dS <
OStSaO

< lluo()| +[1+ 00+ < luo ()]l +7 =,

so that K'u € W, for every u(-) € W,.. Since W, is bounded and KW, C W,., KW, is also bounded.
Now, we show that K is a continuous operator on W,.. For this, let {u,(-)}»>1 be a sequence in W,
converging to some u(-) € W,.. Then by (A;) we have that lim, o (Quy,)(s) = (Qu)(s) for a.e.
s € [0,al. Also, since F(t,-,-) € £,

lim F(t, s, (Qup)(s)) = F(t,s, (Qu)(s))

n—oo

and
HF(t737 (Qun)(s))H < sup HF(tv&yH < (1 —i—T‘O)dh(t, S)

lyll<ro

for each ¢ € [0, a] and for a.e. s € [0, a], by the Lebesgue dominated convergence theorem we obtain

a a

lim [ F(t,s, (Qup)(s)ds = /F(t, s, (Qu)(s)ds

n—00
0 0

for each t € [0, a]. Consequently, K is a continuous operator. Next, for every ¢, s € [0, a] and every
u(-) € W,, we have

[(Ku)(t) — (Ku)(s)|| < / [E(t, 7, (Qu)(T)) = F(s, 7, (Qu)(7))[|dT <
0

< /supHF(t,T,y) — F(s,7,y)||dr =
yey

- / |FE7) = P57 oy = 1) = Fls, -, )|
0

Since F'(-) € C([0,al, ), for every € > 0, there exists § = §(¢) > 0 such that
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[(Ku)(t) = (Ku)(s)|| < ||F(t, ) = Fs,) || < e

for all ¢, s € [0,a] with |t — s| < ¢ and for every u(-) € W, so that KW, is equicontinuous. Next,
put Wy := W, and define W,,; = conv(KW,), n=0,1,2,....
Now, from KWy C Wy, it follows that

W = conv(KWy) C conv(Wy) = W,

and thus, Wy C C([0,a], X) is bounded, closed, convex and equicontinuous. By Mathematical
induction it is easy to see that W, .1 C W,, and W,, C C([0,a], X) are bounded, closed, convex
and equicontinuous for n = 0,1,2,.... Next, since C([0,a], X) is separable, then for each n =
= 0,1,2,..., there exists a countable set V" = {v};k = 1,2,...} C C([0,a],X) such that
V7 = W,. Then, by Lemma 3.1, the properties of the measure of noncompactness and (Asz), we have

BWas1(t) = B(eomv(KW) (1) = B((KW) (1) = B((KVT)(1)) <

<3 /F(t,s,(QV”)(s))ds <
0

a a

< k/ﬁ((QV")(s))ds < k:k:o/ﬁ (V(s)) ds,

0 0

that is,

B(Wni1(t)) < kko / B (Wa(s))ds, te0,b].
0

From a finite number of steps, we obtain

a

B(Wi(t)) < (k:k:o)”/ﬁ(Wo(s))ds, tel0,0, n>L
0

From Wy,11 C W,, n=20,1,2,..., and property (4) of the measure of noncompactness, it follows
that, for each ¢ € [0, b], the sequence {3 (W,,(t))}n>0 is bounded and decreasing. Hence, there exists
h(t) = limp_oo B (Wi (t)), t € [0, b]. Taking n — oo on both sides of the last inequality we get

(t) = Jim 6 (W (t) < lim (ko) [ 5 (Wo(s)ds =0, ¢ [0.3],
0

and thus, h(t) = lim, oo B (Wy(t)) = 0, t € [0,b]. Since W,,, n = 0,1, ..., are bounded and

equicontiuous, it follows that lim,,_,~ 8. (W, ) = 0. By property (7) of the measure of noncompact-

ness, it follows that W := ﬂoo Wy, is a compact set of C(]0,a], X) and KW C W. Consequently,

=0
by the Schauder fixed point Ttlheorem, it follows that the operator K has at least one fixed point
u(-) € W, which is a solution of (5.1).
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