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ON MODULI OF SMOOTHNESS WITH JACOBI WEIGHTS *
ITPO MOAVJII INTAAKOCTI 3 BATAMMU SAKOBI

We introduce the moduli of smoothness with Jacobi weights (1 — z)*(1 4 x)? for functions in the Jacobi weighted spaces
Lp[—1,1], 0 < p < oo. These moduli are used to characterize the smoothness of (the derivatives of) functions in the
weighted spaces L,. If 1 < p < oo, then these moduli are equivalent to certain weighted K -functionals (and so they are
equivalent to certain weighted Ditzian— Totik moduli of smoothness for these p), while for 0 < p < 1 they are equivalent
to certain “Realization functionals”.

BBezieHo Moxyni riazkocti 3 Baramu SIkoGi (1 — ) (1 4 x)? mia dynxuiil, mo Hanexars BaroBuMm mpoctopam Sko6i
L,[—1,1], 0 < p < oo. Lli Moxyni BUKOPUCTOBYIOTHCS, 00 OXapakTepu3yBaTH MIAAKiCTh QYHKLIN Ta iX MOXiAHHX Y
BaroBux npocropax L,. IIpn 1 < p < 0o mi MOmyni eKBiBaJICHTHI JESKUM BaroBuM K -(yHKIioHamaM (TaKHM YHHOM,
€KBIBAJICHTHI JESKAM BaroBUM MoAyiasM miankocTi [imiana—Torika mig nux p). Bomaowac mpu 0 < p < 1 mi momymi
€KBIBAJICHTHI JesKUM ,,(yHKI[IOHANaM peaizarii”.

1. Introduction and main results. The main purpose of this paper is to introduce moduli of
smoothness with Jacobi weights (1 — x)%(1 + z)# for functions in the Jacobi weighted L,[—1,1],
0 < p < o0, spaces. These moduli generalize the moduli that were recently introduced by the authors
in [9, 10] in order to characterize the smoothness of (the derivatives of) functions in the ordinary
(unweighted) L, spaces.

For a measurable function f: [—1,/1] — R and an interval I C [—1,1], we use the usual

1/p

notation || f[|, ) = </I |f(z)|P dx , 0 <p<oo,and ||fl|L(r) = esssup,er |f(z)]. Fora
weight function w, we let Ly (1) == {f | |wfll,, ) < oo}, and, for f € Ly p(1), we denote
by En(f,wp = infp, ep, |w(f — pn)llL, 1), the error of best weighted approximation of f by

polynomials in IP,,, the set of algebraic polynomials of degree strictly less than n. For I = [—1,1],
we denote |-, == [l ;—1,1)» Lwp = Luwp[=1,1]; En(f)wp = En(f; [1,1])w,p, etc. Finally,
denote

o) =1 —a2
Definition 1.1. For r € Ny and 0 < p < oo, denote Bg(w) := Ly and
B, (w) := {f | f(T_l) € ACye(—1,1) and gorf(T) € LwJ,}, r>1,

where ACio.(—1,1) denotes the set of functions which are locally absolutely continuous in (—1,1).
Now, define

(_1/p7 00)7 if p < 00,

[0, 00), if p=o0,
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let
wap(x) = (1-2)*1+2)°,  o,B€e,

be the Jacobi weights, and denote L3 := Lo 5.p-
Also denote

WES(2) == (1 — 2 — Sp(a) /2)5(1 + 2 — dip(x) /2)C.

Note that WS (z) = wa g(z), Wa/*?(z) = p(z) and, if £,¢ > 0, WS (2) < wec(x).
For k € N and h > 0, let

k k k—i kh . . kh kh

0, otherwise,

be the kth symmetric difference, and A¥(f,z) := AR (f,z;[-1,1]).

We introduce the following definition, which for o, 5 = 0, was given in [10] (Definition 2.2) (for
a, =0 and p = oo see the earlier [2] (Chapter 3.10)).

Definition 1.2. For k,r € N and f € Bj(wa,5), 0 < p < oo, define

Wl (F7) Vo = oiligtHWr/M PR A (P, )H (1.1)

For § > 0, denote (see [10])

D= o | 1-dpla)/2 2 o} \ (1) = {o | bol < {5} = 14 w01 - o)

where
w(6) :=26/(4 + 6°).
Observe that D5, C D5, if d2 < 91 < 2, and that D5 = @ if § > 2. Also note that Afw(x)(f, x) is

defined to be identically 0 if x € Dy, and that Wg/ 2+ar/248 45 well defined on ®s (except perhaps
at the endpoints where it may be infinite).

Hence,
(r) — su Wr/2+a /2B AR (r)" 12
£ ey = s | O80T, o (12)
and
w F sy = w f.2/k) 05,  for t>2/k. (1.3)

In a forthcoming paper [11], we will prove Whitney-, Jackson- and Bernstein-type theorems for
the Jacobi weighted approximation of functions in the above spaces by algebraic polynomials. Thus,
we get a constructive characterization of the smoothness classes with respect to these moduli by
means of the degrees of approximation. This implies, in particular, that these moduli are the right
measure of smoothness to be used while investigating constrained weighted approximation (see, e. g.,
[3, 7, 8.

We will show that, for r/2+«,r/2+ > 0, our moduli are equivalent to the following weighted
averaged moduli.
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ON MODULI OF SMOOTHNESS WITH JACOBI WEIGHTS 381
Definition 1.3. For k € N, r € Ng and f € B (wa,), 0 < p < oo, the kth weighted averaged
modulus of smoothness of f is defined as

1/p

G sy / [ L @l (0 ) dads
0 Dkr

If p=o00and f € B (wqg), we write

W;an(f( r) t)oc,ﬁvoo = wlf,r(f(r)’ t)aﬁpo
Clearly,

(S app SWf(F app >0, 0<p<co. (1.4)

)

We now define the weighted K -functional as well as the “Realization functional” as follows.
Definition 1.4. For k € N, r € Ng and f € B} (wq,5), 0 < p < oo, define

K;ﬁr(f(r),tk)a,@p = kinf {Hwaﬁ%@r(f(r) _ g(r))H ok Hwa,680k+rg(k+r) }
gEBET (we. ) » ,
and
Rfr(f(r), n_k)a7ﬁ7p = Plnf { Hwa,ﬁ@r(f(r) _ PTET)) H + n—k Hwayﬁgok"rrp’rgk—f—r) } )
’ . EP,, ) )

Clearly, K7 (f™,n %)o5, < RY (F),n7%), 5, n € N. Note that, as is rather well known,
K -functionals are not the right measure of smoothness if 0 < p < 1, since they may become
identically zero.

Throughout this paper, all constants ¢ may depend only on k, 7, p, o and (3, but are independent
of the function as well as the important parameters ¢ and n. The constants ¢ may be different even
if they appear in the same line.

Our first main result in this paper is the following theorem. It is a corollary of Lemma 3.2 and
the sequence of estimates (4.3).

Theorem 1.1. Ifk €N, r € Ng, r/2+a >0,7/2+ >0, 1 <p < oo, and f € By (wap),
then there exists N € N depending on k, r, p, o and 3, such that for all 0 < t < 2/k and n € N
satisfying max{N,ci/t} <n < e/t

K;ir(f(”),tk)a Bp < CR@ (f(r)v”_k) Bp = CW (f( ) Dapp <

< ewf, (f") Vapp < KL (F, )08, (1.5)

where constants ¢ may depend only on k, r, p, o, 8 as well as ¢1 and cs.

Remark 1.1. Clearly, K;ir(f(’"),tk)a 8y < |Jwa g0 fm H < oo, for all f € Bj(wa,p), and it
follows from Theorem 2.1 that, if r/2 + o < 0 or/and r/2 + § < 0, then there exists a function
[ € Bj(wq,p) such that w,fvr(f(r),t)aﬁ’p = oo, for all ¢ > 0. Hence, Theorem 1.1 is not valid if
/24« <0 orfand /24 5 < 0.
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We can somewhat simplify the statement of Theorem 1.1 if we remove the realization functional
Rf’r from (1.5).

Corollary 1.1. Ifk €N, r €Ny, r/24+a>0,7/2+ >0, 1 <p< o0, and f € By (wap),
then, for all 0 < t < 2/k,

KL (fO ) a8 < o (F7 app < cwf (7, app < KL (F7, 8505,

In the case 0 < p < 1, we have the following result on the equivalence of the moduli and
Realization functionals. It is a corollary of Theorem 4.3 that will be proved in Section 4.

Theorem 1.2. Let k€N, r € No, 0<p<1,7/24+a>0,7/2+ 3 >0, and f € B)(waz).
Then there exist N € N and ¥ > 0 depending on k, p, o and (3, such that, for any 91 € (0,9,
n> N, ¥1/n <t <9/n, we have

RY(F,n M)asp ~ it (f7 Oapp ~ wf (F ) aspe

Here, as usual, by a(t) ~ b(t), t € T, we mean that there exists a positive constant ¢y such that
cgta(t) < b(t) < coaf(t), forall t € T.
Note that it follows from Theorem 1.2 that, for sufficiently small ¢1,t2 > 0 such that t; ~ to,

w::?i(f(r)vtl)a,ﬁ,p ~ wlf,r(f(T)atl)a,B,p ~ waﬁ(f(”k t2)a,8,p ~ w}f’r(f(r), t2)a,8,p-

If1 < p < o0, we can say a bit more. Theorem 1.1 and the (obvious) monotonicity of w,f,T( ), t)a.B,ps
with respect to ¢, immediately yield the following quite useful property which is not easily seen from
Definition 1.2.

Corollary 1.2. Letk € N, r € Ng, r/24+a>0,7r/24+3>0,1<p < oo, f € By(wap) and
A > 1. Then, for all t > 0,

Wl (F7 M)asp < Xl (F7, ) 8- (1.6)

By virtue of (5.2) the following result is an immediate consequence of Corollary 1.1.
Theorem 1.3. Letk € N, 7 € No, 7/2+a >0, 7/2+8 > 0,and 1 < p < co. If f € B} (wa ),
then, for some tg > 0 independent of f,

w§7r(f(r)’t)avﬁ7p ~ (A}(];(f(r)’ t)wa,BSﬁTyp’ O < t S t[), (1‘7)

where the weighted DT moduli wé(g, Dw,p are defined in (5.1).
It was shown in [9] (Theorem 5.1) that, for £, ( > 0 and g € le) (we,e),

k k
wsfl(g,t)wé’c’p < ctww(g’,t)wg’c%p, t > 0.

Letting & := r/2 4+ a, ¢ :==r/2+ 8, g := f), using the fact that f(") ¢ B;(wT/2+a7T/2+ﬂ) if
and only if f € B;“(wawg), by virtue of (1.7), as well as (1.6) if ¢ is “large” (i.e., if t > tg), we
immediately get the following result.

Lemma 1.1. Letk € N,r € No, 7/24a > 0,7/24+5 > 0,and 1 <p < o0.Ilf f € IB%;H(waﬁ),
then

w,f+17r(f(r), app < ctwl‘fmﬂ(f(rﬂ)’t)aﬁ’p, t> 0.
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ON MODULI OF SMOOTHNESS WITH JACOBI WEIGHTS 383

Finally, the following lemma follows from [1] (Theorem 6.1.4) using (1.7).
Lemma 1.2. Letk € N, 7 € No, 7/24+a>0,7/2+8>0,and 1 <p < oo. If f € B} (wa,3),
then

warl,r(f(r)’ t)a,ﬁ,p S wa,r(f(r)’ t)a”B,p, t>0.

2. Hierarchy of B;(wa,g), (un)boundedness of the moduli and their convergence to O.
Without special references we use the following evident inequalities:

(1—2)<2(1—-u) and (1+2x) <2(1+u), if w € [min{0, 2}, max{0,z}],
and
plr) <pu), if fuf <z <1
Also (see [10], Proposition 3.1(iv)),

o' (x)| <1/6  for x€Ds. 2.1

First we show the hierarchy between the B} (wa ), 7 > 0, spaces. Namely, the following lemma
holds.
Lemma 2.1. Letr € No, 1 <p<ooandr/2+a,r/2+ [ € Jp. Then

Bt (wa,5) € B (wa,s)- 2.2)
Moreover, in the case p = o0, if /2 4+« > 0 and r/2 + ( > 0, then, additionally,

feB (wap) = lim wep(@)e’ (2)f (@) =0. (2.3)

Remark 2.1. Note that we may not relax the condition r/2+«,7/2+ 3 > 0 in order to guarantee
(2.3). Indeed, if @ = —r/2, for example, then the function g(x) := 2" is certainly in B’ (wq,g)
but lim, 1 wa, g(x)¢" (x)g") (x) # 0.

The same example shows that we may not relax the condition r/2 + «,7/2 4 8 € J,, in order to
guarantee (2.2), since Hwawgcp’"g(’") Hp = oo if this condition is not satisfied, so that g ¢ B} (wa,g)-

Remark 2.2. For any 7 € Ny and o, € R, (2.2) is not valid if 0 < p < 1. For example,
suppose that f is such that

FO@) =3 gula),
n=1

where, for each n € N,

(H,, 1 . 1 1

L 1-— f—— < 1< —— ,

- (ﬂs—i- n+1>, if g <eFls-—+en

1

H,, if +ep<zr+1< ——¢gp,
gn(T) = n+1 n

H, /1 1 1

En \ N n n

0, otherwise,
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H,, :=n"/?8+1p ¢ .= con=2/(1=P) "and ¢ > 0 is a constant depending only on p that guarantees
that 4e,n(n + 1) < 1, for all n € N. Then f(") € ACjoc(—1,1) and

Jwa.se £ ZHwa,w bl > 30— = 3 0 = o
n=1

Hence, f ¢ B} (wq,p). At the same time,

1
Hwaﬂ(pr-‘rl FOD H Z [wase" gl |7 < — (Hper V)P en =

n=1

o o0
=c E ntP/2elr — ¢ g n~17P/2 < oo,
n=1 n=1

so that f € Byt (wq,g).

Proof of Lemma 2.1. The proof follows along the lines of [10] (Lemma 3.4) with some
modifications, we bring it here for the sake of completeness. Let g € IB%;H(waﬂ), and assume,
without loss of generality, that ¢(")(0) = 0 and that § > a. For convenience, denote Ap
— Hwaﬁ(prﬂg(rﬂ) Hp .

First, if p = oo, then A, < oo and

wap(2)¢" (2)]g7) ()] = w5z / D) (4) du| <
0
< Ascwqa gz / w)™ ") du| <
0

<2 e | [ ) du -
0
||

— QﬁaAOOQOT+2a(I£)/(pT12a(U) du <
0

||

< 2/3_‘1A00/<p_1(u) du <

e=]

<2 A / o M) du = n2P72 T A

Hence, g € B__(wq,), and (2.2) is proved if p = oo.
In order to prove (2.3) we need to show that, if /2 + a, /2 + 8 > 0, then
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ON MODULI OF SMOOTHNESS WITH JACOBI WEIGHTS 385

lim we, g(z)¢" ()¢ (z) = 0. (2.4)
r—+1 ’
(Note that we are still not losing generality by assuming that ¢(")(0) = 0.) We put ¢ := min{r +
+ 2a,1} > 0 and note that

T

/ 1 d 11 1+z
——du=-1In .
©?(u) 2 1-=x
0

Therefore,

1
) ] <2 A ) [ Sy s
|| )
<Pl (o) [ du—

= 2P"%A o (J2]) In

1
1+‘x| -0, |z|]—1,

|z|
and (2.4) is proved.
Now let 1 < p < 0o and ¢ := p/(p — 1). Then, denoting

x l/q
/ Glu)idu| = sup G (w)
0

w€[min{0,z},max{0,z}]

if ¢ = oo, we have by Holder’s inequality

1 T p
p
[wasers®| = [ut s @] [ oD el do <
1 0

I T p/q
< /U’Zﬁ(x)@w(x) /wa}j(u)@_(r“)q(u) du X
X /|wa,6(u)¢+1(U)g(T+1)(u)|pdu dr <
0

1 x p/q
< Ag/wi,g(x)sfp(iﬂ) /wa,qﬁ(U)cp_(T“)q(u)du dr <
1 0

1 x p/q
< 2(ﬂa)pA£/(prp+2ap($) /(p(TJrl)an(I(u)du dr =:
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=: Q(B_O‘)pAg@(a, D).

Note that

1
= /¢T+2a(x) ( sup <pr12°‘(u)> dz.
71 u€[min{0,z},max{0,z}]

Recall that /2 + o € J), so that rp + 2ap > —2. We consider two cases.
Case 1. Suppose that rp + 2ap > —1. If p = 1, then r + 2a + 1 > 0 implies that O(a, 1) =
1

= / ¢ Y (z)dz =7, and if 1 < p < oo, then ((r + 1)g — 1 + 2aq)p/q = rp+ 2ap+ 1 > 0, and
-1

hence
1 p/q
(P(r+1)q 1+2aq( )
/ / r+1)q+2aq( ) du dr <
0
1 x 1 1 p/q
2/1 /1 du dr < Q/dw /du =
p(z) o(u) p(z) o(u)
0 0 0 0

= 2(r/2)P.

Case 2. Suppose now that —2 < rp 4+ 2ap < —1. If p = 1, then

1
O(a,1) = /¢T+2a(x)dx < 0.
1

If 1 < p< oo, then (r 4+ 1)g + 2aq < 1. Hence

1 1

/ga(”l)q%‘q(u)du < /gpl(u)du =n/2,

0 0

and so
1

O(a,p) < 2(7r/2)p/q/cprp+2ap(a:)dx < 0.
0

Lemma 2.1 is proved.

We now show that, for a function f € Bj(wap), if 7/2+a > 0 and r/2 + 8 > 0, then the
modulus wy (f (") )5, p is bounded.

Lemma 2.2. Letk €N, r €Ny, 7/2+a>0,7r/24+>0,and 0 <p < oco. If f € B (wa,p),
then

(f( ta,8,p < Hwaﬁ@ A
p’

t>0, (2.5)
where ¢ depends only on k and p.
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Proof. In view of (1.3), we may limit ourselves to ¢t < 2/k, and so Dy, # @ if 0 < h < t. We
set

ui(z) ==z + (i — k/2)hp(z), 0<i<Kk,

and note that, for x € Dy,

b Wi @)
B = @) wa@)
(1= wi(@) — (k= D)heo(@)\ P (14 wi(w) — ihp(x) |
—< 1— w(z) > < 1+ u(z) > =l

Therefore,

HWZ;/LHO"T/HB(')JC(T) (“"('))HLOO@M) —

= [ BrCywas ()6 (@i ) £ (i) =

Loo (Dgn)

< s s (D" i () £ i)

< ||wape s

)

Loo(Dkn) o0

that yields (2.5) for p = oc.
To apply the same arguments to the case 0 < p < oo we note that (2.1) yields |¢'(z)| < 1/(kh)
for x € Dy, so that

wi(x) 21— [i — k/2|h|¢"(z)| = 1 = khl¢/(x)|/2 > 1/2, 2 € D,

1
/ |F(us(w))]dz < 2/\F(u)ydu
Dih -1

which implies

for each F' € L1[—-1,1].
Hence,

p

r/2+ar/2+,8 YAk
i () () L)

Lp(®kn)

< [ (D" i ()£ sl )|

p
<2 [ fun sla)e” (@)1 )P = 2 6" 5

Thus,

S 5 By < e guase [Wi 22070 i)

<c Hwaﬁ(prf(r)

Lp(®kn)

Lemma 2.2 is proved.
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Remark 2.3. The same proof yields a local version of (2.5) as well. Namely, for each h > 0
and [a,b] C Dy,

izt Al (0.0

Ly[a,b] s¢ Hwo"ﬁdfm

)

Lp(S5)

where S := [a — khy(a)/2,b+ khp(b)/2].

We now show that the modulus w,ﬁr( £, ) a5, may be infinite for a function f € B} (wa,g) if
either /2 +a <0 orr/2+4 3 < 0.

When p = oo, this is obvious. Indeed, suppose that /2 + 3 > 0 and —k < r/2 + a <
< 0, and let f(z) := (z — )*". Then f € Bl (wa,5) and Af_(f),2) = ch*¢*(z). Hence,
W,Z}/ZHQ’T/%B(JC)A%(I)(f(r),;v) — oo for x such that 1 — z — khe(x)/2 — 0. This implies that
w,f’T(f("),t)a,g,oo = oo for all ¢ > 0. Note also that, by considering f € C"[—1,1] such that
f(x) = (1 — |z))**", = ¢ [~1/2,1/2], one can easily see that the same conclusion holds if both
/24 o and /2 +  are in [k, 0).

When p < oo, the arguments are not so obvious, but the conclusion is the same. The following
theorem is valid.

Theorem 2.1. Suppose that k € N, r € No, a € R, 0 < p < o0, and r/2+ 3 < 0. If
0 <p<1andr>1, weadditionally assume that r /2 + 3 < 1 — 1/p. Then there exists a function
[ € By (wa,p), such that, for all t > 0,

wf’r(f(r),t)a,gyp = 00.

Proof. Let {€,}7°, be a decreasing sequence of positive numbers, tending to zero, such that
eo < 1/(2k) and
(2+k)e, <ep—1, neN.

Define
Jni=[-1+en,-1+e,(1+277)].

Now, let f be such that

) (a:+1—5n)_T/2_B_1/p, if z€J, forsome n¢cN,
() =
0, otherwise.
x
Note that, in the case r > 1, since —r/2 — 3 —1/p+1 > 0, the function £~ (z) = / 70 (u)du
0

is locally absolutely continuous on (—1,1).
Now,

9—Ir/2+alp H“’a 5" f0)

P < E /\(1 +:c)r/2+5f(r)(:v)]pdx <
p
n:IJn

<> el [0 =
n=1 Tn
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0o En2™ "
n=1 0

o0
<320/ < o

n=1
Hence, f € B} (wa,3)-
We now let
€n
Tp ‘= -1+ —~E&n, hn = ) and Ik,n = [.’En,xn + En],
2 o(zn)
so that

Din, = [T, —xn] and  h, < V2, =0, n— 0.

Since ¢(z) > p(xy), |z| < |z,|, we conclude that, for any x € I}, ,, C [zp, —2y),

k k
T — <2 — 2> hno(z) =2 — Ehngo(x) + 2hpp(x) > =14 2h,p(x) >
> 14 2hpp(an) = —1+ 26, > —1 4 en(1+277).

Now, since ¢ is concave and ¢(—1) = 0, we have

n n 1
lanten) < 252 L) = (142 (e

and so, for all x € I ,,

k k k
r+ §hng0(rc) <xzp+en,+ §hns0(33n +en) <xpten+ <1 + 2> hno(zy) =

=—14+2+k)ep, < —1+ep1.
If £ > 2, this implies that, forall 2 <7 < k and x € I, ,,
FO @ + (i = k/2)hnp(x)) = 0.

Now, denote
y(@) =z + (1 - k/2)hnp(x)

and observe that

since, if |z| < |z,|, then it follows from (2.1) that
hnli' (x)] < 1/k
and so
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k 1
(@)~ 1 £ Shale' @) < 5.

Forall k € N, using || f1 + f2,, < max{1,2/7-1} <Hf1||p + ||f2Hp) , we obtain

pla-+r/2] )‘W}:}/Zi+a,r/2+6(,)A§W(f(T)7 )H >

p
Rl [ T IRTLCS]
> H(l +y() — hngo('))T/HB (f(r)(y(‘) — hno(-)) — kf(r)(y(-))) ‘ Lp(Ii.n) =
> kmin{1,21—1/p} H(l +y(-) — hn@(-))”%ﬂf(’")(y('))‘ L & Hwa,BSDTf(T) ) >

> kmin{1,2!"1/7) H(l Fy(-) —en) /2P 0 (y(-))’

) CH“’“W’T“’C(T)

LP(Ik,n '
where, in the second last inequality, we used the fact that y/(z) — h,p'(z) = 1 — khy,¢'(2)/2 ~ 1
that follows from (2.7), and in the last inequality, we used that /2 + 3 < 0 and that &,, < h,p(z)
for all z € [z, —xy].

In order to complete the proof, we show that

i = H(l +y(-) —en) PP (y('))‘ Lp(Ti.n)

Assume to the contrary that H < oco. Since
y(an) =—1+ep <ylz) < —l4+ep_1, € Iy,

there is a positive number a,, < &,,, such that

FOy(@) = (1= en +y(@) 2P0 2 € fon, 2+ a).

Therefore,
Intan
H? > / (1 —¢ep +y(x)) tdr.
Tn

Using the change of variable v = u(x) := 1 — ¢, + y(z) and (2.6) we get

5 Tn+an 9 U(anran)d
HP > = —1y/ - @ _
>3 / (u(z))” ' (x)dz 3 / =00
Tn 0

that contradicts our assumption H < oco.
Thus, we have found a sequence {h,} 2, of positive numbers, tending to zero, such that

HW;{&JF&T/HBAIZWU(T)’ ')Hp = oo for all n € N. This means that w,f,r(f(’”),t)a@p = oo for all

t>0.
Theorem 2.1 is proved.
We now state some properties of the Jacobi weights that we need in several proofs below.
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Proposition 2.1. Forany o, € R, x € D95 and u € [x — dp(z)/2,x + dp(x)/2],
27N Pl p(w) < wap(@) < 2 Pl g(w),
in particular,
p(u)/2 < p(x) < 2¢(u).
Also,
971118l 5(z) < Wg"ﬁ(x) < 2l Bl s(x), =€ Dos.
Proof. For x € Do5 and u € [x — dp(x) /2,2 + dp(x)/2], we have
(1-u)/2<(1—z+0dp(x)/2)/2<1-2<2(1 -2 —dp(x)/2) <2(1 —u)

and

I4+uw)/2<(Q+z+0p(x)/2)/2<14+2<2(1+x—0dp(x)/2) <2(1+u).

This immediately yields (2.8). Now,

WP () = wao(x + 0p(x) /2)wo 5(z — p(x)/2) <

and
Wa,3(x) = wa,0(x)wo p(x) < 21%wa0( + dp(x)/2)2Plwg g — Sp(x)/2) =
— 2\a|+lﬂ\Wgﬁ($).

Proposition 2.1 is proved.

391

(2.8)

(2.9)

(2.10)

Lemma23. [fkeN, reNp, r/2+a>0,7/2+82>0,0<p< o0, and f € Bj(wap),

then

; o (f(r) —
tk}é’:» wk’,’l“(f ’t)(X,ﬁ,p 0'

Proof. Let e > 0. For convenience, denote C, := max{1,2/P~1}. Since f € B}(wa,3), there

is & > 0 such that )

<5~
Lp([-1,1]\Ds) 2COC'p

Hwa,ﬁ(pr(T)
where cg is the constant ¢ from the statement of Lemma 2.2. Set
f0)(z), if  ze®s,
9"(@) =
0, otherwise,
and note that, since ¢(") € Lpy[—1,1], there exists ty > 0 such that

wf (g™ 1), < e/(207AHCy), 0 <t <t
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Using Lemma 2.2 and the fact that, if /2 + o, /2 + 8 > 0 and 2 € Dy, then Wi 2T/ 20 (1) <
< 2la=Bl e have
w,fr(f(’”), ap < prlf,r(g(r)vt)a,ﬁ,p + prf,r(f(r) — g, ta,pp <

)

< 20-Blow? (g0, 1), + coCl Hwa,ggo” (f(” - 9(”) Hp <

< €/2 4 ¢oCyp Hwaﬁgorf(r)

€

<
Lp([-1,1\95)

if 0 <t <ty
Lemma 2.3 is proved.
We now turn our attention to the case p = oo. It is clear that, in order for

i ¢ (pr) —
tl_lggh wk}r(f 7t)05,ﬁ,00 0
to hold we certainly need that f € C"(—1, 1), but this condition is not sufficient. If f € B]_(wq )N
NrC"(=1,1) and r/2 + a,7/2 + B > 0, then we can only conclude that wf (f(),t)4 500 < 00
for t > 0. For example, if at least one of /2 4+ « and /2 + 3 is not zero, and f is such that
70 (@) = w L (2)p~ (), v € N, then f € Bl () 0 C™(—1, 1) and wf, (£7), o g0 > 1.

Lemma24. IfkeN, reNy, r/24+a>0,r/24+ >0, and f € Bl (wap) NC"(—1,1),
then

; w (p(r) —
}/g%wkm(f at)a,ﬁ,oo =0 (2.11)
if and only if
Case 1. r/2+a>0and r/2+4+ 3> 0:
i r () () =
lim we g(2)¢" () [ (2) = 0. (2.12)

Case2. r/2+a>0andr/24+5=0:

lim we ()" (2) " (z) =0, and f©) e C[-1,1). (2.13)

r—1

Case3. r/2+a=0and r/2+ 5 >0:

lim wy g(z)e" (z)f(x) =0, and [ eC(~1,1]. (2.14)

r——1
Case4. r/2+a=0andr/24+5=0:
e cl-1,1]. (2.15)

Note that since, for f € BL (wqz3), ) may not be defined at +1, when we write f(")
€ C[-1,1), for example, we mean that f(") can be defined at —1 so that it becomes continuous
there.

Proof.  Since w}ir(f(”,t)a,ﬂpo = w,f’o(g,t)r/2+a7r/2+5,oo with ¢ := (), without loss of
generality, we may assume that » = O throughout this proof. Note also that Case 4 is trivial since
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wf,o(f, £)0,0,00 = w!},(f, t)oo, the regular DT modulus, tends to 0 as ¢ — 0 if and only if f is
uniformly continuous (= continuous) on [—1, 1].

We now prove the lemma in Case 2, all other cases being similar.

Given ¢ > 0, assume that (2.13) holds, and let § = d(¢) € (0,1) be such that

wap(z)|f(x)] <27F, 2 €[1-41).

Denote
w(t) == wi(f,t;[-1,1—6/3]),

the regular £th modulus of smoothness of f on the interval [—1,1—§/3], and note that lim;_,o w(t) =
= 0 because of the continuity of f on this interval. Thus, there exists ¢y > 0 such that ¢y < 26/(3k)
and w(tp) < £/2%, and we fix 0 < h < 1.

For x € ®yy,, denote J, := [z — kho(x)/2,x + khe(x)/2] C [-1,1]. If z < 1 —26/3, then
Jz € [-1,1—6/3]. Hence,

Wl (@) AF oy (fo )] < 2°(AF ) (F2)] <e. (2.16)
If, on the other hand, x > 1 — 24/3, then J, C [1 — ¢, 1]. Hence, for some 0 € J,,
Wl (@) AF o ()] < 2"Wel ()| £(0)] < 28wa 5 (0)|F(0)] < e. 2.17)

Combining (2.16) and (2.17), we get (2.11).

Conversely, assume that &« > 0, 5 = 0 and (2.11) holds. Observing that lim;_,o wg(f, ¢;[—1,0]) =
= 0, we conclude that f is uniformly continuous on [—1,0], i.e., f € C[—1,1). Also, given € > 0,
fix 0 < h < 1/(2k) such that W/f,o(fa h)apeo < €. Let x € (3/4,1), and let § € (1/2,x) be such
that 6 4+ khe(0)/2 = x. Then

() = Aoy (1, 0] < (2 = DI fllcpo,i-n2/a) = An

which yields

o () ()] < w"‘ﬁ(( 9))wv”*<e> o (. 0)] + a5 () Ay, <

< wfo(fi h)a,Bo0 + Wa,5(x) A

Hence, limsup,,_,; |wq g(z) f(z)| < €, and so lim, ;1 wq g(x)(2) f(x) = 0.

Lemma 2.4 is proved.

3. Proof of the upper estimate in Theorem 1.1. We devote this section to proving that
the moduli defined by (1.1) can be estimated from above by the appropriate K -functionals from
Definition 1.4.

First, we need the following lemma.

Lemma 3.1. Letk € N,r € No, r/24+a > 0,r/24+8>0,and 1 <p < oo.Ilfg € IB%;“‘k(waﬂ),
then

k+r (chrr)

w,fm(g(r) Dagp < cth Hw B (3.1)

p
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Proof. We follow the lines of the proof of [10] (Lemma 4.1) and rely on the calculations there,
modified to accommodate the additional weight w, g.
We begin with the well known identity

h/2 h/2
AN (F z) = / e / F® (g4 uy + .. 4 ug)duy . . . duy, (3.2)
—h/2  —h/2
and write
WSD (T)ut « = su HWT/2+O¢,T/2+BAk (T)7 ’ ‘ =
{6 sy = g W60,
he/2 he/2
= sup W;,/12+a’r/2+5 / . / g(k”)(- +uy + .. 4 ug)dug ... dug <
0<h<t
“he/2 —hef2 Lp(Dkn)
hyp/2 he/2
< sup / / (wa, 59" g% ) (- ur + .o+ ug)duy . dug :
0<h<t
heo/2 —he/2 Lp(Dkn)

where, in the last inequality, we used the fact that /2 + « > 0 and /2 + 8 > 0 implies
W,:,/LHOC’T/HB(JC) <wap(v)e"(v), if x—khe(z)/2<v<z+khp(z)/2.

By Hélder’s inequality (with 1/p+1/q = 1), for each z € Dy, and |u| < (k — 1)he(x)/2, we have

he(z)/2 zt+uthe(z)/2
(wa,BS0T|g(k+r) |) (2 4+ u + ug)duy, = / (wa,ﬁcprlg(k”) |) (v)dv <
—hp(x)/2 ztu—hp(z)/2
S|meﬁ¢k+TQW+¢”h@cA@mu)Hw_kHLq@“xu» <

<GP (z;9,k,r) Hw"’“‘

Lo(A(z,u))’
where
h h
Az, u) == |z +u— 5%0(»"3),33 tu+ 580(33)
and
goaﬂ x;9,k,r) = ‘ We Fopr (k) ’
p (39 ) Be Y Lplz—kho(z)/2,2+kho(z) /2]

Thus, the proof is complete, once we show that

, (3.3)

I(k,p) S Chk Hwa’ﬁgpk‘lﬂ‘g(k+7‘)
p

where
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I(k,p) = ) 93’5(-;97/6,7”)]:(1(-,/6)‘ L@’
P
ho(@)/2  ho(x)/2
Folz, k) = —k dus . .. duj_ if k>2
o(@, k) / / H(p ‘Lq(A(aﬁ,ul—i-.‘.—&-uk,l)) “ k=1 ! -7
—he(@)/2 —hp(a)/2

and Fo(z, 1) = |07 |, aceoy -
To this end, we write

e, @) < My @am) + 2, (@ 0ammn0.0) + L (@0 @amn-1.0)

=: I1(p) + L(p) + I3(p).

In order to estimate I (p), using (2.9), for € Doy, we have

Falw, k) < 28 (hop(a) o™ (@) (hep(a) /9 = 2"RF 1P 1/P (2),

k+r

Exactly the same sequence of inequalities as in [10, p. 141, 142] with ¢ g(k”) there replaced by

wa,ﬁ@k+’"g(’“+’”) yields the estimate

I1(p) < Chk Hwa,BSOkJrrg(k+T)

.
We now estimate I2(p), the estimate of I3(p) being analogous. Denoting
Exn = (Dgn \ Daxn) N [0, 1]

we note that, since gg’ﬁ(az; g, k,r) < Hwa,gcpk“g(k“) Hp, T € Dy, we are done if we show that

H*’rq('yk)HLp(gkh) < ch®. 3.4

It remains to observe that the estimates

/ (Fy(z, k)P dx < ch* and sup Fi(z, k) < chk
zE€ELK
Ekh

which are, respectively, inequalities (4.19) and (4.10) from [10], imply the validity of (3.4).

Lemma 3.1 is proved.

Lemma 3.2. Letk €N, r €Ny, 7/2+a>0,r/2+2>0,and 1 <p < oco. If f € B (wa,p),
then

w F s < cKf ( FO Y50, > 0. (3.5)

Proof. Take any g € IB%;J“k(waﬂ). Then, by Lemma 2.1, g € B} (wq ), and using Lemmas 2.2
and 3.1 we have

W;:,r(f(r)vt)aﬂp < wlfw(f(’") - g(r)vt)a,ﬁ,p + wfﬂ,(g(r), HaB,p <

<c Hwa,gtpr (f(r) - g(r)) Hp + ctk “wa,ﬁ¢k+r9(k+r)

p

which immediately yields (3.5).
Lemma 3.2 is proved.
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4. Equivalence of the moduli and Realization functionals and proof of the lower estimate
in Theorem 1.1. In this section, using some general results for special classes of doubling and A*
weights, we prove that, for all 0 < p < oo, the wf’r moduli are equivalent to certain Realization
functionals. This, in turn, provides lower estimates of w,fjr by means of the appropriate K -functionals,
thus proving the lower estimate in Theorem 1.1. This, of course, is meaningful only for 1 < p < oo,
as we recall that, for 0 < p < 1, the K -functionals may vanish while the moduli do not.

For general definitions of doubling weights, A* weights, W(Z) and W*(Z) see [5, 6]. We only
mentioned that the Jacobi weights with nonnegative exponents belong to all of these classes (see [6]
(Remark 3.3) and [5] (Example 2.7)). We now restate some definitions from [5, 6], adapting them to
the weights w, g with o, 8 > 0, and state corresponding theorems for these weights only.

Let Z} ), = [-1,=1+ AR?], 23, = [1 — Ah* 1] and Zap, := [-1 + AR?,1 — AR?].

The main part weighted modulus of smoothness and the averaged main part weighted modulus
are defined, respectively, as

Ok (£, A, t)p = sup Hw(-)A’;w(_)(f,-;zA,h)(

O<h<t LpZan)
and
. 1/p
_ 1 P
QL (f At = | 5 H JAhe(y (f 3T ‘
R Ay, t/ w() Ahoy (fs 1 Zan) Lp(Zan) W
0

The (complete) weighted modulus of smoothness and the (complete) averaged weighted modulus

are defined as
2

wfo:(fv Av t)p,w = Qf;(fa Aa t)p,w + Z Ek(f7 ZgA,t)wp

j=1
and
a’é(f? A t)pw = QZ(f, A, t)pw + Z Ex(f, Z%A,t)wm?
j=1
respectively.

The following is an immediate corollary of [5] (Theorem 5.2) in the case 0 < p < oo and [6]
(Theorem 6.1) if p = oo.

Theorem 4.1. Let k,vgeN, 19 >k, 0<p<oo,a>0,3>0,A>0,and f € Lg’ﬁ. Then,
there exists N € N depending on k, vy, p, a and 3, such that for every n > N and 9 > 0, there is
a polynomial P, € P, satisfying

Hwa,ﬂ(f - Pn)”p S Caz;(fa A7 ﬁ/n)pywa,ﬁ S ng(fa A7 19/”)27711104,6
and

n—l/

wa, " P

S S LA My < cwlp (A M) pawy 5y K SV <m0,

where constants ¢ depend only on k, vy, p, A, «, B and V.

The following theorem is proved in [11].
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Theorem 4.2. Let ke N, a >0, 3>0, A>0,0<p<oo,and f € Lz"'B. Then, for any
0 <t<+/2/A, we have

Ek(fa ZA,t)wa,g,p < CWZ%(fa t)oc,,B,p < Cw]f,o(f, t)a,ﬁ,p» (4-1)

where the interval Z 4, is either [1 — At?, 1] or [—1,—1+ At?|, and c depends only on k, p, o, 3,
and A.
In particular, if A= 2 and t = 1, then

Ek(f)woz,ﬁ’p S Cw;i%(f7 1)04,5,}7 S Cwlf,o(f7 1)a767p' (4'2)

We now show that the moduli w@( [y Ast)pw, ; and @ZZ( [y Ast)pw, ;, may be estimated from
above by the moduli wf ,(f,t)a,5,p and w9 (f,t)a,a,p, respectively.

Lemmad.l. Let k ¢ N, o >0, >0, A>2k? and f € Lg”ﬁ, 0 < p < co. Then, for
0<t<1/VA,
wgkz;(f’ A, t)p,wa,ﬁ < cw;:,o(f’ t)a,ﬁ,p
and
UNJZZ(fa A’ t)nwa,ﬁ S Cwltf)(ﬁ t)Otﬂ,P’

where constants ¢ depend only on k, p, o, 5 and A.
Proof. Recall that T4, = [-1 + Ah?,1 — Ah?] and note that, if A > 2k?, then

Zan € Dogn C Din forall h > 0.

Since, by Proposition 2.1, wq g(z) ~ Wg,;ﬁ(x), T € Dopp, We have

[esOaf o Zan]|, < e|WEOMF)

)
Lp(Zan Lp(®rn)

so that

Qi(ﬁ A D) pwes < Cwlf,o(fv a8,
and

Q’Z(f, A,t)p,waﬁ < cw;:j%(f, t)a,B.p-
Now, Theorem 4.2 yields that, for 0 < ¢t < 1/V/A,

max { Ex(f, [1 — 2A¢?, w500 Be(f,[-1, -1+ 2At2])waﬁ7p} <

< cwpo(fiapp < cwfo(fit)a,6p-

Lemma 4.1 is proved.

The following is an immediate corollary of Theorem 4.1 and Lemma 4.1.

Corollary 4.1. Letk € N, 7 € No, 7/2+a >0, 7/2+3 >0, and f € B (wap), 0 <p < 0.
Then, there exists N € N depending on k, r, p, o and 3, such that for every n > N and 0 < 9 < 1,
there is a polynomial P, € P, satisfying

0" (1 = PO < a5, 0/mas < ol (10,0

and
k+7“P(k+T)

n|wa g0 <L 0oy < @l (10, 0/n)asy,

where constants ¢ depend only on k, r, p, o, B and V.
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Suppose now that 0 < ¢ < 2/k, and n € N is such that n > N and c¢;/t < n < co/t. Then,
denoting p := max{1, ¢y}, Corollary 4.1 with ¢ = min{1, ¢;} implies that

Kf (F 0 < i KL (FD, (410 app < 1 RE (F 0 )05, <
< w2 (£, 9/n)app < (7 sy < cwf (F7) )app- (4.3)

Note that (4.3) is valid for all 0 < p < co. However, we remind the reader that, for 0 < p < 1,
the K -functional may become identically equal to zero.

Together with Lemma 3.2, the sequence of estimates (4.3) immediately yields Theorem 1.1.

We now show that the estimates in Lemma 4.1 may be reversed in some sense, i.e., there exists
0 < 6 < 1 such that moduli wf (f,0t)a,s, and w G (f,0t)as, may be estimated from above,

respectively, by wff,(f, A t)pw, ; and CNUf,(ﬂ A t)pawe 5+
Lemma4.2. LetkeN a>0,8>0, A>0and f € Lg’ﬂ, 0 < p < o0. Then, there exists
0 < 0 < 1 depending only on k and A, such that for all 0 <t < \/1/A,

wlo(f,00)a8p < cwl(f, A D) pa, 4 (4.4)

and

w;:;f)(f’ et)a76,l) S C(I):Z(f7 A7 t)pfwaﬁ) (45)

where constants ¢ depend only on k, p, «, 5 and A.

Proof. Let B := max{A?,4k2}, § := min {1, A/(k:B)} L0<t</1/Aand 0 < h < 0t
Note that 2 < \/1/B and, if z € Zp, then z + kho(z)/2 € ap. Also, Ip ) C Dogn, and so
Proposition 2.1 implies that wq g(x) ~ W,?;lbﬁ(:v), for all x € Zp j,. Hence,

[l oak,o ) (4.6)

)= ¢ a5 ) (£ Zan)|

Ly(Z,n Lp(Za,n)

Now, let 1 :=[0,1] N (Dgn \ Zp,n) - Then, denoting zo = 1 — Bh?, we have

Sy = U [x — kho(x)/2, 2 4+ kho(x) /2] = [20 — khp(x0)/2,1] C [1 — 24t 1].
€S

It now follows by Remark 2.3 that, for a polynomial of best weighted approximation p; € Py to f
on [1 — 2At%, 1],

Wl Oak,o | < elwas(f = pll g, <

Lp(S1)

< CEk(f7 [1 - 2At27 1])10&,67177 (47)
where we used the fact that any kth difference of py, is identically zero.
Similarly, for Sy := [—1,0] N (Dyy \ Zp,,) and

Sy 1= U [z — kho(x)/2, 2 4 kho(x)/2] C [-1, -1 + 2A¢t?],
€S
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we have

Hsz;'B VAR o (f, )H sy S PR, [~1, =1 4 246}, - (4.8)

(S2)

Therefore, noting that ®;, = Zpj; U S1 U Sz and combining (4.6) through (4.8), we have, for all
0 < h <6t

2

+CZE1€ f, ZQAt) w,p-

7j=1

W2 Ok (.9)]

Ly(®in) <0Hwaﬁ VAR (o Ah)‘

Lp(IA h
Estimates (4.4) and (4.5) now follow, respectively, by taking supremum and by integrating with
respect to h over (0, 6t], and using the fact that 6 < 1.

Lemma 4.2 is proved.

Using Lemmas 4.1 and 4.2 we immediately get Theorem 1.2 as a corollary of the following result
that follows from [5] (Corollary 11.2).

Theorem 4.3. Let ke N, 0<p<1, A>0,a>0,8>0,and f € Lg’ﬁ. Then there exist
N € N depending on k, p, o and 3, and ¢ > 0 depending on k, p, A, o and B3, such that, for any
Y1 € (0,9], n > N, ¥1/n <t <9Y/n, we have

Rf,o(ﬂ n_k)a,/ip ~ wg(ﬁ A7 t)pvwa,ﬁ ~ CUZZ(]C’ Av t)pvwa,ﬁ .

5. Weighted DT moduli and alternative proof of the lower estimate via K -functionals. In
this section, we provide an alternative proof, in the case 1 < p < oo, of the lower estimate of the
moduli w,fm( ")) a5, and w;;fn( £, t)a.5, by appropriate K -functionals, using certain weighted
DT moduli.

We denote the kth forward and the kth backward differences by Ak( fox) == AF(f, 2 + kh/2)
and Ak(f z) := AF(f,x — kh/2), respectively.

Adapting the weighted DT moduli which were defined in [1] ((8.2.10)) for a weight w on
D :=[-1,1], we set for f € Ly,

Wa(f, Dwp = S Hw(-)Aﬁgo(fy ')]

Lp[—14t*,1—t*]

_)
+ sup ||w(-) AR(f,- ’
0<h£t* () A() Lp[—1,—1412t%]
(_
+ su w()AF(Ff, - , 5.1
0<h§pt* OAnts )‘Lp[1—12t*,1} G.1)

where t* := 2k%t2. The first term on the right in the above equation is called the main-part modulus
and denoted by Qf;(f, t)w,p- Obviously, we have Q';(f, Dwp < wf,(f, t)w,p
Next, the weighted K -functional was defined in [1, p. 55] ((6.1.1)) as

Koo (f, M) = E%Bgf {llw(f = g)llp + t*[wet g™},

and we note that
k k
Kk,(p(fu t )wa,g,p = K]io(fat )a,ﬂ,p‘
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It was shown in [1] (Theorem 6.1.1) that, given an appropriate weight w (all Jacobi weights with
nonnegative exponents are included), the weighted K -functional is equivalent to the weighted DT
modulus of f. Namely, by [1] (Theorem 6.1.1), for 1 < p < oo,

M b (f wp < Ko (F, ) wp < Mwl(f,thwp, 0 <t <to,
where t( is some sufficiently small constant. Hence, in particular, if «, 5 > 0, then
WE(f ) wa s ~ Ko (fs ) gpr 0 <t < to. (5.2)

Note that, if @ < 0 or 8 < 0, then there are functions f in Lg’ﬂ for which ""Z( [y 0w 5p = OO
Indeed, the following example was given in [4] (see also [1, p. 56] (Remark 6.1.2)) and, in fact,
it was the starting point for our counterexample in Theorem 2.1. Suppose that 1 < p < oo and
that § > 0 is fixed. If f(z) == (z + 1 — 5)_5_1/1”)([_1%7_1”8}(:1:) with S < 0and 0 < € <

< 1%, then s fll, < (e, B,p) (@nd 50 f € L3, Jwap(1FC+2)l 1 yaraem = o0 and
[wa,s()f(- +ie)||, =0, 2 < i <k, and therefore

was(VRE( )|

sup =
Lp[—1,—1+12t*]

0<h<t*

> |was()AE(S. )]

Lp[—1,—1412t*]
= wa,s () [FC) = kf G+l 114100 = O©-

Also, if f € Lg”g then (choosing g = 0) we have K, ,(f, tk)wa’ﬂ,p < ||wa”3f\|p < oo. Hence, (5.2)
is not valid if & < 0 or 8 < 0 (see also Theorem 2.1 with r = 0).
An equivalent averaged weighted DT modulus

1/p

t
1 1—t*
xk o k
M= [ [ @Ak drar )+
0
) t* —1+ AL 1/p
+ t*/ / (@) RE(f )P dedu |+
0 -1
1 1/p
1
[ ] w@BiGordd) 63
0 1-At*

where 1 < p < oo, t* := 2k?t?, and A is some sufficiently large absolute constant, was defined
in [1] ((6.1.9)). For p = oo, set w:;k(f,t)w,oo = wg(f,t)w,oo. It was shown in [1, p. 57] that,
for an appropriate weight w (again, all Jacobi weights with nonnegative exponents are included),
1 < p < oo and sufficiently small ¢35 > 0,

Kk,tp(fa tk)w,p < CW;k(fy t)w,pa 0 <t <t (5‘4)

We now provide an alternative proof of the inverse estimate to (3.5) independent of the results in
Section 4. First, we need the following lemma.
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Lemma5.1. Letk €N, re€No, r/2+a>0,7/2+8>0,1<p<o0,and f € Bj(waz)
Then
W, g por p < by, 0, B (f7), e(k)t)ap,py 0 <t < (k).
Proof- The proof of this lemma is very similar to that of Lemma 6.1 in [10], but we still provide

all details here for completeness. The three terms in the definition (5.3) are to be estimated separately,
but the second and third are similar, so we will estimate the first two. Since w:;k( £, Dwa pomp =

= w:;k(g, t)wr/ua’r/%&p and w;:fn(f(’"), agp = w,’:po(g, )y j2+a,rj2+8,p With g := ) without loss
of generality, we may assume that » = 0 throughout this proof.

Note that t* = 2k?t? implies that [—1 +t*, 1 — t*] C Dop C Dopr, 0 < 7 < ¢, so that by (2.10)
we have

t 1-t*

1
] s@at g e dear <

0 —14¢*

9(a+B)p / B .
< [ [ v @al, o dedr <

0 Do

< 2P (1)

In order to estimate the second term we follow the proof of [10] (Lemma 6.1) and assume that

t < (2k\/A+k/2)71. Then

t* —1+ At
i ] wes@EL P dedu =
0 -1
t* —1+At*
= tl* / (wa,5(2) AR (f, 2 + ku/2)|P do du <
0 —1
t* —1+(A+k/2)t
/ [ lsty— bu/2alir )P dyd <
—1+hku/2

—1+(A+k/2)t* 2(y+1)/k
1
<i [ westy bualipdudy -
-1

—14+(A+k/2)t" 2(y+1)/ (ke (y))

1
-1 0
] —14+(A+k/2)t" 2(y+1)/ (ke(y))
= / / W)W () Ak iy (fr9)IP dhdy <

-1 0
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—14+(A+k/2)t" 2(y+1)/ (ke (y))

1 a’/B k
<o [ skl andy <
—1 0
o
a,f k
< C\/t** / / Wit (W) A (fr )P dy dh <

0 Dppn[—1,—1+(A+k/2)t*]

< w5 (f, ek,

where for the third inequality we used the fact that, for y < —1/2 and 0 < h < 2(y + 1)/(ke(y)),
L—y+kho(y)/2 <2(1 -y = khe(y)/2),

and so
wa,s(y — khip(y)/2) < 229Wl (y).

Lemma 5.1 is proved.
A similar proof yields (see [10], Lemma 6.2) an analogous result in the case p = co.
Lemma 5.2. Letke N, reNy, r/24+a>0,7/24+ >0, and f € B (wqg). Then

wi(f(’"),t)waﬁcpryoo < c(k, r,a,ﬁ)w}’ir (f(’"), c(k)t)oc,ﬁ,oo’ 0<t<ck).

We are now ready to prove the inverse of the estimate (3.5).
Lemma5.3. Letk €N, 7 €Ny, 7/24+a>0,7/2+8>0,and 1 <p < oo. If f € B (wa,p),
then

K]ir(f(r)atk)a,ﬁ,p < CWZf«(f(T)at)aﬂ,p < CW}f’r(f(r)at)a,B,pa 0<t< 2/k5- (5.5

Proof. Combining (5.4) with the weight w = w, g¢" with Lemmas 5.1 and 5.2, we obtain, for
1 <p < oo,

Klir(f(r)>tk>aﬁ,p = Kk,so(f(r)vtk)wa,w*,p <
< W (f g porp < ot (fO (k) ap,p, 0<t<c.
Hence, we have

KL (F7 ) app < cwoff (F7, e1t)app 0 <t < ey, (5.6)

where c; and cy are some positive constants that may depend only on £.
Suppose now that 0 < ¢ < 2/k. Then, denoting p := max{1,c1,2/(kca2)} and using (5.6) we
obtain

Kf(f, ) app < i KE(F, (/1) ) as,p <

S CWZfﬂ(f(r)a Clt/:u)a,ﬁ,p S sztfn(f(r)a t)a,ﬁ,p ’

which is the first inequality in (5.5). Finally, the second inequality in (5.5) follows from (1.4).
Lemma 5.3 is proved.
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