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VALUE DISTRIBUTION OF DIFFERENTIAL-DIFFERENCE POLYNOMIALS
OF MEROMORPHIC FUNCTIONS *

PO311041J1 3BHAYEHD U1 JUP®EPEHUIAJTBHO-PI3BHUIIEBUX ITOJIITHOMIB
MEPOMOP®HUX ®YHKIIIA

‘We obtain the results on the deficiencies of differential-difference polynomials. These results can be regarded as differential-
difference analogs of some classical theorems on differential polynomials. In particular, an exact estimate of the deficiency
of some differential-difference polynomials is presented. We also give examples showing that these results are best possible
in a certain sense.

OTpuMaHO pe3yJbTaTH M0N0 Ne(eKTiB Anu(epeHIiaNbHO-PI3HUIIEBUX MOMiHOMIB. L{i pe3ynbrat MOXXHa pO3IISAATH 5K
TuQepeHIiaTbHO-PI3HUIIEB] aHAOTH JCAKUX KJIACHYHHUX TeopeM s AudepeHIliadbHUX MOJiHOMIB. 30KpeMa, HaBEIACHO
TOYHY OIIHKY IS IeeKTiB NesKuX AudepeHmiaIbHO-pi3HIIEBHX MONTiHOMIB. Takok HaBeICHO MPUKIIAIH, SKi IIOKa3yIOTh,
IO IIi Pe3yNbTaTH €, B IEBHOMY CEHCi, HAHKPAIINMH.

1. Introduction and results. Let f(z) be a meromorphic function in the complex plane C. We
assume that the reader is familiar with the basic notions of Nevanlinna’s theory (see [7]). We use
o(f) to denote the order of growth of f(z); A(f) and A(1/f) to denote, respectively, the exponents
of convergence of zero and pole sequences of f(z). The hyper order of f(z) is defined by
— loglogT'(r,
oo(f) = lim 128108 (r.f)

r—00 log r

For a € C, we use d(a, f) to denote the Nevanlinna deficiency of a respect to f(z). Moreover, we
denote by S(r, f) any real function of growth o(T(r, f)) as r — oo outside of a possible exceptional
set of finite logarithmic measure. A meromorphic function «(z) is said to be a small function of
f(z), if T(r,a) = S(r, f).

The value distribution of differential polynomials has been discussed extensively and deeply. For
example, Doeringer [4] investigated the differential polynomial

V= f(2)"Q(f) + P(f),

where f(z) is a transcendental entire function and Q(f), P(f) are differential polynomials in f(z)
with small meromorphic coefficients such that Q(f) # 0, P(f) # 0. He proved that
N(r,1/%)
T(r,¥)
In the past decade, difference polynomials have been discussed extensively and many results

lim, o0

> 0 holds for n > 2 4 v, where v denotes the degree of P(f).

have been obtained (see, e.g., [2, 8—10, 16, 17]). Lately, authors began to investigate differential-
difference polynomials (see, e.g., [12, 14, 18]) and differential-difference equations (see, e.g., [3,
13]). The study of the value distribution of differential-difference polynomials plays an important
role in the further study of differential-difference equations.
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A differential-difference polynomial is a polynomial in f(z), its shifts, its derivatives and deriva-
tives of its shifts, that is an expression of the form

P(z, f) =Y ax(z) [J{U ) (2 + 63}, (1.1)

reJ Jj=1

where J is an index set, ) ; are complex constants, cy ; and (3 ; are nonnegative integers, and
the coefficients a)(z)(# 0) are small meromorphic functions of f(z). The maximal total degree of
P(z, f) is defined by

T
deg; P = ;.
& P =) O,

Zheng and Xu [18] investigated differential-difference polynomials

and

QQ(va):F(f)+P(Zaf)a

where f(z) is a transcendental meromorphic function satisfying o2(f) < 1 and N(r, f) = S(r, f),
P(z, f) is a differential-difference polynomial of f(z), and F(f) = (f° + ap_1(2)f> '+ ...
..+ ag(z))* is a polynomial of f(z). For a small meromorphic function «(z)(# 0), they proved

the following results:
(u—1)(uv — degy P)

i 1, then § <1l- 1.
() If uv > degy P and u # 1, then §(a, Q1) < W T degf P) <
Du 1 2
(i) If u > degy P and u # 1, then 6(a, Q2) < — + —5— . deng <1.
2u—1 U 2y

In this paper, we prove a differential-difference counterpart of the result of [4] and obtain Theorem
1.1 below, which improves the results of [18].

Theorem 1.1. Let f(z) be a transcendental meromorphic function satisfying oo(f) < 1 and
N(r,f) = S(r, f). Let F(z, f) = (ay(2) f* + ap_1(2) f*"L + ...+ ao(2))*, where u,v are positive
integers, and aj(z), j = 0,1,...,v, are small meromorphic functions of f(z) with a,(z) # 0.
Suppose that P (z, f) and Py(z, f) (Pi(z, f)Pa(z, f) # 0) are differential-difference polynomials
with small meromorphic coefficients. If (u — 1)v > degy P», then

¢(Z):F(Z,f)P1<2,f)+P2(Z,f)

degy P1 +v +deg; P
tisfies & =
satisfies 6(0,1) < uv + deg; Py

Remark 1.1. Comparing Theorem 1.1 with the results of [18], we see that the condition of

Theorem 1.1 is weaker and the conclusion is stronger. Examples 1 and 2 below show that both

degs P; + v + deg, P degs P + v + deg, P

5(0,4) = gr i1 gr 12 and 6(0, 1) < gr i1 gy 12
uv + degy Py uv + degy Py

and Example 3 below shows that Theorem 1.1 is false, if (u — 1)v = deg; P,. So the result of

in Theorem 1.1 may hold,

Theorem 1.1 is best possible in this sense.
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Example 1.1. Let f(z) = %, F(z,f) = (f(2) +1)3, Pi(z,f) = 1 and Py(z, f) = 3f'(z +
+mi) — 1. Then u = 3,v = 1,degy Py = 0,deg; P> = 1 and ¥(2) = F(z, f)Pi(z, f) + Pa(2, f) =
2 deg; P +v+deg P
= e%*(e* + 3) satisfies 6(0,7) = = = ) I N}

3 uv—l—degf P

Example 1.2. Let f(2) = €%, F(z, f) = (f(2)®> +1)%, Pi(z,f) =

= f"(z + mi). Then v = 2,v = 2,deg; P = 1,deg; P, = 1 and ()

+ Pa(z, f) = €3%(e** + 2) satisfies 6(0,1)) = g < degfil_t;e;iiff ry _
Example 1.3. Take f(z) = e* + 1, F(z,f) = (f(2) + 1), Pi(z,f) = 1 and Py(z,f) =

=4f'(z+mi)—4. Then (u—1)v = (2—1) x1 = degy P, and ¢(z) = F(z, f)Pi(z, [)+ Pa(z, ) =

= e%? satisfies §(0,) = 1.

In the case where f(z) has two Borel exceptional values, we get the following theorem.

) and Py(z, f) =
F(va)Pl(zvf)+

/(Z
4
5.

Theorem 1.2. Let f(z) be a transcendental meromorphic function with o(f) < oo. Let
F(z, f) = (ap(2) f° + ap—1(2) f*=1 + ... + ao(2))%, where u,v are positive integers, and a;(z),
Jj=0,1,...,v, satisfy o(aj) < o(f) and a,(z) # 0. Suppose that Pi(z, f)(# 0) and P»(z, f)
are differential-difference polynomials, and the growth orders of their coefficients are less than
o(f). Suppose further that a,oc0 are Borel exceptional values of f(z) such that F(z,a)Pi(z,a) +
+ Py(2,a) Z 0. If uv > degy Py or Pa(z, f) =0, then

¢(Z):F(Z,f)P1<2,f)+P2(Z,f)

risfies 5(0, 1) < — By
sa lSﬁeS ( ,'l/]) =~ W < 1.

Remark 1.2. (1) Theorem 1.2 dose not remain valid, if we replace the Borel exceptional values
“a,00” with two finite Borel exceptional values. Indeed, take f(z) = tanz, F(z, f) = f(2)3,

Pi(z,f) = zf (z+ g)g and Py(z,f) = =2f(z+m)f (z—i— g) + 2+ % — 2. We have ¢(z) =
=F(z,)Pi(z, f) + Pa(z, f) = % Obviously, uv = 3 x 1 > deg; P, = 2, i and —i are two Borel
exceptional values of f(z), and F(z,i)Pi(z,1)+Py(z,i) = % Z0, F(z,—i)Pi1(z,—i)+Pa(z,—1) =
= % # 0. But ¢(z) = % satisfies 6(0,¢) = 1.

(2) Theorem 1.2 is false, if uv = deg; P». Indeed, take f(z) = 632, F(z, f) = f(2)? Pi(z, f) =

—2z—1
=1land Pz, f) = € f(z+1)f'(2)+e*. Wehave ¢(2) = F(z, f)Pi(z, )+ Pa(z, f) = €.
Obviously, uv = 2 x 1 = degy P», and the Borel exceptional value 0 satisfies F'(z,0)P1(z,0) +
+ Py(2,0) = e* # 0. But ¢(2) = € satisfies 6(0,7) = 1.
At last, we give an exact estimate of the deficiency (0, P) of differential-difference polynomial

(1.1). In order to collect together its all monomials having the same degree, we introduce the notation

bN
J = AeJ‘ZﬁM:z , (12)
j=1

where [ =0,1,...,deg; P.
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Theorem 1.3. Let f(z) be a transcendental meromorphic function satisfying o2(f) < 1 and

N(r,f)+N(r,1/f) = S(r, f). (1.3)
Suppose that P(z, f) is a differential-difference polynomial of the form (1.1). Denote

T
mm{l’}:aﬂ@]]{ﬂqwkz+5xﬁyhj$OJ€{Q1V“,mng} =m, (1.4)
AEJ; 7=1

T
Iml4Zﬁm@HU@W@+QQWJ¢wewﬁww@&m»:h (1.5)
AEJy j=1
where J is defined by (1.2). If m > k or m =k > 1, then 6(0, P) =
The following example illustrates Theorem 1.3.
Example 1.4. Let f(2) = e* and P(z, f) = f(2)*+f'(2) f(z+7i)?+ f'(2)?, then m
satisfy (1.4) and (1.5) respectively. We have P(z, f) = e?*(e?* + €% + 1) and §(0, P) =

By Theorem 1.3, we can easily get the following two corollaries.

3=

=4,k=2
2 1
4 2

Corollary 1.1. Let f(z) be a transcendental meromorphic function satisfying oo(f) < 1 and
(1.3). Suppose that P(z, f) is a differential-difference polynomial of the form (1.1) with degy P > 1.
If P(z, f) contains just one term of maximal total degree and P(z,0) % 0, then 6(0, P) = 0.

Corollary 1.2. Let f(z) be a transcendental meromorphic function satisfying oo(f) < 1 and
(1.3). Suppose that P(z, f) is a homogeneous differential-difference polynomial of the form (1.1)
with degy P > 1 and P(z, f) # 0. Then, for any small meromorphic function a(z) # 0 of f(z), we
have 6(a, P) = 0.

2. Proof of Theorem 1.1. We need the following lemmas.

Lemma 2.1 [15]. Let f(z) be a transcendental meromorphic function. Let P(f) be a polyno-
mial in f(z) of the form

P(f) = an(2) f(2)" + an-1(2)f ()" + ...+ a1 (2) f(2) + ao(2),
where all coefficients a;j(z) are small functions of f(z) and an(z) # 0. Then
T(T,P(f)) =nT(r, f)+ S(r, f).

Lemma 2.2 [6]. Let T : [0,+00) — [0,400) be a nondecreasing continuous function, and let
€ (0,00). If the hyper order of T is strictly less than one and § € (0,1 — 02(T)), then

T(r+s)=T(r)+o(T(r)/r?),

where 1 runs to infinity outside of a set of finite logarithmic measure.
Let f(z) be a meromorphic function. It is shown in [1] (Lemma 1) and [5, p. 66], that for an
arbitrary ¢ # 0, the inequalities

(1 +0(1))T(r — ]c|,f(z)) < T(T,f(erc)) < (1 + o(l))T(r+ \c|,f(z))

hold as r — oo. From its proof we see that the above relations are also true for counting functions.
So by these relations and Lemma 2.2, we get the following lemma.

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 4



VALUE DISTRIBUTION OF DIFFERENTIAL-DIFFERENCE POLYNOMIALS ... 475

Lemma 2.3. Let f(z) be a nonconstant meromorphic function of oo(f) < 1, and let ¢ # 0 be
an arbitrary complex number. Then

T(r,f(z+ c))
N(r, f(z+¢))
N(r,1/f(z+c¢))

Applying [6] (Theorem 5.1) to [9] (Theorem 2.3), we get the following lemma.
Lemma 2.4. Let f(z) be a transcendental meromorphic solution of hyper order oo(f) < 1 of
a difference equation of the form

T(r, f)+ S(r, f),
N(r, f)+S(r, f),
N(r,1/f)+ S(r, f).

U(Z,f)P(Z, f) = Q(Z7f)7

where U(z, f), P(z, f), Q(z, f) are difference polynomials in f(z) with small meromorphic coeffi-
cients, deg; U = n and degy Q) < n. Moreover, we assume that U(z, f) contains just one term of
maximal total degree. Then

m(r, P(z, f)) = S(r, f).

Remark 2.1. By a careful inspection of the proof of Lemma 2.4, we see that the same conclusion
holds, if P(z, f), Q(z, f) are differential-difference polynomials in f(z) and the coefficients a,(2)
of P(z, f) and Q(z, f) satisfy m(r,ay) = S(r, f) instead of T'(r,ay) = S(r, f).

Lemma 2.5 [18]. Let f(z) be a transcendental meromorphic function satisfying o2(f) < 1 and
N(r,f)=S(r, f). Let P(z, f) be a differential-difference polynomial. Then

T(r,P) < (degy P)T'(r, f) + S(r, f).

Proof of Theorem 1.1. To prove Theorem 1.1, we follow the main idea in the proof of [17]
(Theorem 1.2). First observe that 1(z) # 0. Indeed, if 1(z) = 0, then

F(Zaf)Pl(z>f)E_P2(zvf)' (21)
Since degy P> < uv = degy F) it follows from Lemma 2.4 and Remark 2.1 that
m(r, Pl) = S(T, f)

Moreover, Lemma 2.3 and the assumption that N(r, f) = S(r, f) give N(r,P1) = S(r, f). So
T(r,Py) = S(r, f). Therefore, we have from Lemma 2.1 that

T(Tv FPl) = UUT(Ta f) + S(’I", f)
On the other hand, we get from Lemma 2.5 that
T(Tv PZ) < (degf PQ)T(Tv f) +S(T7 f) (22)

Since degy P, < wuwv, comparing the characteristic functions of both sides of (2.1), we obtain a

contradiction. So, 1(z) # 0.
Differentiating both sides of

¢(Z):F(Z,f)Pl(Z,f)+P2(Z,f), (23)

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 4



476 R. R. ZHANG

we obtain
V'(2) = F'(z, /)Pi(2, f) + F(z, f)Pi(2, f) + P3(z, f). (2.4)
Since ¥ (z) # 0, multiplying both sides of (2.3) by qf/}/((j)) , we have
o) = L8P R + S E P ), @)

Subtracting (2.5) from (2.4), we get

V),

F/(z, f)Pl(Z, f) + F(Zv f)Pll(Z%f) B ¢(Z)

<z,f>P1<z,f>=P2<z,f>< Bz f) WZ)).

"B o)

(2.6)

Substituting F(z, f) = (ay(2)f° + ap_1(2)f>  + ... + ap(2))* and F'(z, f) = u(a,(2)f° +
+ap-1(2) U 4+ ap(2) A (2) U A vay (2) U+ al(2) f 4 a(2) f + ab(2)) into
(2.6), we obtain

+

@+ a7 @)l = P ) (- e+ ) e

where

w(z) = uPi(z, f)(ay(2) " +vau(2) [ 4 di(2) f + an(2) f + ag(2)+

F(a(2)f* + a1 (2) f7 4 ...+ ag(2)) <P1’(z, f)— ﬁ/éj)) Py (z, f)) . (2.8)

We affirm that w(z) # 0. Otherwise, since Pa(z, f) # 0, it follows from (2.7) that

W(2) _ Pz f)
0= " P f)

Integrating this equation, we have
1/}(’2;) = CIP2(27 f)7
where C] is a nonzero constant. Substituting 1(z) = C1 Pa(z, f) into (2.3), we get
F(Z7f)P1(Zaf): (Cl_l)PQ(va) (29)

From (2.9) and F(z, f)Pi(z, f) # 0, we obtain C; # 1. Using (2.9) and following steps analogous
to (2.1), (2.2), we have a contradiction. Thus, w(z) # 0.

By (2.7) we get
m(’r7 (a/v(Z)fU + avfl(Z)fU_l + ...+ ao(z))u—l) S
=m (T’ :;) +m(r, P2) +m <7"7 iﬁ) +m <r, g) +0(1). (2.10)

Next we estimate every term in (2.10). Since deg; ¢ = uv + degy P, by Lemma 2.5, we obtain
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T(r,) < (uv +degy P1)T(r, f) + S(r, f). (2.11)

By (2.2) and (2.11), we see that S(r,v) = S(r, f) and S(r, Py) = S(r, f). So from m <r, ﬁ) =

/

= S(r,7) and m (r, ;)2) = S(r, ), we get
2

m <T, g) =S(r, f), m (r, ié) =S(r, f). (2.12)

By (u — 1)v > degy P> and (2.12), we see that Lemma 2.4 and Remark 2.1 can be applied to

equation (2.7). So we have

m(r,w) = S(r, f).
By (2.8) and N (r, f) = S(r, f), we get
N(r,w) < N(r,1/9) + S(r, f).

Thus,
T(r,w) < N(r,1/¢)+ S(r, f).

From this inequality and the first main theorem, we obtain
m(r,1/w) < T(r,w)+ O(1) < N(r,1/9) + S(r, f). (2.13)
By Lemma 2.1, we have
T(r, (ap(2) f* + ap—1(2) f*7 4+ ...+ ao(2)"™ 1) = (u— DuT(r, f) + S(r, f).
Noting that N (r, f) = S(r, f), so
m(r, (ay(2) f° + ap—1(2) " + .o+ ag(2)“™) = (u— DT (r, f) + S(r, f). (2.14)
By (2.2), (2.10), (2.12)—(2.14), we get
(u— 1T (r, f) < N(r,1/¢) + (degy P2)T(r, ) + S(r, f)-

Thus,
((u—1)v —degy Po)T(r, f) < N(r,1/¢) + S(r, f).

Combining this inequality with (2.11) and noting that (u — 1)v > degy P», we have

lim 1 u—1)v—deg; P, deg; P, + v+ deg; P
r—00 T(Tﬂ/]) UU—I—degf Pl UU+deng1

3. Proof of Theorem 1.2. We need the following lemma.
Lemma 3.1 [11]. Suppose that h is a nonconstant meromorphic function satisfying

N(r,h)+ N(r,1/h) = S(r, h).

Let f = agh? + a1h?~! + ... + ap, and g = boh? + bih?™t + ... + b, be polynomials in h with
coefficients ag,ai,...,ap,bo,b1,...,by being small functions of h and aoboa, # 0. If ¢ < p, then
m(r,g/f) = S(r,h).
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Proof of Theorem 1.2. We only discuss the case uv > degy P» as the case P»(z, f) = 0 can be
treated similarly. We first fix some notations for the proof as follows:

=S () [ (= 4 31+ AG),

xed j=1

2, f) = D bu(2) [TU ™ (2 + mu )y + B(2),

nel Jj=1

where J and I are index sets, ) ; and 7, ; are complex constants, a ; and m,, ; are nonnegative
integers, 3 ; and n, ; are positive integers, and the growth orders of ay(z), b,(2), A(z) and B(z)
are all less than o(f). Set d(P1) = deg; P1 and d(FP2) = deg; Px.

Since a and oo are Borel exceptional values of f(z), by Hadamard’s factorization theorem, we
get

f(z) = H(2)e") +q, (3.1)

where h(z) is a polynomial and H(z) is a meromorphic function such that o(H) < o(f). So
o(f) = degh(z) and f(z) is of regular growth. Therefore, ay(z)(A € J), bu.(2)(p € I), aj(z),
§=0,...,0, A(2), B(2), H(z), H(z 4 ¢) and e"*t9)=">) are all small functions of ¢"(*) and

N(r, f) = S(r,¢b).
Substituting (3.1) into F'(z, f), Pi(z, f) and P»(z, f), we obtain

F(z, f) = ay(2)"H(2)"e"" ) 4 51 (2)el" M 451 (2)e )+
+(%(Z)a” +ap1(2)a’ " + . +ao(2)Y, (3.2)

oS o) s+ 40, ¢
AeJ J=1
Py(z, f) = rd(PQ)(z)ed(Pz)h(Z) + Td(pQ),l(z)e(d(PZ)fl)h(z) .4 ri(2)e"P 4
Ou
_|_Zb H (mm) i 4+ B(z), (3.4)
nel Jj=1

where F(z, f), Py(z, f) and Py(z, f) are all polynomials of e(*) and their coefficients are either
small functions of e"(*) or identically zero. Since uv > d(Py), a,(2)*H(2)"’ # 0 and Pi(z, f) # 0,
by (3.2)-(3.4), we have

1!}(2) = F(va)Pl(Zaf) +P2(va) =
= wy(2)e?®) 4 wq,l(z)e(q_l)h(z) + . 4 wi(2)e"? + F(z,a)Pi(z,a) + Ps(z,a), (3.5)

where w,(2)( 0) is a small function of "?), ¢ satisfies uv < ¢ < wv + d(P1), and wy_1(2), . ..
. wi(2), F(z,a), Pi(z,a) and Py(z,a) are either small functions of e(*) or identically zero.
Since F'(z,a)Pi(z,a) + Pa(z,a) # 0, by Lemma 3.1, we obtain
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m(r,1/¢) = S(r,e").
Noting that uv < ¢ < uv + d(Py), we get from (3.5), the first main theorem and Lemma 2.1 that
N(r,1/¢) =T(r,¢) + S(r,e") > wT(r,e") + S(r,e"),
T(r,p) < (uv + d(P)T(r, e") + S(r,eM).

Thus,
deg; Py

) < — .
0,9) < uv + degy Py <

4. Proof of Theorem 1.3. We rearrange the expression of P(z, f) in the form

degs P

P )= 3 (),
=0

where for [ = 0,...,deg; P,

A (en5)( ) P
=3 o] (f (X w) |

AEJ; j=1

and J; is defined by (1.2). By (1.4) and (1.5), we see that P(z, f) takes the form

v
—~
\_N
N

Il

[z
&
—~
N
=

I

~—=

=k

where b,,(z) Z 0, bi(z) #£ 0. We see from (1.3), logarithmic derivative lemma and [6] (Theorem
5.1) that the coefficients b;(z), [ = k,k + 1, ..., m, are all small functions of f(z).

If m > k, then P(z, f) = f(2)kQ(z, f), where Q(z, f) = b (2)f(2)™ F +...+bi(2). Lemma
2.1, Lemma 3.1, (1.3) and the first main theorem give

N(r,1/P) = N(r,1/Q) + S(r, f) = (m = k)T (r, f) + 5(r, f),
T(r, P) = mT(r, ) + S(r, f).

k
Therefore, §(0, P) = —.
m
If m =k > 1, then P(z, f) = by(2)f(2)™, where b,,(z) Z 0. By (1.3), we easily see that
k
5(0,P)=1=—.
(0.P)=1="
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