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MECHANICAL SYSTEMS WITH SINGULAR EQUILIBRIA
AND THE COULOMB DYNAMICS OF THREE CHARGES

MEXAHIYHI CUCTEMMU 3 CUHI'VJIAPHUMMU PIBHOBAT'AMU
TA KYJIOHIBCBKA TUHAMIKA TPHOX 3APA/IB

We consider mechanical systems for which the matrices of second partial derivatives of the potential energies at equilibria
have zero eigenvalues. It is assumed that their potential energies are holomorphic functions in these singular equilibrium
states. For these systems, we prove the existence of proper bounded (for positive time) solutions of the Newton equation
of motion convergent to the equilibria in the infinite-time limit. These results are applied to the Coulomb systems of three
point charges with singular equilibrium in a line.

PosrnsiaroTecst MexaHiuHI CUCTEMH, MAaTPHUIl APYTHX MOXiJHUX MOTEHLIAIBHUX €HEpriid SKUX y piBHOBA3i MalOTh HYIBO-
Bi BiacHi 3HayeHHs. [IpumyckaeThesi, MO TXHI MOTEHNIANBHI €Heprii € roJoMOpGHUMH (QYHKLISMU B IUX CHHTYISIPHHX
piBHOBarax. /IJis TakMX CHCTEM [OBEAEHO ICHYBaHHS BJIACHUX OOMEXEHHMX IUIS JOJATHOTO 4acy PO3B’SI3KiB HBIOTOHIB-
CBKHX DIBHSHb PYXy, sIKi 30iraroTbCsi 0 PiBHOBAarM B TPaHMI[ HEeCKiHUeHHOro yacy. Lli pe3yiasTaTH 3acTOCOBYIOTHCS 10
KYJIOHIBCHKUX CHCTEM TPHOX 3apsiB 13 CHHTYJSPHOIO PIBHOBarorw Ha MpsMiil.

1. Introduction and main result. We consider n-dimensional systems with a potential energy U
which is singular at least on a set where some coordinates coincide and has a singular equilibrium
configuration meaning that the symmetric matrix U of partial second derivatives of the potential
energy has zero eigenvalues at the equilibrium 2. Such systems can be derived from mechanical
systems of N d-dimensional particles (charges) interacting via singular pair or manybody potentials
after a re-numeration of variables and masses with n = d/N. The Newton equation of motion of the
systems looks like

d2xj B _aU($(n))

Mj dt2 - 8£Uj ’

The diagonal n-dimensional matrix with the elements (effective masses) pj, j = 1,...,n, will be

j=1,...,n, T(py = (T1,...,7n) € R™ (1.1)

called by us the mass matrix and denoted by M. We assume that U is a holomorphic function in an
equilibrium neighborhood.

The motivation to consider such the systems comes from the Coulomb system of three charges
e1 =ex=—¢ey <0, e3 = %0 which has a singular equilibrium on a line with an equal distance a of
the positive charge to the negative ones. We show this in the last section of this paper.

Our aim is to find solutions of the Newton equation for the considered systems on the infinite
time interval. Not much is known about solutions on the infinite time interval for three-dimensional
Coulomb systems except the systems of two opposite charges and a charge in the field of many at-
tractive centers. Such the solutions were found for the simplest line Coulomb systems with equilibria
[1] and a planar system of n — 1 equal negative charges and a positive charge [2]. The existence of
the Coulomb dynamics without collisions of charges on a finite time interval has been proven in [3]
(see also [4]).

Instability of equilibrium in Coulomb systems is known from the Earnshaw theorem [5, 6]. This
fact and the inverse Lagrange — Dirichlet theorem imply that the Coulomb potential energy does not
attain an absolute minimum at it and U® does not have only positive eigenvalues.
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Existence of the zero eigenvalue of UY does not allow one to apply the results concerning
the existence of periodic solutions constructed in the Lyapunov (resonance) center theorem and its
(nonresonance) generalizations proposed in [7, 8]. Singularity of U does not allow one also to apply
the results concerning the existence of (proper) bounded at positive time solutions converging to the
equilibrium in the limit of infinite time [9].

It is known from the celestial mechanics [10] that the zero eigenvalue of a linear part of a vector
field of an ordinary differential equation is generated by integral of motions. There is a procedure
of lowering of its degeneracy degree by a separation of cyclic variables with the help of a canonical
transformation (see the paragraph Application to Lagrange solutions in [10]). But it is not known
whether the degeneracy of the zero eigenvalue of U° is generated exclusively by the integrals of
motion. Besides it is difficult to find them all.

In this paper we find the proper bounded solutions relying on a modification of the Siegel semi-
linearization technique (see the paragraph Lyapunov theorem in [10]). This technique is applied to
obtain partial solutions of an ordinary differential equation represented in a simple standard form
in which a linear part fy of its vector field f is given by a diagonal matrix as in the case of the
Poincare linearization theorem [11]. The Siegel technique allows one to linearize in new variables
(at a linear invariant manifold) only a part of the many-component equation demanding a resonance
condition between eigenvalues of fy with negative real parts to be satisfied. If the linear part of the
second order equation has the zero eigenvalue then one can not reduce it to the simple standard form.
In our version of the Siegel technique we start from another standard form of the Newton equation
which allows some variables satisfy second order equations. Then we introduce new variables with
the help of an unknown function ¢ such that the invariant manifold of the equation is given by the
zero values of some of the new variables and at it the remaining variables satisfy the new equation in
which the diagonal linear part of the vector field have negative eigenvalues. A resonance condition
is not needed since it is solved on the infinite time interval with the help of the Lyapunov theorem
[12, 13]. Finally we prove with the help the majorant method that ¢, which satisfies a resolvent type
equation, is a vector valued holomorphic function at a neighborhood of the origin.

Our main results are formulated in Theorems 1.1 and 1.2. The first theorem was utilized by
us in [1] in a weaker version demanding eigenvalues of M ~'U° not to be zero and its negative
eigenvalues satisfy a resonance condition.

Theorem 1.1. Let M be the mass matrix and U° be the symmetric matrix of second derivatives
at an equilibrium z° of a potential energy U of an n-dimensional mechanical system. Let also U be
a holomorphic function in a neighborhood of x° and the matrix M ~'U° have p negative eigenvalues
0j, 3 =1,...,p. Then the Newton equation of motion of this mechanical system admits a bounded
at positive time solution depending on p real parameters which is real analytic function in them in a
neighborhood of the origin and ||x — 2°||x < oo, ||| < oo, where i is the velocity and

|z|lx =sup max eM|zy(t)], A<= min ,/—0j.
t>0 s€(1,...,n) j=Ll,..p

We show in the last section that for the mentioned system of three charges the eigenvalues of the
matrix M ~'U° are determined explicitly. In the planar (three-dimensional) systems this matrix has
four (six) times degenerate zero, negative and positive(doubly degenerate) eigenvalues. For the line
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system it has only one negative and doubly degenerate zero eigenvalues. Such the eigenvalues and
Theorem 1.1 imply the following result.

Theorem 1.2. The Newton— Coulomb equation of motion of the three point charges e; = —ey,
es = —eg, €3 = € > 0 with masses m;, j = 1,2,3, admits in the line, planar and three-
dimensional systems a bounded at positive time solution which is a real analytic function in a
neighborhood of the origin in one real parameter such that ||z — 2%y < oo, ||#||x < oo and
A< o, A = e2(4a®) " (myt +myt 4 dmg ), where 20 is an equilibrium z9' = —a, 23" = a,
a§t =0, 9% =0, a = 2,3.

Note that due to the equality v MM ~1U° (\/M)_l (\/M)_lUO (\/M)_l the matrix M ~'U°
has the same spectrum as the matrix (\/M ) _1U 0 (\/M )

real elements.

1 o . o
and is similar to the diagonal matrix with

Our paper is organized as follows. In the second section we transform (1.1) into a standard form
(Proposition 2.1) and formulate Theorem 2.1 which substantially diminish the number of variables
in the transformed equation and permits to find its proper bounded at positive time solutions (Corol-
lary 2.1). We prove Theorem 2.1 in the third section. In the fourth section we find eigenvalues of
M~'U° (Theorem 4.1 describes them) for our system of three charges proving Theorem 1.2.

2. Standard form of Newton equation and its projection. If U has the zero eigenvalue, then
one can transform equation (1.1) into the standard form given in the following proposition (the star
in z* will mean the complex conjugation).

Proposition 2.1. Let 0, j = 1,...,n, be the real eigenvalues of M~U° such that o; = 0,
7 =mno+1,...,n. Then the Newton equation of equation (1.1) can be mapped by a linear invertible
transformation S into the following standard form:

dz; _

o = i) =N+ X)), =100, 20, (2.1)
d’x; .
dtzj = Xi(zq), j=lb+1...1, 2.2)

where | = n + ng, lg = 2ng,

Aj:—1/—0'j7 j:l,.,,,no, )\J:\/_io-], ]:n0+1772n07

Xj, Xj’-* = X]’- are holomorphic in the neighborhood of the origin such that in their power expansions
the sum of powers of xj is not less than two and Xjin, = —X; = X7, 7 = Tjin,, if 0 > 0, and
X=X, a; =u;,if0; <O.

Partial solutions of (2.1), (2.2) can be found with the help of the following theorem.

Theorem 2.1. Let real \j, j = 1,...,p < ly, be negative, real parts of \j, j =p+1,...,1o,
be nonnegative and X, X]’- be the same as in Proposition 2.1. Then there exist functions p;(zy)),
7 =p+1,...,1, which are holomorphic in a neighborhood of the origin and zero at it such that a

partial solution of (2.1), (2.2) is given for j =p+1,...,1 by
(1) = ¢ (zp)(1)),
and x;(t) for j =1,...,p, satisfy the projected evolution equation

drj

2= 1 (@) = Az + X5 (2), (2.3)
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where

X (@) = X (20 ean (@e)), () =p+1..0

are real functions and @; have the properties of X;, X j’ if (2.1), (2.2) corresponds to (1.1).

The solution of the projected evolution equation is obtained with the help of the well-known
first global Lyapunov theorem [12, 13] a well known generalization of which is formulated in [1]
(Theorem 6.2). Hence the following result is valid.

Corollary 2.1. Let the conditions of Theorem 2.1 be satisfied. Then there exists a partial solution
of (2.1), (2.2) depending on p parameters which coincide with the initial values of the variables in
(2.3). This solution is a holomorphic function in these parameters in a neighborhood of the origin
and ||z||\ < oo, where

2y =sup max eMa(t)), A<= min |,
t>0 s€(1,...,0) J=1,...p

and determines real solutions of (1.1).

The reality of the solutions follows from the fact that they are expressed as real linear com-
binations of the variables 2, + 2%, /=0 (ac; g~ :c;) which are real and z’; coincides with
the solution of (2.1), (2.2) corresponding to (1.1). Here one have to take into account the equality
S~ = 571(8%)~! determined below. This corollary and Proposition 2.1 prove Theorem 1.1.

Proof of Proposition 2.1. We assume that the potential energy U has the equilibrium at the
point 20 = (x(;), j=1,...,n, at a neighborhood of which it is holomorphic, that is

Then in the new variables x; — :c? the dynamic equation is rewritten as

d2xj B 8U’(:):(n))

'LLj dtz a (995]- ’

(2.4)

where

! _ 0 0 ou’ .
U'(xgm) = Uz +aY,... x0 + 7)), (0) = 0.
81‘]'

n

N £Lak=1
eigenvalues o, that is 0;,0; = (SM~'U’S™'), and transforms (2.4) into (we omit tilde in
variables)

By an invertible linear transformation z; = Z Sjjkxk one diagonalizes M —1U°, which has
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d’x;
o = 0T+ Fj(a(w), 25)
where
° ou” 5
Fi(wm) ==Y Skt <a >((5 ) m),
k=1 Tk
U”(x(n)) = x(n Z l$j.1‘l.
],l 1
That is
dx; dv;
== = o £ Fi(em). (2.6)

Then by the linear two-dimensional transformation produced by the matrix S;-) the last equation is
mapped into (2.1), (2.2) with lp = 2ng and —Agj_1 = Agj = /=05, j = 1,...,n9. The matrix
S 0 diagonalizes the two dimensional matrix A;, which determines the linear part of (2.6), with the
zero diagonal elements and nondiagonal elements Aj.1 2 = 1, Aj21 = —o;. That is S Aj =0 SO
where ; is a diagonal matrix with the eigenvalues —XAg;_1 = Agj = (/—0j. It is not dlfﬁcult to
check that

1 1
0 0 0 0
Sjna=5Sje1 =5 “Sje=9Sp2=g5— K ="0;
J
The new variables look like
, 1 1 , 1 1 ,
T2j-1 = 5 :Cj_/?jvj , T =5 xj+;jvj , J3=1,...,ng,
wézxj,no, 7=2no+1,....,n 4+ ng.

The inverse transformation is given by

/ / / / -
Tj = Togj + Tojq, vj = ki@ —@g5_1), J=1,...,n0,

which implies that the functions X;, X ]’ in (2.1), (2.2) are given by (we omit primes in variables)

X2 (T (ngng)) = —X2j—-1(T(nng)) = gFj($2 + X155 T2ng + T2n0—1> T2n0+15 - -+ » Tntng)s
J
where j =1,...,n9 and
X],(J:(n—i-no)) = E]($2 + L1y---5T2ng + T2ng—1,L2ng+1s - - - 7xn+n0)a j = 2”0 + 17 ceey 1 + no-

That is X; = X*, azgj = x9j_1, if 0; > 0, and X; = X]’-‘, x;‘ = xj, if o; < 0. Let us use another

numeration ofvarlables: (X1, @2, T3, ..., Tang) — (T1,X3, ..., Tong—1, T2, Td,...,T2,). In such a
way (2.6) is mapped into (2.1), (2.2) with

Aj:_\/_o-j? j:]-’"'unOa AJ:\/TO-]7 j:n0+17""2n0'
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As arestllt Xjtny = —X; = X]’-k, x;‘ = Tjing, if 05 >0, and X; = X;, x}k = xj, if 0; < 0 and
S = S9S, where
(8°2); =z, j=2ng+1,...,n+np,
((So)flfl:)j =+ Tjtng, 7=1,...,n,
((So)ilx)j_i_no = \/_Uj($j+n0 - (L‘j), j = 1, ..., no.

Proposition 2.1 is proved.
3. Proof of Theorem 2.1. To prove Theorem 2.1 we introduce at first the new variables uy
inspired by [10]

uj =z; —pj(ze)), j=1...,1
and
u; = xj, ei(Tp) =0, j<p.

Here the functions ; are given by a power expansion in z7" .. .2y? with ny +...+mn, > 1 and
coefficients Pjpny .n,, J = p+1,...,10, P! iy j =1lo+1,...,1. They will be real if j

Jma,..
correspond to real \;. The former variables are expressed in terms of the new ones as follows:

xj = uj + @i (up))-

The new variables obey the following equations:

CT;:WﬁGj(um)v J=1..l, @D
d?u .
dtzj =Gl(up), j=lo+1,...,L (3.2)

If one shows that the equalities
Gi(up,0,...,0) =0, j=p+1,...,1l, G'-(u(p),O,...,O) =0, j=l+1,...,1, (3.3)
are true then a partial solution of (2.1), (2.2) is given by (2.3) since
uj =0, j=p+1,...,1

is a partial solution of (3.1), (3.2). This will prove the theorem if ¢; is a holomorphic function at the
origin. Now we shall prove this character of ;. Let

O i
TTR T Dy JERE T OOy
Then
p
Gj = Xj+A\jwj = > frpjon
k=1
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p

rk=1

The first and second equations in (3.3) will be called the first and second structure equations. The
second structure equation is rewritten as follows:

p p p
> 2w A Mg, + O Cim Mk = X — > [ X (Xp + 2M2k) Qjarr, +
rk=1 k=0 rk=1

+@ja Xk, Xr + Xiz, e A + Mepr X)),
where
v = r(Tp)), k=p+1,...,1 (3.4)

and 0y, has the (unit) non-zero value only for k& = r. This equation is reduced to the following
recursion relation for the coefficients in the expansion of powers of variables (the sum of their
powers exceeds unity):

p 2 p

2 / T/
2 :nk)‘k + 2 :nk)‘k ijh---ﬂp - I‘j?”l:---vnp
k=1 k=1

- . . / e / . .
thatis I';., . 1is expressed in terms of Pj;n’p---,n; with ny + ... +n, <nip+...+np Itis easily

solved since the real parts of both terms in the square brackets are not zero due to the condition

P 2 p p 2 p
(Z nk>\k> + an)\z > A <Z nk> + an) ,  A_ =min )\?, (3.4a)
J
k=1 k=1 k=1

k=1

and the expansion for ¢;, j = lop +1,...,, is found. Now we have to prove its convergence with
the help of the majorant technique.

We will use the majorant inequality f << g which means that in the power expansion for g the
coefficients are nonnegative and exceed absolute values of the coefficients in the power expansion

for f. Let gpj be the power expansion with the coefficients ‘P.Y/'§n1:-~~7np‘7 that is
pj << ¢f.
Let
X << _esX® X! << X +...+ (3.5)
7 1— ClX X5 j X 1 l

Then the rewritten second structure equation yields

P P P
Z xra?k)\r)\kcp;;k% + Zcp;;k)ixk << x+ Z [X(X + 2)\+xk)g0;cvw+
k=1 k=1 k=1

ol (XX + Xan Trdg + Apdprx)].
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From (3.4a) we obtain
P P P P
D IFETIES YA PED JECTEUTIIS s 8
rk=1 k=1 rk=1 k=1
The last two inequalities yield
P P P
A | D ke, + 2 P | <<XH D O 20480, +
rk=1 k=1 k=1
We have also
0] << uj,
where
p P p
rk=1 k=1 rk=1
+ Oujay, (erX + Xz Tr At + )\+5k,T‘X)]' (3.6)

Now we have to prove that the solutions of this majorized second structure equation is a holomorphic
function. We seek the solutions of the last equation in the form

©xj = Y(2), Pxjrpzr = Vras Prjoy = Yo, T=T1+ ...+ Tp
The right-hand side of the majorized second structure equation is given by
X + DX (X + YaXa) + PA+ [(@Xa + X2 + 20X1as ]
Taking into account that

2e3y cregy?
= ]_ / / / = 8 = / = l —
Xo = (L)X, X(y) =0x(y) = = ey Tz ap? P 2

we see that the one-variable majorized second structure equation is derived from (3.6) and given by
_ 2 / / / /
= X + 27X [XWue + Ve (14 P'02)X] + p>\+{[w(1 +P'%a)X + x| e + 2xxwm}, (3.7)

where y, x’ depend on x + p’t). This equation is equivalent to the recursion relation for the coef-
ficients in the power expansion for 1 (its powers exceed unity) whose coefficients are nonnegative.
Let us put 2~ = W. The function

O(z) = ¥(x) + 32V, () + $2‘I’M($) = Pz + Tse
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has power expansion with nonnegative coefficients. Now we majorize the right-hand side of (3.7) in
such a way that it should depend only on ® and x. In order to do this one has to substitute 1, + Y.,
instead of v, and zv,, in (3.7). For the term in the first square bracket one obtaines

X2z 4 Yo (14 p'a)X << (Yo + 2%20) (1 + D' (V2 + 202) )X + (o + xw:m)x_lX =
=[(1+p2)x +27'x]
and the expression in the figure bracket is majorized by
[z(1+p' @)X + x| P + 22xD.

The right-hand side of (3.7) contains = as a multiplier since

_ 2 c3(1 + p'0)? 2 c3(1+p'®)?
X= 1—cz(l+p¥) 1—cz(l14+p®)’
2c3(1 +p/'W 14 p'0)?
Y=z c3(1+p'P) 22 cre3(1+p'P) —
1—cz(l1+p'¥) (1—crz(l+p'T))?
2¢3(1+p'® 14 p/®)?
. c3(1+p'®) o cic3(1+p'®)

1—ciz(1+2p®) o 1—2c1x(1+p'®)

Due to the fact that y, x’ are proportional to 22, x, respectively, (3.7) is majorized by the following
rational equation for ®,:
xP(x,®) xP(x,®,)

b << b, = , P << P,
1—3c1z(1 +p'®)’ 1—3ciz(1 + p'®s)

where P is a polynomial of two complex variables. Here we used the relation

-1

k k
(1*333‘)_1 << 1*Z$j
=1 j=1

J

The last equation can be rewritten as
F(x,®,) =®— 2P (z,®,) =0,

where P’ is a polynomial with positive coefficients. That is 9, F(0,0) # 0, where 0, is the
derivative in ®,. From the holomorphic implicit function theorem [13, 14] it follows that ®,(x)
is a holomorphic function at the origin with nonnegative coefficients in its power expansion. The
same is true for ¢ since it is majorized by x®. Hence the power expansion for ¢;, j =lop+1,...,1,
is a holomorphic function at the origin in all the variables.

Now we have to show that the solution of the first structure equation is also a holomorphic
function. This equation is given by

p p
—Ajpi + Z i ATk = Xj — Z XkPjay,
k=1 k=1

with (3.4). This equation is reduced to the recursion relation
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p
k=0

that is T'j.,; ... n, is expressed in terms of Pj;n’l,n-,n; with n} +... + nfp <ni+...+mnp Itis easily
solved and the expansion for ¢;, j = p+1,...,lp, is found. Now we have to prove its convergence.
The inequality

p
—\j + Z NEAE
k=1

I<ni+...4+np<c

)

the first structure equation and (3.5) lead to
p p
k=1

and the majorized first structure equation

p p
Zso*jxkxk =C2 (1 + Z(P*jxk>Xa @j << Pag

k=1 k=1

with (3.4) added, where cpj is the power expansion with the coefficients |Pj.,, .. n,|. Taking into
account the previous notation we derive the one-variable majorized first structure equation

Ty = co(1 4 9Pz)x

which determines the recursion relation for the coefficients of the power expansion for . Here

_ (a+py)?
1—ci(z+p)

The power expansion for ¢/ has nonnegative coefficients. Let us put =4 = U. Then

O(x) =¥(x) + 2Vy(x) = 9Yy.

That is the power expansion for ® has nonnegative coefficients and

cox(1+ p'®)3

P << , P << P,
1—ciz(1+p'®)
The final majorized first structure equation is given by
1+ p'®,)3
o, = 2P0 PR g

S l-caz(l+p®,)’

From the holomorphic implicit function theorem it follows that ®,(z) is a holomorphic function at
the origin with nonnegative coefficients in its power expansion. The same is true for v since it is
majorized by x®,. Hence the power expansion for ¢;, j =p+1,...,lo, is a holomorphic function
at the origin in all the variables. It follows from the first equation in (3.3) that ¢; has the same
properties as X; described in the Proposition 2.1 if \;, X;, X j’ correspond to (2.1). The reality of
XY follows from the dependence of X;, X j’ on @; + Qjing, j = 1,...,np, and reality of the latter
since @7 = @jin, for a positive o, which follows from the first equation in (3.3), and reality of both
functions for a nonpositive 0.
Theorem 2.1 is proved.
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4. Proof of Theorem 1.2. The simplest example of a mechanical system with an equilibrium is
. . . € .
the d-dimensional system of the three point charges e; = —ep, ea = —eg, €3 = ZO > (0 with masses

my1,ma, m3 and the potential energy

3
1 e;€eL
U(»”U(S)) D) Z ﬁ» (4.1)
jk=1 17T TR
where z(3) € R%, z; = (a:jl, . ,x;-l), |22 = (x1)? + ... + (2%)2. Its equilibrium is determined by
' = —a, 23" = a, 23" = 0, 2" = 0, a = 2. This potential energy is a holomorphic function at

a neighborhood of the equilibrium. The case of equal masses of the one-dimensional three charges
was considered in [1], where eigenvalues of U° were calculated.

Theorem 1.2 is proved with the help of Theorem 1.1 and following theorem.

Theorem 4.1. In the one-dimensional system MU has thg doubly degenerate zero eigen-
value and the eigenvalue —(mf1 + mgl + 4m§1)u’, u o= %. In the two-dimensional and
three-dimensional systems MU has the zero eigenvalue, which is four and six times degene-
rate, respectively, and the eigenvalues — (mf1 + mgl + 4m§1)u’, 21 (mf1 + mgl + 4m§1)u’ the
latter of which is doubly degenerate in the three-dimensional system.

Proof. We find eigenvalues of U at first for the one-dimensional case. In our calculations of
partial derivatives of the potential energy we will use the two equalities for z € R and = € R?,
respectively,

O b T 0 ek :
Txl‘ajl [1}2| - k‘gjl — 19 k+2° axa (\/m) — k(\/m)k+2

«

which gives

0 Ti— Tp
—U(zs) = - > e 3
0z KLk |z —
that is
GU( ) 9 X1 — T2 4 Tr1 — I3
—U(x(3)) = —ef— = + gge3— =,
Oxq ®) 0 |21 — 223 |71 — 233
6 o — I Tro — I3
—U(z3) = —€f————= +ege3
81‘2 ( (3)) 0 |IL'1 — l‘2|3 ‘1‘2 — $3|3
0 T3 — I xr3 — T2
—U(z = epes .
80 @) = O B Y Ty — PP
.0 . .
The equality a—U(:ﬂ(g))) = 0 holds for 71 = 29 = —a, z2 = 29 = a, ¥ = 0. This configuration
x3

is an equilibrium. This follows also from the equalities iU (:c(3)) =0,75=1,2.

Ox;
The second derivatives of the potential energy are calculated as follows:
Ga:jamk axkaxj

= _2€]ek|xj - xk’_?)v k 7& ja
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& & 5
U we) =26 D exlr —ml ™
J k=1,k#j

Hence the second derivatives of the potential energy at the equilibrium Ug ;. are given by

2
60 /

U?ﬂ - Ug,l T Tas T W U:(S),l = U?,s = U20,3 = U??,z = 2u/,
Uig=Usp = -0/, Uss = —4u'.

That is

1 1 ¢

U'=—u|1 1 ¢ |=dU, q=-2 4.2)

¢ q ¢

Let us put
ki—A k1 qk1
My(\q) = | k2 ko — A gk |, kj=m;l.
qks qks ks — X

Then
MUY = N\ = —u' M| <—2, q), —Det(M U — \I) = " Det M (-2, q>, q= -2,

and making the expansion of the determinant in the elements of the first row of M we obtain
Det M{()\,q) =
= (k1 — A)[(k2 = N\)(¢®ks — ) — ¢®kaks] —
—k1 [ka(q®ks — N) — ¢*koks] + gk [qkoks — qhs (ks — N)] =
= (k1 — N[N\ = Ak + ¢°k3)] + Merka + AgPkiks =
= A[(k1 — A\ — ¢Pks — ko) + kika + ¢*kks].
Hence
Det Mg(A,q) = N (=A + k1 + ks + ¢°k3)
and
Det(M~'U° — M) = =X*[A+ (m7" + my ' + 4mg '],

The last formula proves the theorem for the one-dimensional case.
Let us consider the two-dimensional case. For the first partial derivatives of the planar potential
energy we have
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0 ¥ —x & —
—U(x =—e2 L2 4 epez—t 3
oz ( (3)) 0 |z — 293 0=3 |z — 233

0 ¥ — ¢ 8 — ¢
— Ulx — 2 72 1 + epes 2 3
0x§ (7) |21 — x2|? |zg — 233

0 2 —x x ¢
——U(x3)) = ege 3 L 3 2 1.
ox§ ( (3)) 0=3 [|x1 — a3 |rg — 33

1 1 2 1 2

The last equality is zero at the equilibrium —z{ = 25 = a, 23 = 23 = 2] =

1:% = 0. The first two

give the equilibrium relation e3 = ZO. The second derivatives of the potential energy are given by

GU(:C(3)) _ 8U(x(3))
83:?8:1:5 Bxgaa:‘f‘

— 2 0,8 _ 3(95? - x%)(m’f — 375
- -0 _ 3 _ 5
|z1 — @2 |1 — 22

Wrw) _0UG@w) _ | Gap (e —a§)(ef —af
axz‘ﬁxg Gxgaxg |[vp — a3 vk — a3

)]7 G{?B:1727

)]7 k7a’B:1727

2
PU@E) _ of  Gap | G@f —af)@f —ap)|
0z} 9% |1 — 223 |21 — @2
BB
K} ¢ — 29 (x) —x
+€063 2,8 - ( J 3)( J 3) 9 j,Oé,/B: 1727
zj — 33 lzj — a3[5
2
OIU(xw) _, | ap _ glaf — 2§) (@} — @y N
Oy oy |1 — 3| |21 — a3[°
Sap (28 —a§)(x) — 25)
|z — 33 |zo — x3]>

For the matrix of the second derivatives at the equilibrium we derive

1 1 1 1
0 0 2
ULan, = Uzai2,8 = €0 [5‘“’5 <_ 207 © 4a3) 3019, <(2a)3 - zla?’ﬂ B

2
€ _
= - 0200,8(1 = 300,108,1) = 47'U3 0.3 5,

(2a)?
0 0 6(2)
Ul,a;2,ﬂ = Uz,ﬁ;l,a = 7(2@35&,6(1 - 3504715671)7
0 0 e%
Uk‘,a;g’ﬁ = U37ﬁ;k7a = _470/350‘76(1 - 36&715ﬁ71)7 k’ a’ﬁ = 17 2'
Let’s introduce the numeration
(1,1) =1, (2,1) =2, (3,1) = 3, (1,2) =4, (2,2) =5, (3,2) =6,
mg4 = My, ms = ma2, me = Mg,
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where the first and second numbers in the round brackets correspond to the lower and upper indices
of variables. Then Ujok = U,Sj =0,7<3, k>4, and

/ 2
0 0 —1770 0 0 0 u €0
U1,1 = U2,2 =4 U3,3 = —2c¢, U1,2 = —2¢, U1,3 = U2,3 = 4, c= b = (2a)37

Uy =Us=4""Uds=c, Uls=c, Ujsg=Uss=—2c
This means
U =2cU" @ —cU’,
where U’ is given by (4.2).
Let M"” = M'® M’ and M’ be the 3 x 3 diagonal matrix with the elements m1, ms, ms. Then

c C

A A
Det(M"~1U° — XI) = —23¢5 Det M|, <—2, —2> Det M, < —2).
&

C

From this equality and (4.3) we derive
/

— Det (MU — AI) = A [—)\ + (myt 4 myt +4mg )

2} At (myt +my !+ dmg ]

This concludes the proof for the two-dimensional case.

Let’s consider the 3-dimensional case. Then all the formulas concerning partial derivatives of
the potential energy of this sections will be true adding the condition «, 5 = 1,2,3. Let’s use the
following numeration of the variables indices:

(153) :73 (2’3) :87 (353) :97 mr =mzi, mg =ma, mg = Mmg3.

It is not difficult to see that Uﬁk = UISJ =0,7<6,k>7,and U$77 = ¢y, Ug,s = cq, Ug’g = 4cq,
Upgs = c1, Uy = Uy = —2¢1. Hence

U'=U"® U,
where U” coincides with the planar U°. Moreover
M=M'a&M, MU=M"U"®-cMU.

As a result

772

—Det(MPU? = AI) = X0 | =X\ 4+ (m P+ my ! +4mg1)% A+ (myt+myt + 4m§1)u'].

Theorem 4.1 is proved.
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