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A NOTE ON THE COEFFICIENT ESTIMATES
FOR SOME CLASSES OF p-VALENT FUNCTIONS *

3AYBAJKEHHSI I11O/10 KOE®ILIEHTHUX OLIHOK
JUISL IESIKUX KJIACIB p-BAJIEHTHUX ®YHKIII

We obtain estimates of the Taylor — Maclaurin coefficients of some classes of p-valent functions. This problem was initially
studied by Aouf in the paper “Coefficient estimates for some classes of p-valent functions” (Internat. J. Math. and Math.
Sci. — 1988. — 11. — P. 47-54). The proof given by Aouf was found to be partially erroneous. We propose the correct proof
of this result.

Otpumano ominku i koedinienTiB Teitmopa—MakaopeHa A IesSKUX KiaciB p-BajleHTHHX QyHKMiA. Llg 3amaua Oyma
BHepuie po3nsiHyTa Aydom y poboti “Coefficient estimates for some classes of p-valent functions” (Internat. J. Math. and
Math. Sci. — 1988. — 11. — P. 47-54). [loBenenns, HaBeaeHe AypoM, BUSIBUIOCH YaCTKOBO IIOMIJIKOBUM. MU IPOIIOHY€EMO
KOPEKTHE JJOBEJCHHS L[bOTO PE3yJIbTaTy.

1. Introduction. The concept of univalence has a natural extension as described in p-valent function
theory. A functions

F2) =) an2" (1.1)
n=1

is said to be p-valent in the open unit disk I := {z € C: |z| < 1}. if it is analytic and assumes no
value more than p times in D and there is some w such that f(z) = w has exactly p solutions in
D, when roots are counted in accordance with their multiplicities. We let S, denote the class of all
functions that are analytic and p-valent in D.

By definition, the function f is said to be p-valent (or multivalent of order p) in D if

f(z1) = f(22) = ... = f(zp+1),  21,22,..-,2p+1 €D,

imply that z, = z; for some pair such that » # s, and if there is some w such that the equation
f(2) = w has p roots (counted in accordance with their multiplicities) in ID. For example, f(z) = 22
is a 2-valent in D.

Let S; denote the class of functions, which are analytic and p-valent starlike in D. A function

[ € S, is said to be p-valent starlike functions in D, if there exists a p > 0 such that for p < |z| < 1,

Re { Z;é';) } >0 (1.2)

and

i ! z
o/ Re{zﬁi))}dhm
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550 N. L. SHARMA

for z = re'’. Goodman [10] has studied the class S, and shown that a function in S, has exactly p
zeros and it is p-valent in D.

Let C, denote the class of functions, which are analytic and p-valent convex in D. A function
[ €S, is said to be in C,, if there exists a p > 0 such that for p < |z| < 1,

2f"(2)
Re{1+ e }>0 (1.3)

and

ZRe {1 n zﬂ;z) } 9 = 2pr

for z = re’?. Goodman [10] proved that a function in C, is at most p-valent and f” has exactly p—1

zeros in D, multiple zeros being counted in accordance with their multiplicities. There is a closely
analytic relation between S, and C), in the same way as Alexander theorem. Namely,

2 f!

fel, = ——€S§,.

For p = 1, the classes S; and C, are the usually classes of univalent starlike and convex, respectively.
An analytic function f is said to be subordinate to an analytic function g if f(z) = g(¢(2)),

z € D, for some analytic function ¢ in D with ¢(0) = 0 and |¢(2)| < 1, z € D. We write this

subordination relation by f(z) < g(z) (see [7, 11, 18]). The relations (1.2) and (1.3) are respectively

equivalent to

() 14z < 2f"(z >> 142

< and 1+ < .
pf(2) -z f'(z) 1—=z
In 1948, Goodman [9] has conjectured that if f € S, then

p
2k(p+mn)!
an| < a 1.4
ol £ 2 G R R o —p 1) ) 49
for n > p. For p =2 and n = 3, this gives the conjecture that
’CL3| < 5|a1\ + 4‘&2’. (1.5)

For p = 1, inequality (1.4) reduces to the well-known Bieberbach conjecture |a,,| < n. For instance,
Goodman [10] showed that (1.5) is valid for f in &5 has the form (1.1) with all real coefficients a,,
and this bound is sharp for all pairs |a1], |az|, not both zero. In the same paper, Goodman suggested
the similar conjecture as (1.4) for f € C,. For n = p+1, he proved the inequality (1.4) for the classes
S, and Cp, respectively, when f has the form (1.1) with the conditions a; = a2 = ... =ap—2 =0
and all the coefficients a,, are real. Umezawa [31] obtained the coefficient bound |a,| for function
belongs to the class of p-valent close-to-convex functions. In 1969, Livingston [17] proved inequality
(1.4) for functions of the class p-valent close-to-convex, in case a1 = a2 = ... = ap—2 = 0 and the
remaining the coefficients being complex.

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 4



A NOTE ON THE COEFFICIENT ESTIMATES FOR SOME CLASSES OF p-VALENT FUNCTIONS 551

In addition, let .4, denote the class of functions of the form

f(z) =2+ anpz™™?, peN, (1.6)
n=1

which are analytic and p-valent in D. Denote by A; := A, the class of all analytic functions of
the form f(z) = z + ZZO_Q anz" in D and S denotes the usual class of functions in A which are
univalent in D.

For the special subclass A, of S,, Hayman in [14] has showed that |a,.1| < 2p and Jenkins in
[15] has showed |a,12| < p(2p+1). Both of these results are consistent with (1.4). Both inequalities,
for p-valent functions, are the analogues of the coefficient bounds |az| < 2 and |a3| < 3, known for
univalent functions. Goluzina [8], Patil and Thakare [22], Aouf [2], and several other authors also
proved the coefficient bounds for certain subclasses of p-valent functions.

Recently the authors in [29] obtained the correct form of the coefficient bounds for the class

zf'(z) P+t (PB+(A_B)(Z7—5))Z
f(z) = 1+ Bz ’

Sp(A,B,B):=q f€A: zeD,,
where 8,0 < 8 < pand —1 < B < A < 1. Here, we solve the coefficient bounds involving the
Taylor — Maclaurin coefficients |a,| for n > p+ 1, for functions belonging to the classes Fp(c, 3, \)
and Cp(b, A). These classes are defined below (see Definitions 1.2 and 1.3).

In [21], Padmanabhan introduced the class of starlike functions of order A, 0 < A < 1, defined
as follows:

Definition 1.1. 4 function f € A is said to be in T (\), if

G )/ G +)] =

/ / _
zf(z)_<1+)\z or zf(z){l Az
f(2) 1- Az f(2) 1+ Az
forall zeDand 0 < XA < 1.
A function f € A, is said to be p-valent a-spiral-like function of order (3 in I, if it is analytic
and if there exists a p > 0 such that for p < |z| < 1

Red LN

equivalently,

and
27

O/Re {ew ijég) } 9 = 2pr

for z = re?,|a| < 7/2 and 0 < B < p. The class of p-valent a-spiral-like of order 3 is denoted
by Sa (). In [22], Patil and Thakare introduced the class S, (/). The subordination form of the
definition of p-valent c-spiral-like function of order 8 defined follows: f € S, () if and only if
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i 2f'(2) p+(p—2p0)z
IR <( -2

Two subclasses F(c, 3, A) and Cp,(b, \) of p-valent functions in D were acquainted by Aouf in

> cos o + ip sin av.

[2] which are defined as follows:
Definition 1.2. A4 function f € A, is said to belong to the class Fy(c, 3, \), if it satisfies the
condition

where

e Z]{ES) — Bcosa — ipsina

() =~ e

By subordination property, equivalently, it can be written as
gozf'(2) (P (0= 2B)A
f(2) 1— Az

Jor0<A<1,0<B<p,peNand|al <m/2.
Definition 1.3. Let b be a non-zero complex number. For 0 < X\ < 1 and p € N, let C,(b, \)
denote the class of functions f(z) € A, satisfying the relation

) cosa + ipsina (1.7)

H(f(2) ~ 1 _
’H(f(z))ﬂ’“ for 2 €D,

where

By subordination relation,

2f"(z)  p(A+ (26 —1)Az)

T+ f'(2) 1- Az

(1.8)

We note that a number of subclasses have been studied by several authors and the subclasses can
be obtain by putting for different values of p, «, 8, A and b. We list some of them here.

(1) F,(0,0,1) =: S, and Cy(1,1) =: C,, are respectively the classes of p-valent starlike and p-
valent convex functions recognized by Goodman [10], and the class F;,(0, 3,1) =: S;(j3), p-valent
starlike functions of order 5 was investigated by Goluzina [8]. C,((1—8/p),1) =: C,(8), 0 < B < p,
the class of p-valent functions g(z) for which z¢'(2)/p is in the class S;;(3).

(2) Fp(a,0,1) = Syp and Fp(a, B,1) =: Sop(B), respectively define the class of p-valent
a-spirallike functions and p-valent «-spirallike functions of order 5.

(3) Cple ™ cosa,1) and Cp(e (1 — B/p)cosa,1),0 < B < p, |a] < 7/2, are the class
of p-valent functions g(z) for which z¢'(z)/p are p-valent a-spirallike functions and p-valent -
spirallike functions of order S respectively.

(4) The class Fi(a, 8,\) =: F(a, 5, ) was studied by Gopalakrishna and Umarani [13].
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(5) Cp(b,1) is the class of p-valent functions g(z) € A, satisfying

1 1
Re{p+<1+2g, (Z)—p>}>0 for z € .
b q'(2)

This class was considered by Aouf in [1].

(6) F1(0,0,1) =: §* and C;(1,1) =: C are respectively the usual classes of starlike and convex
functions; F1(0,5,1) =: S*(B) and C1(1 — 5,1) =: C(B), 0 < B < 1, are respectively the classes
of starlike and convex functions of order 5 were introduced by Robertson [24]; F1(0,0, ) =: T(A)
(see Definition 1.1) and C1(1, ) =: C()\) is the class of functions g(z) for which z¢'(z) € S(N).

(7) Fi(a,0,1) =: S, and Ci(e"“*cosa, 1), |a| < /2, respectively define the class of a-
spirallike functions familiarized by Spatek [30] and the class of functions g(z) for which z¢/(z) is
av-spirallike introduced by Robertson [25]; Fi(a, 8,1) =: Sa(83) and Cy(e (1 — B)cosa, 1) =
=: Ca(B), 0 < B < 1,|a| < 7/2, are respectively the class of a-spirallike functions of order [
introduced by Libra [16] and the class of functions g(z) for which z¢/(z) is a-spirallike of order 3
studied by Chichra [4] and Sizuk [28].

(8) Cy(b,1) =: C(b) is the class of functions g(z) € A satisfying

Re <1+1Zg < )) >0 forzeD
b g'(z)
introduced by Wiatrowski [32] and studied in [19, 20].

2. Main results. Aouf evaluated the coefficient bounds for the functions from the classes
Fp(er, B, A) and Cp(b, A) in [2] in which the proofs are found to be incorrect. In the present paper,
we provide their correct proofs. The following theorems were mistakenly proven by Aouf in [2].

Theorem A ([2], Theorem 2). Let 0 < A< 1,0 < 8 < p,p € Nand |a| < w/2. If f(2) =

o0
=P+ Zn:pﬂ anz" € Fpla, B, ), then

vt Alj+2(p— B)e ™ cos a

an| <
1= 11 -2

for n > p+ 1, and these bounds are sharp for all admissible o, B, A and for each n.
Theorem B ([2], Theorem 3). Let 0 < A < 1,p € N and b # 0 be any complex number. If

2)=2P + ZZOZPH anz" € Cy(b, \), then

)\\]—I—pr]
an| < ||
[an] A

for n > p+ 1, and these bounds are sharp for all admissible o, B, \ and for each n.

First, we provide the correct form of the coefficients bounds for f € F,(«, 3, ) as stated in
Theorem A and its proof.

Theorem 2.1. Let 0 < A< 1,0< S <p,p € Nand |a| < 7/2. If f(2) € Fp(e, B, A) is in
the form (1.6), then

lap+1] < 2A(p — B) cos a; (2.1)
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for )\2(2p—2ﬁ+ (n—p-— 1))2 <(n—-p-— 1)2(5662a—)\2tan204),

2\(p — )

|an| <€ ————cosa, n=p+2;
n—p
and for \*(2p — 2B+ (n —p — 1))2 > (n—p—1)2(sec’ @ — A tan? @),

)\2p Ble"cosa+j—1
|an‘<H ‘ ) ] J ‘

The equality signs in (2.1), (2.2) and (2.3) are attained.
Proof. Let f(z) € Fp(a, 8, A). It follows from (1.7) that

a2 f(2) _ <p T (p— 28)9(2)

) =20 (2) )cosa—i—ipsina

, n>p+2.

N. L. SHARMA

(2.2)

(2.3)

for some analytic function ¢(z) in D with ¢(0) = 0 and |¢(z)| < 1. We divide the expansion by

cos « on both sides and get

e“secazf'(z) — (p+iptana)f(z) = )\( “secazf'(z) + (p— 28 — iptana)f(z))gb(z).

Substituting this in the series expansion (1.6), of f(z), we find that

[o.¢]
Z (em(k + p)seca — p — iptan a) akﬂozk“’ =
k=0

= <Z (em(k: +p)seca+p—25 —itan a) akﬂozkﬂ’) o(2),

k=0

oo
where a, = 1 and ¢(z) = Zk:o Wy 42" P, Rewriting it, we obtain

m
Z( (k+p)seca—p— zptana)ak+z+p—|— Z Cp2FP =

k=0 k=m+1

m—1
=) (Z (em(k: +p)seca +p — 2 —itan a) ak+pzk+p) o(2)

k=0

for certain coefficients Cj. Since |¢(z)| < 1 in D, then by Parseval - Gutzmer formula (see also

Clunie’s method [5] and [26, 27]), we get

e

k=0 k=m+1

ml 2
<\? < e"“(k+p)seca+p—203 —itan a‘ \ak+p\2r2p+2k> :

k=0

e"*(k +p)seca — p —iptana |a,€+p|2 22k Z |22+ 2 <

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 4



A NOTE ON THE COEFFICIENT ESTIMATES FOR SOME CLASSES OF p-VALENT FUNCTIONS 555

Table 1
kE|lpl|la 8 | A T
all | 1| all all |1 positive
2 | 1| +xxw/4]09]0.9]| —0.0236
3 12| +7/3]1 0.6 | —5.92
3|12 |xw/3 |1 0.8 ] 1.92

(This is the place where the incorrectness of Aouf’s proof is found!)

Letting » — 1, the above inequality can be written as

. 2
e“(k+p)seca+p—20 —itana| —

e'*(m+ p)seca — p — iptan a‘ |amip|? < Z ()\2
k=0

. 2
—e"*(k +p)seca —p — iptana‘ ) ]ak+p\2.
Simplification of the above inequality leads
m—1
m? sec? a1 p|* < Z <>\2(k‘ + 2p — 28)% — E*(sec® o — A% tan® a)) ||
k=0

or

COS2OZ i
ampl? < o [ AN (p = B2+ 3 (W — 1+ 2p — 26)°—
k=2

—(k —1)*(sec® o — A tan a))) [T

Above inequality can be rewritten by replacing m + p by n as

2 n—p
Jan|? < % (4)\2(]9 — B2+ (W(k - 1+2p - 28)°-
k=2

—(k —1)*(sec® o — A tan a))) |agip1|> forn>p+1. (2.4)

Note that the terms under the summation in the right-hand side of (2.4) may be positive as well as
negative. We verify it by including here a table (see Table 1) for values of

T:=X(k—142p—28)%— (k—1)*(sec’ @ — \? tan® a)

for various choices for k,p,«, 3 and A. So, we can not apply direct principle of mathematical
induction in (2.4) to establish the desired bounds for |a,|. Therefore, we are considering different
cases for this.
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First, for n = p + 1, we readily see that (2.4) reduces to
|lap+1| < 2A(p — B) cos e,

which is equivalent to (2.1).
Secondly, A?(2p— 28+ (n—p — 1)) (n—p—1)(sec? « — A tan? o) for n > p+ 2. Since
all the terms under the summation in (2.4) are negative, we get

2\(p — B)

lap| < ——~ cosa.
n—p

This gives the bound for |a,| as asserted in (2.2). The equality holds in (2.1) and (2.2) for the
rotation of the functions »
z

k s 7B1>‘7(Z) = - -
n,p,& (1 +)\Zn_1)<n

Here ¢, := 2(p — B)e " cosa/(n — 1).

Finally, we consider the case A*(2p —28+ (n—p— 1))2 > (n—p—1)%(sec® a— A tan? a) for
n > p + 2 and obtain bound for |a,| stated in (2.3). We see that all the terms under the summation
in (2.4) are nonnegative. We prove the inequality by the usual induction principle. Fix n, n > p+ 2
and suppose that (2.3) holds for £ = 3,4,...,n — p. Then by (2.4), we obtain

2 n—p
anl? < (Mp —B2 4+ (Ve —28+ k- 1)
k=2

lﬁ )\2‘2(17— Ble @ cosa+j — 1‘2

72

(2.5)
j

—(k —1)2(sec? a — \? tan? a)>>

j=1
It is now sufficient to prove that the square of the right-hand side of (2.3) is equal to the right-hand
side of (2.5), that is to show

m—

2(4)\219 B)? + (A22p 28+ k—1)2—

k=2

"B

Tﬁp /\2‘2(p —B)e " cosa+j — 1|2 _ cos? o

J? (m —p)

Jj=1

k—1 2 . —ia .2
H A22(p — B)e @ cosa+j — 1| 2.6)

) )

— — SeC o — 2 aHQOé
(k—1)%( A2 ))) ;

j=1

when A?(2p — 28+ (m —p — 1))2 > (m—p—1)*(sec? a — AN tan? o) for m > p + 2.
The equation (2.6) is valid for m = p+2. Suppose that (2.6) is true for all m, p+2 <m < n—p.
Then by (2.5), we have

1

p—
> (Mep-28+k-1)-

k=2

n—
COS2 «

~ (n—p)?

|an‘2

{4)\2]9 62+

k—1 2 i . 2

A2[2(p — B)e @ cosa + j — 1]

—(k — 1)%(sec® a — N tan® « - +
(k1) ) 1 =
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+<)\2(2p—25—|—n—p—1)2—(n— — 1)%(sec? a — \? tan® a))x

12

n—p—1 2 o . 2
A2[2(p — B)e @ cosa + j — 1]
<1l : |

By induction hypothesis for m =n — 1, we get

|an|2 >

(n—p)? cos? a 2

cos’a | (n—p—1)2 nﬁl )\Q‘Z(p—ﬁ)e_iacosa+j—1|2+
J

j=1

+<)\2(2p—2ﬁ+n—p—1) — (n—p—1)2(sec? @ — \? tan? oz))x

) i

n—p—1 2|9 i . 2
A?| +75—1
y H — Ble " cosa+ j — 1|
J

1.e.,

)\2
|an|2§(n_p)2((2p—2,6’—|—n—p—1)2cos2oz—|—(n— —1)?sin a))x

n—p—1 9 o . 2
A12(p—ple ™ cosa+j—1
x H ‘ j2 ‘ ’

On simplification, the above inequality leads to

P N2(p — Be @ cosa+j —1
yany<H | r .

It is easy to prove that the bounds are sharp as can be seen by the rotation of the function

k N
pasal2) = e
Here ¢ :=2(p — B)e “cos a.
Theorem 2.1 is proved.

Table 2

kn | D « I} A

ki |2 x/4 | 1 |05

ky | 2| 7/4 | 1509

ks | 3| —n/3 | 2 |08

ki | 3| —7/3]05 0.2
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Fig. 2. Images of the unit disk under k3 (@) and k4 (b).

Remark 2.1. Letting the different values of p,«, 5 and A in Theorem 2.1, we obtain results
which were proved in [8-10, 13, 16, 22-24, 33].

For different values of p, o, 5 and A (see Table 2), the images of the unit disk under the extremal
functions k,, := kp o 5. (2) are described in Figures 1 and 2.

We now give the correct form of the statement stated in Theorem B and its proof.

Theorem 2.2. Let 0 < A <1, p € N and b # 0 be any complex number. If f(z) € Cy(b, \) is
of the form (1.6), then

2)\p?|b]
1+p’

|ap+1| S (27)
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Jor [2bp+n —p—1] <n—p—1 (equivalently |1 + 2bp| < 1),

2)p%|b
lan| < 22PL s 1 2.8)
n(n —p)
and for 2bp+n—p—1>n—p—1,
p" /\|J+2bp!
< £ >p+2. 2.9
@] H 1 nEee (29)

7=0

The equality signs in (2.7), (2.8) and (2.9) are attained.
Proof. Let f(z) € C,(b, \). By the equation (1.8), we see that there is an analytic function ¢ :
D — D with ¢(0) = 0 such that

2f"(z) _ p(1+ (20— 1)X¢(2))

YR T 1w

or
2f"(2) = (p = 1)f'(2) = =A((p = 2p = 1)f(2) = 2/"() ) 6(2).

Using the representation (1.6), we observe that

Z k(k+p)agp?” = X <2p2b + Z (k+p)(k+ 2bp)ak+pzk> o(2).
=1 k=1

We apply Clunie’s method [5] for m € N (see also [26, 27]) and obtain
m m—1
D K (k4 p)Plansp” < N (4194!5!2 + > (k+p)°lk+ 2bp!2\ak+p\2> :
k=1 k=1
The above inequality yields
1 m—1
mipl? < —5——— [ 4\7p*[b)? k+p)* (A\|k + 2bp|* — K ).
|| _mQ(m+p)2< p'b] +;( +p)° (N2Ik + 20p|* — k?)[agp|
Replacing m + p by n, we get
1
2
< - -
ol < et —pp

forn>p+1.
Note that the terms under the summation in the right-hand side of (2.10) may be positive as well
as negative. We inspect it by including here a table (see Table 3) for values of

n—p—1
<4)\2p4|b|2 + > (k+p)* (N2l + 20p|* — %) |ak+p\2> (2.10)
k=1

U = \|k + 2bp|* — k?

for different choices of k,p,b and A. So, we can not apply direct mathematical induction in (2.10)
to prove the required coefficients bounds for f € C,(b, \). Therefore, we are taking different cases
for this.

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 4



560 N. L. SHARMA

Table 3
b AV
1 0.1 | —3.998
1 0.6 | 1.76

3—21102] =32
3—2¢ |03 128

R NN

p
1
1
2
2

(This is the place where the in correctness of Aouf’s proof is found!)

First, for n = p + 1, (2.10) reduces to

22p?(b|
1+p°

lap+1] <

This proves (2.7).
Secondly, we consider the case [2bp +n —p — 1| < n — p — 1 (equivalently |1 4 2bp| < 1) for
n > p + 2. Since all the terms under the summation in (2.10) are nonpositive, we get

which establishes (2.8). The equality holds in (2.7) and (2.8) for the rotation of the functions
knppa(2) € Cp(b, A) given by

: _ p!
kn,p,b,)\(z) - (1 + Azn—l)pr/(n—l) ’

Finally, we prove (2.9) when |1+ 2bp| > |2bp+n—p—1| > n—p—1 for n > p+2. We see that all
the terms under the summation in (2.10) are positive. We prove the inequality by the mathematical
induction. We consider that (2.9) holds for kK = 3,4, ...,n — p. Then from (2.10), we obtain

n—p—1

k—1 .
1 A2|j + 2bp|?
2 2 411,12 2 2 2 2
anl? < ——— [ NZp4p)? + E:p<)\ k + 2bp —k:>||,7 . @211)
| ‘ n2(p7n)2 | | P | ’ ol (]+1)2

We now prove that the square of the right-hand side of (2.9) is equal to the right-hand side of (2.11),
that is

m—p— 1 2 2 n—p—l
N[5 + 2bp| 1 < 2 92112 2 2 2
11 = ANPPB + Y (A2 + 26p]* — K2 x
— 2
i (j+1)2 (p m) port ( )
k-1 .
2|7 + 20p|?
_— 2.12
i 2.12)

when 2om +p—p—1>m—-p—1,m>p+2.

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 4



A NOTE ON THE COEFFICIENT ESTIMATES FOR SOME CLASSES OF p-VALENT FUNCTIONS

1500 [ -

1000 -

500 -

—~500 |

-1000 -

—1500 —1000 -500 0 500 1000

(b)

Fig. 3. Images of the unit disk under g1 (@) and g2 (b).

=20 -15 -0 -03 00 03 10 15

(b)

Fig. 4. Images of the unit disk under g3 (@) and g4 (b).
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For m = p + 2, the equation (2.12) is recognized. Suppose that (2.12) is true for all m, p+2 <

< m < n —p. Then from (2.11), we have

n—p—2 —

1 )\2|j+2bp|2
2~ [P+ 2(22[k + 26p[? - ) =

(A2|n p—l—i—?bp\2 (n—p—1) > H TESIE

o X+ 2bp|2>
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Table 4
gn | P b A
g2 12|12—-3:|04
g3 | 3| 1—2¢]0.7
gs | 313—2¢1]0.7

Using the relation (2.12) for m = n — 1, we find that
"ﬁ2 X2Jj + 2bpf?

1
2 2 2
<————— —n+1

J=0

n—p—2 9, . 2
Alj+20
+p2<)\2|n—p— 14 2bp)> — (n—p — 1)2> H Uif‘
e WU+
It is equivalent to
. —-p—2 .
P+ 20p] " N + 20

ST & SRS

which establishes (2.9).
The bounds are sharp for the rotation of the function k,; x(2) € Cp(b, A) given by

/ . pzp_l
kp,b,/\(z) - (1 + )\z)%p'

Theorem 2.2 is proved.

N. L. SHARMA

Remark 2.2. Letting the different values of p,b and A in Theorem 2.2, we obtain results which

were proved in [1, 10, 24, 32].

For different values of p,b and A (see Table 4), the images of the unit disk under the extremal

functions gy, := k,; ,(z) are described in Figures 3 and 4.
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