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NUMERICAL SOLUTIONS OF FRACTIONAL SYSTEM, TWO-POINT BVPS
USING ITERATIVE REPRODUCING KERNEL ALGORITHM

YUCEJBbHUA PO3B’SI30K JPOBOBUX CUCTEM JIBOTOYKOBUX
I'PAHUYHHUX 3AJAY 3A JOIIOMOI'OIO ITEPATUBHOI'O
BITHOBJIIOIOYOI'O AAEPHOI'O AJITOPUTMY

We propose an efficient computational method, namely, the iterative reproducing kernel method for the approximate solution
of fractional-order systems of two-point time boundary-value problems in the Caputo sense. Two extended inner-product
spaces are constructed in which the boundary conditions of the systems are satisfied. The reproducing kernel functions
are constructed to get an accurate algorithm for the investigation of fractional systems. The developed procedure is based
on generating the orthonormal basis with an aim to formulate the solution throughout the evolution of the algorithm. The
analytic solution is represented in the form of a series in the reproducing kernel Hilbert space with readily computed
components. In this connection, some numerical examples are presented to show the good performance and applicability
of the developed algorithm. The numerical results indicate that the proposed algorithm is a powerful tool for the solution
of fractional models arising in different fields of sciences and engineering.

3anponoHoBaHo €(heKTHBHUI OOYMCITIOBALHUN METOM, & CaMe ITCPaTHBHUI BiIHOBIIOIOYUN SIEPHUNA aNropuTM Ui Ha-
OMIKEHOTO PO3B’SI3yBaHHS CHCTEM ApoOOBOTO MOPSAAKY IJISI JBOTOYKOBHX YAaCOBHX I'paHMYHMX 3a4ad y ceHci Kamyro.
[ToOynoBaHO /1Ba PO3IIKPEHi TribOSPTOBI MPOCTOPH, B SKUX BUKOHYIOTHCS MPaHUYHI yMOBH [uisi cucteM. Takox moOymo-
BaHO BIJHOBIIOBAJIbHI sCpHI (QYHKIII, 100 OTpHMAaTH TOYHHU AITOPUTM JUI BUBYCHHS IPOOOBUX cucTeM. Po3pobnena
npoueaypa 6asyeTscst Ha TeHepalii OPTOHOPMAIBHOTO 6a3ucy 3 METOI (HOPMYITIOBaHHS PO3B’A3KY Ul BCi€l eBOMIOLIT ai-
TOPUTMY. AHAJIITHYHUN PO3B’S30K MPEICTABICHO y BUIVIAAL PAAY y BiAHOBIIOBAJIBHOMY saepHOMY mpoctopi ['inmsbepra 3
KOMIIOHEHTaMH, IO JIETKO OOYUCIIOIOTECS. Y 3B’SI3KY 3 MM MU HaBOAUMO AESAKi YHCENbHI MPHUKIAAN, 00 MPOAEMOHCTPY-
BAaTH rapHy po0OTy Ta 3aCTOCOBHICTh PO3pOOIEHOro anropuTMy. UncenbHi pe3yasTaT MOKa3yloTh, 10 JaHUH alrOpUTM €
MOTY>KHUM 1HCTPYMEHTOM IJIsl PO3B’SI3yBaHHS APOOOBHX MOJENEH, SIKi 3’ SBISIOTHCS B PI3HUX OONACTAX HAYKH 1 TEXHIKH.

1. Introduction. Recently, fractional differential equations received increasing attention as a superb
tool for modeling many problems in different fields of sciences and engineering. This concept is
not unique and there exist several definitions of fractional-order derivative including Grunwald -
Letnikov’s definition, Riemann- Liouville’s definition, Caputo’s definition, and Riesz’s definition.
This generalized calculus is an extension of the classical calculus theory of noninteger order [1-5].
On the other hand, the fractional derivatives supply a popularity implement for the definition of
memory and hereditary characteristics that involve the whole history of the function in a weighted
form. In this sense, the FDEs have a nonlocal property, which means that the next state of the system
depends not only upon the current state but also upon the history of all previous states. This is the
fundamental advantage of using FDEs compared with classical integer-order counterpart. Therefore,
there has been increasing interest in the subject of a fractional calculus which can give a more
realistic interpretation of natural phenomena. Moreover, several systems in interdisciplinary fields
can be described by FDEs including turbulence, signal processing, and quantum evolution. In spite
of this, most of nonlinear fractional systems do not have closed form solutions, so analytical and
numerical methods must be used.

© Z. ALTAWALLBEH, M. AL-SMADI, I. KOMASHYNSKA, A. ATEIWI, 2018
ISSN 1027-3190.  Yxp. mam. ocypn., 2018, m. 70, Ne 5 599



600 Z. ALTAWALLBEH, M. AL-SMADI, I. KOMASHYNSKA, A. ATEIWI

The purpose of this study is to investigate and implement a computational iterative technique, the
reproducing kernel method (RKM), in finding approximate solutions for a certain class of fractional
system, two-point BVPs in Caputo sense. More specifically, we consider system of differential
equations of fractional-order in the following form:

D%uy(t) = filt,us(), ul(t)), 0 <t<T, (1)
associated with two-point boundary conditions
u;(0) = ay, w(T)=10b;, i=1,2,...,N, (2)

where a;,0; € R, 1 < o < 2, D% denotes the Caputo fractional derivative of order oy, ¢ =
=1,2,...,N, fi(t,u;,u}) € Wi[0,T], i = 1,2,..., N, are sufficiently analytical given functions
such that BVPs (1) and (2) satisfies the existence and uniqueness of the solutions, and u; € Ws[0, T
are unknown functions to be determined.

The RKM was developed as an efficient numerical method for treating different kind of singular
differential equations [6, 7], integral equations [8], integrodifferential equations [9—14], and fuzzy
differential equations [15—17]. It is an alternative process for getting analytic Taylor series solution.
It has been successfully put into practiced to handle the approximate solution of periodic boundary-
value problems [18, 19], the approximate solution of MHD squeezing fluid flow [20], the solution
of difference equations [21], Duffing equations with integral boundary conditions [22], and parabolic
problems with nonclassical conditions [23]. While the numerical solvability for different categories
can be found in [24 -26].

The present analysis extends the application of the RKM for obtaining approximate solutions
of FDE system in Caputo sense. The structure of the present article is as follows. In Section 2,
we utilized some necessary definitions and results from the fractional calculus theory. In Section
3, theoretical and analytical basis with representation of solutions are introduced in Hilbert space.
In Section 4, numerical examples are simulated to show the reasonableness of the theory and to
demonstrate the high performance of the proposed method. Finally, some conclusions are summarized
in the last section.

2. Background and preliminaries. The fractional calculus is a name for the theory of inte-
grals and derivatives of arbitrary-order that generalizes the notions of integer-order differentiation
and integration. Herein, we adopt the Caputo fractional derivative sense which is a modification
of Riemann-— Liouville sense because the initial conditions that defined during the formulation of
the system are similar to those conventional conditions of integer-order. In this section, the main
descriptions and features of the fractional calculus theory are illustrated. For more details about the
mathematical properties of FDEs, we refer to [2-5].

Definition 1. 4 real function f(x), x > 0, is said to be in the space C,,, |1 € R, if there exists
a real number p > p such that f(x) = P fi(z), where fi(z) is continuous in [0,00), and it is said
to be in the space C} if f"(z)eC,, neN.

Definition 2. The Riemann - Liouville fractional integral operator of order o« > 0 of a function
f(z) € Cy,, p > —1, is defined as

Jgf(x):F(la)/(x—g)alf(g)dg, a>0, z>s5>0,

s
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JOf(x) = f(a),

where T is the well-known Gamma-function.
The operator J* has the following properties: for f € C, p > —1, a,8 > 0, z > s > 0,

-1 e 8/3 — ;)H-B — sﬁ (e’ o, c AY:"
ce R, and v > —1, one can get JOJg f(z) = J¢ " f(x) = Js J& f(x), J&c F(a+1)($ s),
L(y+1)
o — L S A— — (OC+'Y)
and J&(x — s) I‘('y+1—|—a)($ s) .

The Riemann - Liouville derivative has certain disadvantages when trying to model real-world
phenomena with fractional differential equations. Thus, we shall introduce a modified fractional
differential operator D¢ proposed by Caputo in his work on the theory of viscoelasticity.

Definition 3. The Riemann— Liouville fractional derivative of order o« > 0 of f € C™|, n € N,
is defined as

j—nJ;‘_af(z), n—1l<a<n, z>s2>0,
=~ T
Difa) =4 "
d—f(:c) a=n
dz™ ’ -
Definition 4. The Caputo fractional derivative of order o > 0 of f € C",, n € N, is defined
as
Jiefm(z), n—1l<a<n, x>s5>0,
DSf(x) =9 gn
dminf(x)a o =n.
Remark 1. Forn—1<a<n,neN, x>s>0,and f € C",, one can get
i (x — s)F
JeDEf() = () - S0 pP (s
k=0

DSJS f(x) = f(x).
The operator D¢ has the following properties: for f € C";, a > 0, z > s > 0, c € R, and
M(l‘ _ S)(wfa).
F(y—a+1)

3. Theoretical and analytical basis of the method. In this section, we construct a representation
solution for fractional system associated to given boundary conditions, in which the solution provided
in terms of a rapidly convergent series in the reproducing kernel space with components that can be
elegantly computed.

Definition 5. Let ‘H be a Hilbert space of function F: € — H on a set Q. A function K :
QxQ — R is a reproducing kernel of H if the following conditions are satisfied: firstly, K(-,7) € H
for each T € Q; secondly, (F(-),K(-,7)) = F(r) for each F € H and each T € Q.

Definition 6. The reproducing kernel Hilbert space W1(0,T] is defined as Wh[0,T] = {u(t) is
one-variable absolutely continuous real-valued function on [0, T| and u'(t) € L?[0,T)}. The inner
product and the norm of W1 [0, T are given, respectively, by

v > —1, one can get D¢c =0, and D% (z — s)7 =

T

(10, u2(8)) , = 1 0)ua(0) + [ 4661,

0

and Hu(t)||12/v1 = (u(t), u(t))yy, , where uy, uz € Wi[0,T1.
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Remark 2. The Hilbert space W,,[a, b], is called a reproducing kernel if for each fixed t in [a, 0],
there exist a function K;(s) € W, [a, b] such that (u(s), K¢(s))y,, = u(t) for any u(s) € Wp,la, b]
and s € [a, b].

Theorem 1. The Hilbert space W1 [0, T is a complete reproducing kernel with the reproducing
kernel function

1+s, s<t,
Ri(s) =
1+t s>t

Anyhow, to solve system (1) and (2) by using the RKM, it is necessary to construct the repro-
ducing kernel space W3[0, T'] in which every function satisfies the homogenous boundary conditions
u(0) =0 and u(T') = 0.

Definition 7. The reproducing kernel Hilbert space Ws[0,T) is defined as W5[0,T] = {u(t):
u, ', u" are one-variable absolutely continuous real-valued functions on [0, T] and " (t) € L*[0,T],
u(0) = u(T) = 0}. The inner product and the norm of W50, T are given, respectively, by

1 T
_ (4) (@) m m
(1a(8) wx(®)y, = 3 0l O (0) + s (T)ua(D) + [ (€10 () )

=0 0

and Hu(t)”l%v3 = (u(t), u(t))yy, , where uy, uz € Ws[0,T1.
Lemma 1. The Hilbert space W5[0,T] is a complete reproducing kernel with the reproducing
kernel function

6 .
> pilsTh s <t
1=

Qt(s) = 6 )
Z'—o Gi(t)s™t, t>s,
where the unknown coefficients p;(t) and q;(t), i = 1,...,6, can be uniquely obtained by utilizing
the following assumptions:
Q) =0,  Q(T)=0, Q)=0,

Q(Ty=0, i=34  Q0)+Q"0) =0,

. . )
Qs =QW(s7), i=0,1,...,4,
QY (M) — QP (s7) = 1.

Consequently, by using the Mathematica for handling the above-mentioned generalized differen-
tial equations (4), the reproducing kernel function is given by

s | —6T32s + t25(—120 + 3 + s%) — 5Tt(—24s + t3s +
120772 +t(—24 + 5%)) + T?(103s — s* + 5t(—24 + 53))) s=h
Qui(s) = ] )
—t | 6T3ts? — ts?(—120 + 3 + s3) + T2 (t* + 1205 —
12072 | —5t35 — 10ts°) 4 5T's(—24s + t3s + t(—24 + s3)) | st

Herein, it is worth to mention that {u,,(£)}7°; is a compact subset of the space C[0, 7], which

means that {u,(¢)}°°; are equicontinuous functions. To see this, use the property of ():(s) such
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that
[un(t2) — un(tr)] = [(u(s), Quy(5) — Qe (), | <
< [Ju() llyy, 1Qea(8) = e, (8)llyy, < M [1Q1(5) — Qey ()l -

By “Mean-value theorem of differentials” and the symmetry of Q(s), it follows that

’tg—t1| §N|t2—t1‘.

t=T1

009 = Qu(9)] = 11 (12 = Qu(1)] = | )

Thus, if v < [ta — t1] < ﬁ then |un (t2) — un(t1)] < €.

In order to illustrate the RKHS methodology of the proposed model, we consider the differential
operator Lyy : Ws[0,T] — W;[0,T] such that Lyyu(t) = D%u(t). Then, BVPs (4) and (5) can be
equivalently converted into the form

Lwui(t) = f; (twi(t), ui(t))
w(0)=0, w(T)=0, i=12...,N,

(6)

where w;(t) € Ws[0,T] and f; (1,u;,v;) € Wh[0,T] as u; = u;(7), vi = ul(T) € Ws[0,T],
T €[0,7).

Let ¢;(t) = Qy,(t) and ¢;(t) = L,pi(t), where {t;};2, is countable dense subset of [0, 77, and
LT/V is the adjoint operator of Lyy. Thus, in terms of the properties of reproducing-kernel, it holds
(u(t), ¢i(t)),,, = (u(t), Lyypi(t)),, = (Lwult), vi(t)),, = Lwulti),i=1,2,.

Lemma 2 The operator Lyy : W3 [0,T] — W10, T] is a bounded linear operator.

Proof. It is so easy to see that Lyy is a linear operator. Thus, it is enough to show that Lyy is
bounded operator. From the space W;[0,T], we have

T d 9
It = 1000y, = (Dute). Du(t), = 10O + [ | 0%u0)] e
0

By reproducing property of Q:(s) and since D®Q;(s) is uniformly bounded about ¢ and s, we obtain
d d
u(t) = (u(s), Qe(s)),y,, Lwu(t) = (u(s), D*Q(s)),,, and lwult) = <U(5)a dtDO‘Qt(S)> :
W3

By Schwarz inequality, we get

[Lwu(®)] = [(u(s), D*Qu(5)),y, | < lullws IDQu(s)lws = pallullw,

and

d

d o'

= piz|ullws,
W3

" < [lullw,

d
DOé
(vto) o))
where ©; and peo are positive constants.
T 2
2 d «
Thus [D°u(0)) < p?ull3, and /0 [ng u<s>] dé < Tys3lluly,. Hence, | Lywu(t)lyy, <

< pllu(®)llyy,, where p = /pd + Tp3.

Lemma 2 is proved.
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Theorem 2. Let {t;};°, be a dense subset of the interval [0, T}, then the sequence {1} (t)};.)il,
v = 1,2,...,N, is a complete function system of the space Ws[0,T| such that ¢} (t) =
= D3Qu(5)]s—y, -
Proof. From reproducing property of Q:(s), we get

U (1) = Ly (t) = (L (s), Qe(s) )y, =
= <¢f(5),LWQt(3)>W1 = LwQ:(t;) = D?Qt(s)‘szti-

Since {t;};2, is dense in the interval [0, T'|. For each w,(t) in W3[0, T}, if <uv(t),1/1;’(t)>ws =

= (Lwuo(t), ¢} (t)yy, = Lwu (t:) = 0, i = 1,2,..., then from the density of {t;}3°; and
continuity of w,(t), v=1,2,..., N, we have u,(t) = 0.

Theorem 2 is proved.

The reproducing kernel solution will be obtained by calculating a truncated series based on the
orthonormal functions {11_);’(15)}21 of the space Ws(0, T'|, which is constructed from {¢!'(¢)}:2, by
using the Gram — Schmidt process such that

i
VPt =D ik (2), (7)
k=1
where p). are orthogonalizatio coefficients, pj; > 0,7 =1,2,...,n.

Theorem 3. [f {t;};°, is dense on the interval [0,1] and u,(t) € Ws[0,T) is a unique solution
of Eq. (6), then the exact solution could be represented by

u(t) = 3 b fo (e o (t), 1), (t)) 97 (1), ®)

i=1 k=1

Proof.  For each u,(t) € W3[0, 7], the series Zool <uv(t),z/_;f(t)>wg YY(t) is convergent.
1=
From the Fourier series expansion, u,,(t) can be written as follows:

wo(t) = Y (un(t), 97 (), 97 (8) = Y <v(t), > Mfw};’(t)> ilt) =
i=1 k=1

=1 = = Wy

Therefore, the form of Eq. (8) is the exact solution of Eq. (6).
Theorem 3 is proved.
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Since W3[0, T is a Hilbert space, the series Z Z uzk (Lyyuy(t), go}é(t)>wl Py (t) < oo.
Hence, the truncated series

n 7

Uy, ( Z 115 fo (s wo(te), wiy(tr)) ¥F (2) ©

=1 k=1

is convergent in the sense of [}y, o7y and the numerical solution of Eq. (6) can be directly

calculated by Eq. (9).
(m)

Corollary 1. The approximate solution w,(t) and its derivative uy, (t), m = 1,2, are con-

verging uniformly to the exact solution w,(t) and its derivative u™ (t) as n — oo, respectively.

Proof. Forany t € [0,T], it easy to see that

(4) - — _ (1) <
ufu(t) = u(0)] = (won(t) w0, Q) | <
<||@ @), Tt = wOlly, <
< M7 (Juon(t) = wo(®)[lyy, » MP eR, i=0,1,2.

Hence, if [|uy,n(t) — uo(t)ly, — 0 as n — oo, then the approximate solution uq(f)n(t),z =0,1,2,
are converge uniformly to the exact solution u,(¢) and its derivative, respectively.

Remark 3. In order to apply the IRM for solving system (6) numerically, we have the following
two cases based on the structure of the function f,,.

Case 1. If system (6) is linear, then the exact and approximate solutions can be obtained directly
from equations (8) and (9), respectively.

Case 2. 1If system (6) is nonlinear, then the exact and approximate solutions can be obtained by
using the following process: according to exact solution in equation (8), the representation of the
solution of system (6) can be denoted by

t) = Bii(t)
i=1

where B} = Z;Zl e fo (tk, Uy k—1 (k) u;,k—l(tk)) . So, we will approximate the unknown B}
using the known A}’ as follows: set the initial data such that u, o(t1) = u, o(t1) = 0, and define the
n-term approximation to u,(t) by

Uy (t) = Z APY7 (1), (10)
i=1

where the coefficients AY of 1Y (t), i = 1,2,...,n, are given by
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V= 1 fo (B, w0 (t), o (01)) == e (1) = ALY (1),

2

2
AS =" i fo (b o g1 (1), 1) g1 (8)) = w2 (t) = Y AVP(8),
k=1 =1

(11)

Az = Z MZkfv (tk, uv,k’—l(tk)> u:u,k:fl(tk)) = u’Uyn(t) = ZA;}QZJZJ(I?)
k=1 =1

In the iterative process of Eq. (10), we can guarantee that the numerical solution u,, satisfies the
constraints conditions of Eq. (6).
For the error behavior, if ,, = |uy,(t) — u(t)|, where u,(t) is given in Eq. (10). Then, one can

. 2 _ o0 v U 2 _ o0 v\2 2 _ 0 v U 2 _
wiite [lenlily, = D207, AvGE]|) = D07 L (AD? and fleanally, = |30 AV =
o0 o0 —
= Zi:n (AY)?. Clearly, {e,}°°, is decreasing in the sense of [llyy, - Since Zi:l AVPY(t) is

convergent series, then [[e, ||y, — 0 as n — oo.

4. Applications and numerical examples. In this section, numerical examples are studied to
demonstrate the performance, accuracy and applicability of the present method for both linear and
nonlinear problems. Results obtained are compared with the exact solution of each example and are
found to be in good agreement with each other. In the process of computation, all the symbolic and
numerical computations performed by using Mathematica software package.

Algorithm 1. To approximate the solution wu, (t) of u(t) for Egs. (1) and (2), do the following
steps.

Step 1. Fixed ¢ in [0,7] and set s € [0,T7;

6
if s <t let Qu(t) =Y pi(t)s™
=1

6
else let Qs(t) = Z Qi(t)s" L.
i=1

Step 2. Choose n collocation points and do the following subroutine:
i—1
N-1"'
set 7 () = DgQs(t)]—y, -

Step 3. Obtain the orthogonalization coefficients 4., as follows:

set t; = =1,2,...,N;

let ¢/ = (P (t), (¢ , and do the following subroutine:
ik i k W
3

for i =1, set pfy = |9l ;

i—1 -1/2
for i =2, N, set pf = (uwm - <cfk>2> ;

k=1
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i1 i1 —1/2
else (for p < i), set pf, = — | Y chuk, (HWH% -3 (C$k)2> :
k=p

k=1
Step 4. Fori=1,2,..., N, set
— i
Gi() =), HRUE ().
Step 5. Set t; = 0, and choose an initial approximation wug(t1) = u(t1), ug(t1) = u'(t1);

for i =1, set AY = puf, fo (tl,uvvg(tl),u;ho(tl)) and u, 1(t) = Afﬁf;

i
fori=2,3,...,n, set A} = Zuzkfy (th wop—1(tr), g1 (1)) 5
k=1

set wyn(t) = > AVGY(t).
i=1

Outcome: the numerical solution ,, ,,(t).

Stop.
By applying Algorithm 1 throughout the numerical computations, we present some tabulate data
and graphical results that discussed quantitatively at some selected grid points on [0, 1].
Example 1. Consider the following linear fractional system:

1
Dy (1) 4 uh(t) = 56% + (24 t)e,
) (12)
D*uy(t) —uy (t) +u)(t) = Ze% + €,
with two-point boundary conditions
u1(0) =0, ui(l) =e,
(13)

UQ(O) = 1, u2(1) = \/E,

where 1 < a; <2,i=1,2,0<t<1and ui(t),ua(t) € Ws[0,1].
The exact solutions at oy = ag = 2 are u (t) = te' and uy(t) = ez. Using the proposed method,

. 1 — . . . . . .
taking t; = ,t=1,2,..., N. The numerical results at some selected grid points are given in

N-—-1
Tables 1 and 2.

Example 2. Consider the following nonlinear fractional system:
Dy (t) = uy (t)uh(t) + 2e' — e*,
D*uy(t) = In(uz(t)) — 2u) () + 3¢’ — 1, (14)
D% ug(t) = ui(t)us(t) —ui(t) +e ' —1,

with two-point boundary conditions
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Table 1. Numerical results for solution u;(¢) in Example 1

aq
t 2 1.9 1.75 1.5
0.1 | 0.110518 | 0.110523 | 0.110998 | 0.184325
0.2 | 0244283 | 0.244292 | 0249768 | 0.317781
0.3 | 0.404961 | 0.404975 | 0.417821 | 0.476476
0.4 | 0.596735 | 0.596753 | 0.600455 | 0.681002
0.5 | 0.824367 | 0.824392 | 0.932478 | 0.944067
0.6 | 1.093281 | 1.093310 | 1.110259 | 1.348214
0.7 | 1.409642 | 1.409670 | 1.203007 | 1.337854
0.8 | 1.780443 | 1.780490 | 1.978111 | 1.984125
0.9 | 2213665 | 2.213712 | 2.423435 | 2.629512
1.0 | 2.718286 | 2.718361 | 2.880085 | 2.973447

Table 2. Numerical results for solution wuz(t)

in Example 1

a2

2

1.9

1.75

1.5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.05127059
1.10516988
1.16183265
1.22140061
1.28402267
1.34985544
1.41906353
1.49181998
1.56830674
1.64871504

1.05128524
1.10517581
1.16185772
1.22143654
1.28410678
1.34987211
1.41912458
1.49190054
1.56843729
1.64887596

1.051230521
1.105068425
1.161668114
1.221170831
1.283725058
1.349486888
1.418620408
1.491298115
1.567701336
1.648020689

1.051415781
1.105237792
1.161423754
1.221227945
1.286784210
1.352745691
1.419824567
1.497587212
1.574500647
1.654788521

where 1 < a; <2, 0<t<1and w;(t) € W3[0,1], i =1,

(75} (0) = 0,

UQ(O) = 1,

uz(1) =

’U,l(l) =€ 17

uz(l) =e,

9

1
e
2,3

(15)

The exact solutions at a1 = ay = a3 = 2 are uy(t) = e’ — 1, us(t) = €' and us(t) = e~ *. Using
,— 1

the proposed method, taking ¢; = h, t =1,2,..., N. The numerical results at some selected

grid points are given in Table 3 and Fig. 1.
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Table 3. Numerical solutions and errors at a; = g = a3 = 2, for Example 2

ul(t)

U9 (t)

us (t)

Absolute Error

Relative Error

Absolute Error

Relative Error

Absolute Error

Relative Error

0.16
0.32
0.48
0.64
0.80
0.96

9.9129 x 1077
2.0486 x 1076
3.1704 x 10~¢
4.3776 x 1076
5.6937 x 10~¢

7.1443 x 1076

9.1507 x 1077
1.7457 x 106
2.4939 x 1076
3.1788 x 1076
3.8166 x 1076
4.4207 x 1076

1.0969 x 10~
2.2681 x 1076
3.5107 x 106
4.8481 x 107°
6.3057 x 10~°
7.9124 x 10~

5.2652 x 1077
1.0435 x 1076
1.5457 x 1076
2.0394 x 106
2.5305 x 10~°
3.0245 x 107¢

2.2703 x 10~°
4.7692 x 1076
7.4503 x 1076
1.0321 x 107°
1.3392 x 1075
1.6677 x 107

1.9349 x 10~
3.4672 x 1076
4.6269 x 1076
5.4861 x 10~
6.1058 x 10~°
6.5366 x 106

609

-
-
+
+
+
+
ot
.
+
-
.
.t
.
.
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+
ey

+
""""""""
.

.
b".
+

(a) (b)

Fig. 1. Plots of system in Example 2 at o; = 2, i = 1,2,3, n = 101: exact solutions (@) and approximate solutions (b).

The results of numerical analysis are approximate as much as is required within a logical error
ratio that will be stored in a fixed number of digits. It is clear from the tables that the numerical
solutions are in close agreement with the exact solutions for all examples, while the accuracy is in
advanced by using only few term of the RKM iterations. This is an indication of stability of the
presented method. In Fig. 1, the approximation values within a graphically plotted indicate that the
solution approach smoothly to the t-axis by satisfying their boundary conditions. Indeed, decreasing
the step-size increases the accuracy of the results while increasing the time required to simulate the
problem.

5. Concluding remarks. The main concern of this work has been to propose an efficient
numeric technique for the solutions of a class of time-fractional system in Caputo sense subjected
to appropriate boundary conditions. The goal has been achieved by introducing the IRKM to solve
this class of FDEs. A regularization procedure based on the reproducing kernel theory is utilized
to improve the regularity and localization of the method. The behavior of approximate solution for
different values of fractional-order « is shown quantitatively as well as graphically. We can conclude
that the IRKM is powerful and promising technique in finding approximate solution for both linear
and nonlinear problems. In the proposed algorithm, the solution u(t) and the approximate solution
uy, (t) are represented in the form of series in W3[0, T]. Moreover, the approximate solution and its
derivative converge uniformly to the exact solution and its derivative, respectively.
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