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JOINT UNIVERSALITY FOR L-FUNCTIONS FROM SELBERG CLASS
AND PERIODIC HURWITZ ZETA-FUNCTIONS

CINLIBHA YHIBEPCAJBHICTD JJISI L-®YHKIII I3 KJIACY CEJBLBEPTA
TA TIEPIOIMYHI J3ETA-OYHKII XYPBIIA

We obtain a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts
consisting of L-functions from the Selberg class and periodic Hurwitz zeta-functions.

BcTaHoBIIEHO TeopeMy IpO CHIJIBHY YHIBEPCAJIbHICTh HAONMKEHHS CiM’1 aHaNMITHYHUX (QYHKIIN ciM’€r0 3CYBIB, IO CKJa-
narotecs 3 L-dyHkuiit i3 kimacy Cenpbepra Ta nepioquyHux a3era-QyHkuiil Xypsina.

1. Introduction. Universality of zeta and L-functions is one of the most interesting phenomenons of
analytic number theory. Roughly speaking, it means that every analytic function can be approximated
with a given accuracy by shifts of the considered zeta or L-functions, uniformly on compact subsets
of a certain region. The first result in the field belongs to S. M. Voronin who discovered [20] the
universality property of the Riemann zeta-function ((s), s = o + it. For a modern form of the

1
Voronin theorem, we use the following notations. Let D = { s € C: 3 <o < 1}. Denote by K the

class of compact subsets of the strip D with connected complements, by H(K), K € K, the class
of continuous functions on K which are analytic in the interior of K, and by Hy(K) the subclass of
H(K) of nonvanishing on K functions. Moreover, for a measurable set A C R, we use the notation
meas A for the Lebesgue measure of the set A. Then the following statement is well-known, for the
proof, see, for example, [7].

Theorem 1.1. Suppose that K € K and f(s) € Hy(K). Then, for every € > 0,

lim inf 1 meas {7’ €10,T]: sup|((s+iT) — f(s)| < e} > 0.
T—oo T sEK

The theorem shows that a given function f(s) € Hy(K) can be approximated by shifts {(s+i7),
7 € R, from a wide set having a positive lower density.

Later, it turned out that the majority of other classical zeta and L-functions also are universal
in the above sense. A full survey on universality of zeta and L-functions is given in the excelent
paper [12]. We focus over attention on the Selberg class [17] which is one of the most extensively
studied objects of analytic number theory.

The Selberg class S contains Dirichlet series

L=y A

mS

m=1

satisfying the following axioms:
1°) analytic continuation: there exists an integer & > 0 such that (s — 1)*£(s) is an entire
function of finite order;
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2°) Ramanujan hypothesis: a(m) < mc with any € > 0, where the implied constant may
depend on ¢;
3°) functional equation: L(s) satisfies a functional equation

Ag(s) = U)Ag(l — §),
where

!
Ar(s) = L(s)Q° [T T(\js + 1)

j=1
with positive real numbers (), A;, and complex numbers 1, w, Rp; > 0 and |w| = 1;
4°) Euler product: £(s) has a product representation over primes p

L(s) =[] £(5),

where

o 3k
£yls) = exp {2 ) }

k=1

. . o 1
with coefficients b(p*) satisfying b(p*) < p*? for some 6 < .
Many authors investigated the structure of the class S. For this, see, a survey paper [5] and

subsequent works by J. Kaczorovski and A. Perelli.
For £ € S, define the degree ds of L by

f
de =2) ),
j=1

1 1

and let D, = {s € C: max <2, 1-— d> <o < 1}. In [15] the analogue of Theorem 1.1 (with
L

the strip of universality D[;) was obtained for £ € S satistying additional hypothesis

. 1 2
xlgﬂolom};W(p)‘ =K, (1.1)

where « is some positive constant (depending on £), 7(z) = Z - 1. This result is an extension of
previous result obtained by J. Steuding [18], who began to stud; the universality of functions from
the Selberg class.

Theorem 1.1 is an example of universality theorems for zeta and L-functions with Euler products.
The second group of universality theorems were proved for zeta-functions without Euler product.
The simplest zeta-function without Euler product is the classical Hurwitz zeta-function. Let a,
0 < a < 1, be a fixed parameter. Then the Hurwitz zeta-function ((s, «) is defined, for o > 1, by
the series

> 1
((s,) = Z_ ma

m=0
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and is meromorphically continued to the whole complex plane with unique simple pole at the point
s = 1 with residue 1. A generalization of the function ((s, «) is the periodic Hurwitz zeta-function.
Let a = {a,, : m € Ng = NU{0}} be a periodic sequence of complex numbers with minimal period
q € N. The periodic Hurwitz zeta-function ((s, «; a) is defined, for o > 1, by

[e.e]

((s,a50) = > —"

m=0 (m + a)s

In virtue of periodicity of the sequence a, we have that, for o > 1,
-1
1 3 m+ o
C(Sv Qa; a) = s ClmC <S, ha >>
¢ = q

and the later equality gives meromorphic continuation to the whole complex plane for ((s, ; a) with

a simple pole at the point s = 1. If

q—1
E am =0,
m=0

then the function ((s, «;a) is entire one.

A more complicated is the joint universality of zeta-functions. In this case, a collection of analytic
functions is simultaneously approximated by a collection of shifts of zeta or L-functions. The first
joint universality theorem for Dirichlet L-functions was obtained by Voronin [21, 22]. Also, a joint
universality when analytic functions are approximated by shifts of zeta-functions, having and having
no Euler product, is possible. The first result in this direction belongs to Mishou [14]. In [6] a joint
universality theorem was proved for {(s, «;a) and periodic zeta-function ((s;b), which is defined,
for 0 > 1, by

[ee] bm
C(s:6) =D %,
m=1

and b = {b,,: m € N} is an another periodic sequence of complex numbers with minimal period
k € N. The function ((s;b), as ((s,a;a), has meromorphic continuation to the whole complex
plane. In [8] LaurinCikas proved a generalization of the mentioned result. To state his theorem, we
need some notation. Let b; = {b;,: m € N} be a periodic sequence of complex numbers with

minimal period k; € N and ((s;b;) be the corresponding periodic zeta-function, j = 1,...,71,
r1 > 1. Denote by k = [ki,..., k] the least common multiple of the periods ki, ..., k., by
M, - Ny(k) the reduced residue system modulo £, and define the matrix
b1y, ban, e brim
B— b1y, ban, cee brinn 7
blmp(k) bQ%(k) s brl%(k’)

where (k) is the Euler function. Moreover, we suppose that, for all primes p,
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[e.9]

[ .
3 p% <ei<l, j=1,...m. (1.2)
f=1

Further, let a; = {a;,, : m € Ny} be an another periodic sequence of complex numbers with minimal
period ¢; € N and ((s, a;;a;) be the corresponding periodic Hurwitz zeta-function, j = 1,...,72,
0 < a; < 1. Then, in [8] the following statement was proved.

Theorem 1.2. Suppose that the sequences by, ..., b, are multiplicative, inequalities (1.2) are
satisfied, the numbers i, ..., oy, are algebraically independent over Q, and rank(B) = ri. Let
Ki,....K.,K1,....K,, € K, fi(s) € Hy(K1),..., fr,(s) € Ho(K,,) and fi(s) € H(K)),...

-y fr () € H(K,,). Then, for every € > 0,

1
liminf — meas< 7 € [0,T]: sup sup |((s+iT;b;) — f(s)| <&,
T—oo T 1<j<r s€K,

sup sup |((s + i, o5 0;) — fi(s)| <ep > 0.
1<j<rs se i,

The aim of this paper is a joint universality theorem for the functions £(s) € S and ((s, a;; a;),
where 0 < o < 1 and aj; = {amz : m € Ny} is a periodic sequence of complex numbers with

minimal period ¢j; € N, j=1,...,r, I =1,...,l;. For j = 1,...,r, let g; be the least common
multiple of ¢j1,. .., q;;, and
aiji ajz ... A1y
Aj _ @251 4252 a2ji;
Qgjj1  Qgg52  --- Ogyjl;

Moreover, as above, let Kz be the class of compact subsets of the strip D, with connected comple-
ments, and let Hy,(K), K € K, be the class of continuous non-vanishing functions on K which
are analytic in the interior of K.

Theorem 1.3. Suppose that L € S, hypothesis (1.1) is satisfied, the numbers oy, ..., o, are
algebraically independent over Q, and that rank(A;) = 1;, j = 1,...,r. Let K € K¢, f(s) €
€ Hos(K), and, for every j=1,...,rand l =1,...,1;, let K; € K and f;(s) € H(Kj;). Then,
Jfor every € > 0,

1
lim inf — meas {7’ € [0,T): sup|L(s+iT) — f(s)] <&,
T—oo T seK

sup sup sup }C(s—i—zﬁ’, aj;ag) — fﬂ(s)| < 6} > 0.
1<j<r 1<I<l; s€Kj;

Clearly, Theorem 1.3 implies the results of previous works [4, 10, 11, 16], where instead £ € S,
the function ((s), zeta-functions of normalized Hecke cusp forms, zeta-functions of newforms, and
zeta-functions of new forms with Dirichlet character were taken, respectively. For example, we can
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take, for r = 2,

a1 = 2- \3/5, g = 2_\3/1,
because the numbers a1 = 2V2 and ag =2 V1 are algebraically independent over Q [2].

2. Limit theorem. For the proof of Theorem 1.3, we will prove a limit theorem on weakly
convergent probability measures in the space of analytic functions. Let G be a region on the complex
plane. Denote by H(G) the space of analytic functions on G equipped with the topology of uniform
convergence on compacta. Let

-
u:le, v=u+1,
j=1

and
H" = H"(Dz,D) = H(Dg) x H*(D).

As usual, denote by B(X) the Borel o-field of the space X. For brevity, let « = (aq,...,a;),
a= (all,...,alll,...,arl7...,arlT) and

Z(s1,8,a;a,L) = (L(s1),{(s,ar;a11), ..., C(s,ara1,), ..., (s, s ar1), ..., ((s, 003 05,)) -
In this section, we consider the weak convergence for

1
Pr(A) dt T meas T € [0,T]: Z(s1 +ir,s+iT,05a,L) € A}, A€ B(H"),

as T — oo. To state a limit theorem for Pr, we need a certain topological structure. Let
v={s € C:|s| =1}. Define

0=T[% amd 2= ] %
p

meENp

where 7, = « for all primes p and ~,, = v for all m € Ny. By the Tikhonov theorem, the tori
Q) and Q with the product topologies and pointwise multiplication are compact topological groups.
Thus, on (Q, B()) and (Q,B(€2)) the probability Haar measures iy and my, respectively, exist,
and we have the probability spaces (2, B(Q), i), (2, B(Q), mg). Moreover, for j =1,...,7, let
Q; =Q, and

Q:Qxﬁlx...xQT.

Then again, €2 is a compact topological Abelian group, and this gives one more probability space
(Q,B(2),my), where my; is the probability Haar measure on (£2, B(£2)). Denote by w(p) the
projection of @ € O to Yp, P € P (P is the set of all prime numbers), and by w;(m) the projection
of w; € Q; to vy, m € Ny. After the above notation, on the probability space (2, B(§2), m ) define

the H"-valued random element Z(s1, s,w,a;a, L), w = (W, w1,...,w,) € Q, by the formula
Z(Shsagag;g,‘c) = (,C(Sl,d]),C(S,Oél,Wl; all)a .. -,g(S,Oél,wl; alll)a e
.. 7C(S’wra (07 aT‘l)a ... a<(57w7‘7 (07 arlr))v

where, for s1 € D,
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with

and, for s € D,

o0
. am]le ) - .
C(s,oj,wy;a5) = Z:O(m—kaj j=1...,r, 1=1,...,1,.

We note that, for almost all & € €, £(s1,&) has the Euler product [15], i.e.,

L(s1,&) —exp{zz ,m }

p k=1

Denote by P the distribution of the random element Z(s1, s,w, a; a, L), i.e
Pz(A) =mpy(weQ: Z(s1,s,w,a;a,L) € A), A€ B(HY).

Theorem 2.1. Suppose that L € S, hypothesis (1.1) is satisfied, and the numbers ai,...,«
are algebraically independent over Q. Then Pr converges weakly to Py as T — oo.

A way of the proof is sufficiently well-known, see, for example, similar theorems from [4, 10, 11],
therefore, we will present only principal moments of the proof.

Lemma 2.1. Suppose that the numbers oy, . . ., «, are algebraically independent over Q. Then

Qr(A) d:f%meas{T €0,7): (p"":peP),

(m+a1)"":meNy),...,((m+a,)"":meNy)) € A}, A€ B(Q),

converges weakly to the Haar measure mpg as T — oo.
Proof of the lemma is given in [8] (Theorem 3). However, for conveniences of a reader, we
rewrite the proof. It is well known that the dual group of {2 is isomorphic to the group

r

o (@)D @)

peEP 7=1 meNg

where Z, = Z for all p € P and Z;,, = Z for all m € Ng and j = 1,...,7. An element
(k,ly,....0) = ((kp:p € P),(lim: m € Ng), ..., (lm : m € Ng)) of the group G, where only a
finite number of integers k, and li,,, ..., [y, are distinct from zero, acts on {2 by

,
~ l lT _ ~k lm
(@, w1,y wr) = (@E Wl W) = Hw P(p)H H w™ (m

peEP j=1meNp

Therefore, the right-hand side of the latter equality defines characters of 2, hence, the Fourier
transform gr(k,ly,...,l,.) of Qr is of the form
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orlye )= [ | [T&@ T IT <o) |aor.

o \peP j=1meNy

Thus, by the definition of Q7,

T T
grlbdy, L) = o / Lo [T T (m+ o)~ | dr
0

pEP j=1meNy
s r
= % O/exp —iT I;} kplogp + JZ; m%:% Lim log(m + ) | p dr, (2.1
where, as above, only a finite number of integers k, and l1,y, ..., L, are distinct from zero. Clearly,
9r(0,0,...,0) = 1. (2.2)

Now suppose that (k,l;,...,..) # (0,0,...,0). Since the numbers aq,...,q, are algebraically
independent over Q, the set {(log(m + a1): m € Np),..., (log(m + ;) : m € Ng)} is linearly
independent over Q. Indeed, suppose that there exist l11,..., 0k, s lr1,- -y bk, € Z\{0} and

MLy .oy Mpkys- .- My, ..., Myg, such that

liplog(mir + a1) + ... 4 lig, log(mag, + 1) + ...

ool log(mer + o) + . oo+ Lok, log(myk, + o) = 0.

Then

(mq1 + al)l“ oo (mag, + al)llkl oo (mpr + ar)l” oo (M, + ar)lrkr =1.
From this, it follows that there exists a polynomial p(x1,...,x,) with integer coefficients such that
p(ai,...,a,) = 0, and this contradicts the algebraic independence of the numbers aj, ..., a,. It is

well known that the set {logp: p € P} is linearly independent over Q. Thus, assuming that the set
{(logp: p € P),(log(m + a1) : m € Ny),..., (log(m + a,) : m € No) } (2.3)
is linearly dependent over (Q, we obtain, similarly as in the case of the set
{(log(m + o1): m € Ny),..., (log(m + o) : m € No) },

the contradiction to algebraic independence of aq, ..., ;. Since the sums in (2.1) are finite, from
the linear independence of (2.3), we find that, in the case (k,l;,...,L,.) # (0,0,...,0),

Zk:plogp+z Z lLim log(m + a;) # 0.

peP 7=1 meNy

After integration, we find from (2.1) and (2.2)
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17 if (Eaélw"alr):(Q>Q7"'7Q)7

1—exp {—iT (Zpep kylogp + Z;Zl EmeNo ljm log(m + aj)) }
iT (Zpep Ky log p + Z;:l ZmENo Lim log(m + aj))

if (E>Lla"' 7lr) 7& (QaQa aQ)

9

Hence,

]'7 if (E7£17""L7‘):(Q?Q?"'?Q)7

lim gr(k,ly,....0) = (2.4)
T=o0 07 lf (Eallw'wlr) 7& (Qan)Q)

It is not difficult to see, that the right-hand side of (2.4) is the Fourier transform of the Haar measure
my;. Really, m;; is the product of Haar measures on each circle of 2. The Haar measure on the
unit circle coincides with the Lebesgue measure. Therefore, for example, denoting by 1, the Haar
measure on ,, we find that

P 1, if ky=0,
/djkp (p)dﬂp — /627rzkp;tdx —
) 0, if k,#0.

Tp

Now, the assertion of the theorem follows from general continuity theorems for probability mea-
sures on compact groups (if the Fourier transform converge, then the corresponding measure con-
verges weakly to the measure of the limit of Fourier transform), see, for example [3] (Theorem 1.4.2).

1
Now, for fixed o1 > 3 let

and o
un(m7a]):exp{_<TZizj> }7 meN07 neNv J=1, T
and define
o a(m)u,(m)
£ = 3 e
m=1
and
> amjlun(maaj) .
Cn(S,aj;ajl):Zw, j=1...,n lZl,...,lj.
m=0
. 1 1
Then we have that the series for £,,(s) converges absolutely for o > max 3 1-— 7 [19], and
L

. 1
the series for ¢, (s, oj; a;;) converges absolutely for o > 5 Also, we define
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o) = 32 e (m)un(m)

mS

m=1

and

o0
A jwi(m)un (m, a;) ,
Cn(s,wj, a5 a5) = Z = (]m—|— ar;)s 2 j=1...r, 1=1,...,1. (2.6)

m=0

In the next step of the proof, consider the weak convergence of the measures

Pr,(A) = %meas {T €0,7]: Zy(s1 +ir,s+iT,a;a,L) € A}, A€ B(H"),
and
Pr,(A) = %meas {rel0,T]: Zy(s1 +ir,s+ir,w,a;a,L) € A}, A€ B(HY),
as T' — oo, where

Zn(Sl, S, a5 4, [’) — (En(sl)a Cn('S,al; a11)7 ey Cn(s, Qa5 alh)a ce.

cCn(syarsarr), ey Cn(s, s ﬂrlr))
and
Zn(s1,8,w,0;0, L) = (Ln(s51,0), Culs, w1, a15011), - -+, Guls, wi, a5 a1, ), -
e Cn(Sywry s ar1)y e Go(S, Wiy Qi am)).
Lemma 2.2. Suppose that the numbers o, . .., q, are algebraically independent over Q. Then,

for every fixed w € 2, the measures Pr,, and JE’T,n both converge weakly to the same probability
measure P, on (H",B(H")) as T — <.

Proof. We apply a standard method based on the preservation of weak convergence under con-
tinuous mapping, and Theorem 5.1 of [1]. Define the function h,, : Q — H" by the formula

hn(w) = Zy, (51, s,w, 50, L).

The absolute convergence of the series (2.5) and (2.6) shows that the function h,, is continuous.
Moreover,

I ((p_” :pEeP), ((m—i—oq)_”: m € Ng),..., ((m+ ) T im e No)) =
=Zy(s1+ir,s+it,a;a,L).

Hence, Pr, = Qrh, L. This, the continuity of h,,, Lemma 2.1 and Theorem 5.1 of [1] imply the
weak convergence of the measure Pr,, to myh,, Las T — .

Now, for a fixed w; € Q, let h(w) = ww, for w € Q. Then, obviously,
b (R((p™ " p€P), (m+a1) " :meNy),...,(m+a,)":meN))) =
= Zn(Sl + iTv s+ iT: Wo, & a, 'C)
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Therefore, repeating the above arguments and using the invariance of the Haar measure m;, we
find that the measure me also converges weakly to mgh,, 1 as T'— oo. Thus, the measures Pr,
and PT,n both converge weakly to the measure P, = myh, ! as T — oo.

The change Z,, by Z requires certain approximation results. Denote by p., p and p, the metrices
on H(D,), H(D) and H", respectively, inducing the topology of uniform convergence on compacta.
We note that, for g= (9,911, - - - s Glys s Grly .- 7grl7-)7 i = (f, f11,- - i fris e ,frlT) S
e HY,

pu(g, f) = max (pc(g, 1), [pax max p(g;t, sz)> :

Lemma 2.3. We have
T
1
lim limsup T /py (Z(s1+ir, s +im,;0,L), Zyp(s1 + i1, s + iT, a3, £))dr = 0.

n—oo T—00

Suppose that the numbers o, ..., «, are algebraically independent over Q. Then, for almost all
w € Q,
T
1
lim limsup 7 /pv (Z(s1 4+ i1, 5 +iT,w,050, L), Zp(s1 + 47,5 +iT,w,;0,L))dr = 0.

n—=00 T 550

Proof. By the definition of the metric p,,

T
1
T/PU(Z(Sl+iT,8+i7',Oé;aa£)aZn(81+i7‘,8+i7',0<;aa£))d7‘S
0

1

< 7 [ pe(Llsy+ir), Lo(sr +im))drt

St~

r 1
+
J=11=1

el

T
/p(C(s + i, aj; a51), Guls + 47, 055 a0) ) dT (2.7)
0

Moreover, in view of Lemma 4.8 from [19],

T
lim lim sup % /pg (L(s1 4 i7), Ly(s1 +i7))dT =0, (2.8)

n—o0 T—00

and, by the proof of Lemma 2.4 from [11],

T
- 1 . .
lim limsup T p(((s + 4T, a5 a51), Gu(s + 17, ay; ajl))dv' =0 (2.9)

n—oo T—00

for j=1,...,r, 1 =1,...,1;. Therefore, the first assertion of the lemma follows from (2.7) - (2.9).
Similarly, in view of Lemma 4.10 from [19], for almost all & with respect to the measure 1My,
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T
1
lim limsup T /pg (L(s1+i7,@), Ln(s1 +iT,@))dr = 0. (2.10)

n—oo T—00

Let

pulg, f) = 121;23 1@?@ p(gji, fir)

and let mpy denote the Haar measure on (Ql X oo X Qe B(Q x ... X QT)) Then formula (2.6)
of [4] asserts that, for almost all (w1,...,w;) € Q1 X ... X Q, with respect to my,

T

1 ) .
lim limsupT/pu((§(3+17,w1,a1;a11),...,C(s+z7',wr,a¢;arlr)),

n—oo T—00

(Cn(s + T, W1, 00;011), -« -5 Cn (S + 0T, Wr, Qs a,«lr,)))dT = 0. (2.11)

The measure my; is the product of the measures my and mp. Therefore, the second assertion of
the lemma follows from (2.10), (2.11) and the analogue of equality (2.7).

Lemma 2.4. Suppose that L € S, hypothesis (1.1) is satisfied and the numbers a1, ..., a, are
algebraically independent over Q. Then the probability measures Pr and

1
Pr(A) = Tmeas{T €0,T]: Z(sy +it,s+iT,w,a;a,L) € A}, A€ B(HY),

both converge weakly, for almost all w € Q, to the same probability measure P on (H”, B(H”)) as
T — oo.

1
Proof. The properties of the class S implies that, for o > 2

T
. |2  la(m)[ui(m) _ g~ Ja(m)]
0 m=

This and the Cauchy integral formula lead, for a compact set K of D, to the estimate

o . = Jam)?) "
hjr;lj;pi /SE}% |Ln(s1+iT)|dT < Ck (mz::l o ) (2.12)
with some Ck and o > max <;, 1-—- dl£> By (2.5) of [11], for a compact subset K of D,
| . T | . Jamal? 1/2
h;nj;ip T/SSE ‘(n(s +i7, a; ajl)}dT < Bg (WLZ:O (m+a)2”K> (2.13)

1
withsomeBK>0and&K>§foralljzl,...,r,lzl,...,lj.

Let 6 be a random variable on a certain probability space (Q, A, IP) and uniformly distributed on
[0, 1]. On this probability space define the H"-valued random element X, by the formula
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XT,TL = XT,n(slv S) =
= (X1n(51), X1n,1,1(8), - s X710 (8), -+ o, X1 (8), - oo, X, (8)) =
=Zn(s1+i0T,s+i0T,;0,L) .
Then, by Lemma 2.2, we have that

Xrp X, (2.14)

D e
where — means the convergence in distribution, and

Xn - Xn(sl) 8) - (Xn(81)7 Xn,l,l(s)) ceey Xn,l,h (5)7 sy Xn,?“,l(s)7 sy Xn,r,lr (8))

is the H"-valued random element with the distribution P, (P, is the limit measure in Lemma 2.2).
Using (2.12)—(2.14), we prove, in a standard way, see, for example, [11, 19], that the family of
probability measures {P, : n € N} is tight, i.e., that, for every ¢ > 0, there exists a compact set
K = K(e) C HY such that P,(K) > 1— ¢ for all n € N. Indeed, let the compact sets K,, and K,
come from the definition of the metric p, (the definition of the metric p is given in [8]). Let

- 2. |a(m)[? 2
o= 55 )

m=1
and
0o lam il 1/2
il
lem = BKm S A — .
mz::O (m + a;)?7Km
Let € > 0 be an arbitrary number, and
My = Rp2™ e My, = R 2™ e, meN.

Then, in virtue of (2.12) and (2.13),

limsup P (( sup ‘XT,n(sl)’ > Mm) or <E|j,l: sup ‘XT,n,j,l(S)‘ > Mjlm>> <

T—o0 $1€Km s€Km

< limsupP ( sup }XT’n(Sl)} > Mm> +

T—00 s1€Km

+limsup P (3]’,[: sup | X7n,5.(s)] > Mjlm> <

T—o00 SENm

1 N
< limsup 7 meas {7’ €[0,7): sup |L(s1+iT)| > Mm} +

T—o00 s1€EKm

ro 1
1
—|—limsupzz — meas {7‘ €10,7]: sup |C(s + 17, ay; ajl)‘ > Mﬂm} <

=i s€Km
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T
1
< limsup — / sup |L(s1 +iT)|dT+
T—o00 m slekm
0
r lj 1 T
€
+ lim sup /Sup (s +iT azia)|dT < oo
;; T—00 TMjlmo seKm‘ ( 55 2m

Hence, by (2.14),
R ) €
P sup |Xn(s1)| > M, or (3],1: sup ‘Xn,j,l(sﬂ > Mjlm) < o (2.15)
S1€km seEKm
j=1,...,r, 1 =1,...,1;. Define the set
K! = {iEH”: sup ’f(sl)‘ SMm, sup ‘fjl(s)‘ < Mji, j=1,...,r,1=1,...,1;, meN}.
Slekrm SEKm

Then K is a compact set in V. Moreover, by (2.15),
Py(K!)>1—¢

for all n € N, i.e., {P,: n € N} is tight. Hence, by the Prokhorov theorem [1] (Theorem 6.1).
(If the family of probability measures is tight, then it is relatively compact), this family is relatively
compact. Therefore, there exists a sequence X, ~and a probability measure P on (H v B(H ”))
such that

X, =P (2.16)

S pooo
On (2, A, P), define one more H”-valued random element X by the formula
Xr=Xr(s1,8) = Z(51 +140T, s + 0T, o; a, E))
Then, in view of Lemma 2.3, we obtain that, for every ¢ > 0,

lim limsup P(py(X7, X7,) =€) =0.
n—=00 T 00 ’
This, (2.14) and (2.16) show that all hypothesis of Theorem 4.2 of [1] are satisfied. Therefore, by

this theorem

X, 2 P,

- T—ooo
which is equivalent to the weak convergence of Pr to P as T' — oo. From this, it follows that the
measure P is independent on the sequence X,,, . Thus,

X, — P. (2.17)
Similarly, using the H"-valued random elements
Zn (81 + 40T, s + 10T, w, a; a, C)
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and
Z(s1+10T, s +i0T,w,a;a,L)

as well as relation (2.17), we obtain that the measure PT also converges weakly to P as T' — oo.
Proof of Theorem 2.1. In virtue of Lemma 2.4, it suffices to show that P = Pz. Let A be a
continuity set of the measure P. On the probability space (Q, B(Q2),m H), define the random variable
¢ by the formula
1, if Z(si1,s,w,a;a,L) € A,
§(w) =

0, otherwise.

Lemma 2.4 implies the relation
lim Pr(A) = P(A). (2.18)

T—o0

By the definition of £, the expectation E¢ is

B = [ &dmy = mp(w € Q1 Z(s1, 5,0, 030.0) € 4) = Py(A), (2.19)
Q

For 7 € R, define the transformation ®, of £ by
O, (w) = ((p*” :peP),(m+a1) " ":meNy),...,(m+a,)"":me N@)g,

w € Q. Lemma 7 of [8] asserts that the group of measurable measure preserving transformations
{®,: 7 € R} is ergodic. Hence, the random process £ (@T(g)) is ergodic as well. Therefore, by the
classical Birkhoff — Khintchine theorem,

Jim % / §(®r(w))dr = E&. (2.20)

1 1
lim — /f(CI)T(w))dT = fmeas{T €[0,7]: Z(s1 +it,s+iT,w,a;a,L) € A}.

This, (2.19) and (2.20) show that
1
lim —meas{7 € [0,T]: Z(s1 +it,s +it,w,o;a,L) € A} = P5(A).
T—oo T

Therefore, in view of (2.18) and the definition of Pp, P(A) = Pz(A) for all continuity sets A of
the measure P. Since all continuity sets constitute a determining class, we have that P = Py.

The theorem is proved.

3. Support. We recall that the support of P is the minimal closed set Sp, C H" such that
Pz(Sp,) = 1. The set Sp, consists of all points g € H" such that, for every open neighbourhood G
of g, the inequality Pz(G) > 0 is satisfied. -

Let
Se={9€ H(Dg): g(s) #0 or g(s)=0}.
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Theorem 3.1. Suppose that L € S, hypothesis (1.1) is satisfied, the numbers o, ..., q, are
algebraically independent over Q, and that rank(A;) = l;, j = 1,...,r. Then the support of the
measure Py is the set Sy x H*(D).

Proof. We have that

H" =H(D,) x H*(D). (3.1)

Since the spaces H(D,) and H*(D) are separable, by (3.1),
B(H") = B(H(D,)) x B(H"(D)).

Therefore, it suffices to consider Pz(A) for A = A; x Ay with Ay € H(D,) and Ay € H%(D).
The measure my is the product of the measures mpy and mpy. Hence,

Pz(A) =mpy(w e Q: Z(s1,8,w,050,L) € A) =
= mH<g € Q: L(s1,w) € Ay, (C(s,al,wl; aii), .-, C(s, ap, wy; arl,»)) € Ag) =

:T?LH(LZ) € QZ ﬁ(sl,dj) € Al)ﬁzH<(w1,...,wT) S Ql X ... X er

(C(s, a1, w15011), .-+, C(8, QW am)) € Ag). (3.2)

By Proposition 3 of [15], the support of the random element £(s1,w) is the set Sz. We note that
in [15], the H(D/ y)-valued random element, where

1 1
Deny=<s€eC:max|-,1—— | <o<1,|t|] <Ny,
’ 2 dr

is considered, however, the proof remains valid for the whole strip D. Thus, S, is a minimal closed
subset of H(D,) such that

.- (w eQ: L(s,0) € Sﬁ) —1. (3.3)

Also, under hypotheses of the theorem, it was proved in [9], Theorem 3.1, that the support of
the H"(D)-valued random element (((s, a1, wi;a11),...,¢(s, ar,wr;ay,)) is the set H(D), i.e.,
H"(D) is a minimal closed subset of H"(D) such that

ﬁzH<(w1,...,wr) €M X ...xQ: (C(s,al,wl;all),...,C(S,ar,wr;arlr)) € H“(D)) =1.

Combining this with (3.3) and (3.2) gives the assertion of the theorem.
4. Proof of Theorem 1.3. Theorem 1.3 is a consequence of Theorems 2.1 and 3.1, and Merge-
lyan’s theorem on the approximation of analytic functions by polynomials [13], see also [23].
Proof of Theorem 1.3. By the Mergelyan theorem, there exist polynomials p(s) and p;;(s) such
that

sup | f(s) = p(s)| < ; @.1)
seK
and .
sup sup sup |fﬂ(s) —pﬂ(s)‘ < 3 (4.2)

1<j<r 1<I<1; se K
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Since f(s) # 0 on K, we have that p(s) # 0 on K as well if € is small enough. Therefore, there
exists a continuous branch of logp(s) on K which is analytic in the interior of K. This and the
Mergelyan theorem show that there is a polynomial ¢(s) such that

sup [p(s) — eQ(s)’ < i
seK

Therefore, (4.1) implies that

sup | f(s) — e‘J(S)‘ < - (4.3)
seK
Define the set
€ €
G=<(9911,--.9n,) € H": sup|g(s) — e’ | < 50 Sup sup  sup lgji(s) — pju(s)] < 3
seK 1<j<r 1<I<l; s€Ky
Then, in view of Theorem 3.1, G is an open neighbourhood of the element (eq(s) p11(8), - - prt, ()

of the support of the measure Pz. Consequently, P(G) > 0. Therefore, by Theorem 2.1,
liminf Pr(G) > Pz(G) > 0,
T—o0

and, by the definition of G,

1
liminf — meas< 7 € [0,T]: sup |L(s +iT) — eq(s)‘ < E,
T—oo T seK 2

€
sup sup sup }C(s + 4T, oy ajp) —pjl(s)‘ < 3 > 0.
1<j<r 1<I<l; seKj;

Combining this with inequalities (4.3) and (4.2) gives the assertion of Theorem 1.3.
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