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PROPERTIES OF THE LOGICAL CONSEQUENCE OPERATION
AND ITS RELATIONSHIP WITH THE INDEPENDENCE
OF PROPOSITIONAL LOGIC

BJIACTHUBOCTI ONEPAILIT JIOTTYUHOI'O HACJIIAKY
TA ii 3B’SI30K 3 HE3AJIEJKHICTIO ITPONTO3UIIIMHOI JIOT'TKH

We investigate the properties of the logical consequence operation and the characteristic features of independent sets
of formulas. Further, we apply these results to propositional logic. Finally, we show under what conditions the results of
addition of a formula to independent sets of formulas and the union of two independent sets of formulas are also independent,
by using the operation of logical consequence, i.c., we establish a relationship between the logical consequence and the
preservation of independence in propositional logic.

BuBYaIOTECS BIACTHBOCTI OIeparii JIOTiTHOTO HACHIIAKY Ta XapaKTepHi 0COOIMBOCTI HE3aIKHUX MHOXKHH (opmyn. OTpu-
MaHi pe3yJbTaTH 3aCTOCOBYIOTBCS JI0 MPONO3HLIHHOT storiku. KpiM TOro, BCTAaHOBJIEHO, 3a SIKMX YMOB PE3y/IbTaT JOJaBaHHs
(hopMynH 10 He3aJeNHUX MHOKUH (OpMYNT Ta 00’ €THAHHS JIBOX HE3ICKHHX MHOXUH (OPMYJ TAKOXK € HE3aJECHHUM 32
OTIEPAII€I0 JOTIYHOTO HACTIAKY, TOOTO BCTAHOBJICHO CITiBBiAHOLICHHS MiX JIOTTYHUM HACIHIIKOM Ta 30€pEeKCHHSIM HE3aIEK-
HOCTI y MPOMO3HUI[IHHIN JOTiLi.

1. Introduction. The logical consequence undisputedly is the central concept of logic. The main
purpose of logic is to tell us what follows logically from what. Logical consequence is a relation
between a given set of formulas and the formulas that logically follow. But this concept has a long
story before the adoption of its validity. In a series of papers, published early 1930°s [14], Tarski
describes his logical perspective as follows: our goal is to study the properties of deductive systems.
A deductive system, or a formal theory, is the set of all formulas which follows formally from a set
of formulas; more precisely, the formal theory 7" includes a set of axioms A and a set of inference
rules R. Then the set of logical consequences of a formula ¢ in 1" was defined as the smallest set of
formulas of T that contains ¢ and the axioms in A, and is closed under the rules in R.

The need for semantic definitions of the same concepts arose when Tarski realized that there was
a serious gap between the proof theoretical definitions and the intuitive concepts: many intuitive
consequences of the formal theories were undetectable by standard system of proof. His conclusion
was that proof theory can provide only a partical account of the metalogic [5].

Tarski described the intuitive content of the concept logical consequence as follows. Let 3 be a
set of formulas and ¢ be a formula that follows from X.

(C) If ¢ is a logical consequence of 3, then ¢ is a necessary consequence of 3. in the sense
that it cannot be the case that all formulas in X are true and ¢ is false.

Further, he introduced the notion of model and proposed the formal definition of logical conse-
quence in terms of models.

(LC) The sentence ¢ follows logically from X if and only if every model of X is also a model
of ¢.

Now the definition of logical truth immediately follows:
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(LT) The sentence ¢ of a formal theory 7" is logically true if and only if every model of 7" is a
model of ¢.

That (LC) satisfies (C) is a very simple observation [10]:

Suppose that ¢ is a logical consequence of 3, i.e., ¢ is true in all models in which all the
formulas in X are true. Now assume that ¢ is not a necessary consequence of 3. Then it is possible
that all the elements of X are true and ¢ is false. But in that case there is a model in which all the
members of 3 come out true and ¢ happens to be false. Contradiction.

From now on ¥ - ¢ will mean that ¢ is a logical consequence of 3. More on logical consequence
can be found, for instance, in [1, 4, 7-9, 16]; works in [6] and [11] can be considered as main sources
on the subject.

In this work, we deal with properties of the logical consequence operation and its relationship
with independence of propositional logic. We prove that under which conditions the addition of a
formula to independent sets of formulas, and the union of two independent sets of formulas are also
independent by using the logical consequence operation. Briefly, we establish a relationship between
logical consequence and the preservation of independence in propostional logic.

2. Properties of logical consequence Cn. In this section, we give definitions about conse-
quence operation Cn. Further, we indicate basic properties of consequence operation. As we shall
see in the remaining sections, they are the basis of this work.

Definition 2.1. Let L be any formal language. A consequence operation on L is a function
Cn: 21 — 25 such that the following holds:

(i) ¥ CCn(%), all ¥ C L (reflexivity),

(ii) for all 1, Yo C L, if ¥1 C X9 then Cn(X1) C Cn(X2) (monotonacity),

(iii) for all ¥ C L, Cn(Cn(X)) = Cn(X) (idempotency).

Definition 2.2. Cn is a structural consequence operation if and only if f(Cn(X)) C Cn(f (X))
for every endomorphism f of L.

Definition 2.3. Cn is a finite (or algebraic) consequence operation if and only if Cn(X) =
= UH{Cn(V): V C 3,V finite}, where ¥ is the subset of any formal language L.

Definition 2.4. [If Cn is finite and structural, then Cn is standart.

Definition 2.5 [3]. (i) Cn is stronger than Cn' (Cn' < Cn) if and only if for all &3, Cn/(X) C
C Cn(%).

(ii) Cn is properly stronger than Cn' (Cn' < Cn) if and only if Cn is stronger than Cn' and
there is a X such that Cn'(X) C Cn(X).

Definition 2.6 [3]. (i) Cn is consistent if and only if Cn) # L.

(i) Cn is compact if and only if for each > C L: if Cn(X) = L, then there exists a finite
Y C ¥ such that Cn(¥') = L.

(iii) X is a Cn-theory if and only if Cn(X) = X.

(iv) X is Cn-consistent if and only if Cn(X) # L.

(v) X is Cn-complete if and only if for all A: if ¥ U {A} is consistent, then A € Cn(X).

(vi) X is Cn-maximally consistent if and only if Y is consistent, and there does not exist a
consistent ' such that ¥ C Y.

(vii) X is Cn-axiom system for X' if and only if Cn(X) = Cn(X).

(viii) A is Cn-independent in ¥ if and only if A € ¥ and A ¢ Cn(X — {A}).

(ix) A is Cn-tautology if and only if A € Cn(D).
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Definition 2.7 [3]. A4 set Q) is a closure system if and only if it is closed intersection. Namely, if
' CQ, then T €.

Let (L,Cn) denote a logic on a language L and a consequence operation Cn. Also, (Cn N
Cn')(X) =Cn(X)NCn/(¥) and (CnUCn')(X) = Cn(X) U Cn/(X) for all ¥ C L. Now we can
give some results on Cn.

Lemma 2.1. Let ¥ and 3 be sets in (L,Cn). Then the following identities hold:

(1) Cn(Cn(X1)UCn(X2)) = Cn(X U X9),

(i) Cn(Cn(31)NCn(X2)) = Cn(X1) NCn(X2).

Lemma 2.2. Let (L,Cn) and (L,Cn') be consistent. Then (L,Cn N Cn') is also consistent.

Remark 2.1. 1In general the union of (L,Cn) and (L,Cn’) is not consistent. For example, let
Cn(@) = V(@ # ¥ # L) and Cn/ (&) = L — V. We get Cn(@) U Cn/(@) = L. Therefore,
(L,Cn'J Cn’) is not consistent.

Lemma 2.3. Let (L,Cn) and (L,Cn') be compact. Then (L,Cn N Cn') and (L,Cn U Cn’)
are also compact.

Lemma 2.4. [f'¥; and X9 are Cn-theory, then Cn(X1) N Cn(X2) = Cn(X; N X2).

Definition 2.8. A set T' C L is closed under Cn if and only if T = Cn(T).

Lemma 2.5. Every Cn-theory is closed.

In this study, the class of all closed sets in a logic (L,Cn) is denoted by & = {T € 2L
T = Cn(T)}. We can easily show that (3, C) is a partial order structure. At the same time, for
every I' € &, Sup(I') = Cn(UTI') € S and Inf(I') = Cn(I') € 3. Every subset of & has a Sup
and Inf. Hence, (3, C) is a complete lattice.

Lemma 2.6. Let A be the any subset of tautologies set (it means that Cn(A) = Cn(@)). L is
the maximal element and Cn(A) is the minimal element in 3.

Lemma 2.7. Let . # L. 3 is closed Cn-complete if and only if 32 is Cn-maximally consistent.

Proof. Let X be closed Cn-complete. For all A, if ¥ U {A} is Cn-consistent, then {A} C X.
Therefore, > is C'n-maximally consistent. We assume that 3 is Cn-maximally consistent. For all
A, if XU {A} is Cn-consistent, then {A} C ¥ and also A € Cn(X), because ¥ is C'n-maximally
consistent. Hence, 3 is Cn-complete. If A € Cn(X), then ¥ U {A} is C'n-consistent. Since ¥ is
Cn-maximally consistent, {A} C X. So, A € ¥. Therefore, Cn(X) = X.

Lemma 2.8. If' Xy and X9 are Cn-consistent, then X1 N Yo is also Cn-consistent.

Remark 2.2. The union of any two Cn-consistent sets is not in general Cn-consistent.

Lemma 2.9 [13]. Let Cny < Cno < Cng < ... be an infinite chain of finite consequence
operations and Cn = Sup{Cn;:i=1,2,3,...}. Therefore

Cn(E) = | Cni(D)
€N

for every 3 C L.
Lemma 2.10. Let Cny < Cny < Cng < ... be an infinite chain of finite structural consequence
operations and Cn = Sup{Cn;:i=1,2,3,...}. Then Cn is also structural consequence operation.

Proof. Let f be any endomorphism and ¥ C L :

f(Cn(%))=f (U Cni(2)> (by Lemma 2.9) = U f(Cn;(X)) (since f is an endomorphism) C

1€N €N
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- U Cn;i(f(X)) (by Definition 2.2) = Cn(f(X)) (by Lemma 2.9).
iEN
Therefore, Cn is a structural consequence operation.

3. Properties of propositional logical consequence Cn. The notion of propositional conse-
quence operation includes all systems of classical propositional logic [1, 12]. And, we use Lprop
for describing language of propostional logic which is generated by the connectives -, A, V and
— .

Throughout the study ¢, 1, @a,... and X, 37, Yo, ... denote propositional logical formu-
las and sets of propositional logical formulas, respectively. Cn(X) stands for the set of logical
consequences of X; that is, ¢ € Cn(X) if and only if X F .

Definition 3.1 [3]. A4 consequence operation Cn is a propositional consequence operation if
and only if for @1, @2 € Lprop and ¥ C Lprop :

(=) @1 € On(X) if and only if Cn(E U {~¢1}) = Lprrop,

(A) Cn(EZU{p1 Ap2}) = Cn(EU{e1, p2}),

(V) Cn(ZU{p1Ve2}) = Cn(EZU{p1}) NCn(XU{p2}),

(=) w1 — @2 € Cn(X) if and only if p2 € Cn(X U {p1}).

Definition 3.2. A set of formulas ¥ is said to be independent if for all ¢ belonging to 3, ¢ is

not a logical consequence of ¥\ {p}; in symbols, if ¥\ {} ¥ ¢. Equivalently, ¥ is independent if
there is a model for (X \ {p}) U {—¢}, where — is the negation operation.

Definition 3.3. Two set of formulas are said to be equivalent if any formula of the one set is a
consequence of the other set and conversely. Equivalently, two sets are equivalent when they have
the same models.

We recall the following results.

Lemma 3.1 [11]. Given 1, @2, 3 and 31,39, we have

@) 1 b e

(i) if X1 F @1, then 1 U X9 - ©1;

(iii) i X1 U{pa} F @1, and X9 b o, then 1 U Xy b 1;

(iv) X1 F 1 if and only if 39 & @1 for some finite subset 5 of 31;
v) 21 U{e1} F e ifand only if ¥1 F o1 — po;

(Vi) 1 U {p1, 92} s ifand only if X1 U {1 A 2} F 3.

Note that we can write 31, @1, 2 F @3 for X1 U {1, p2} F 3.

In this section, we prove some results on C'n in propositional logic, which are of set theoretical
nature.

Lemma 3.2. Given %1 and X5, we have
Cn(X1)UCn(X2) C Cn(X1 U X9).
Proof. Let ¢ € Cn(X1) U Cn(32). Then ¢ € Cn(X1) or p € Cn(X2). If ¢ € Cn(X;), then
Y1 b ¢, hence ¥ U X9 F ¢ by Lemma 2.1 (ii). It follows that ¢ € Cn (X1 U 3s). If p € Cn(X,),

then exactly the same way we obtain ¢ € C'n(3; U X9), so

Cn(X1)UCn(X2) C Cn(X; U X9).
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Corollary 3.1. For a family of formulas %y, we have

L:J n(Sk) CC’n(U zk>

k=1

Proof. Just use induction on n.
The following result is obvious.
Result 3.1. Given X1 and X5, we have

YUY, C Cn(El) U Cn(zg)

Corollary 3.2. For a family of formulas ¥y, we have
n n

Uzic JonE
k=1 k=1

Thus, we get the following inclusions:

LZJ QLZJ n(k) ccn<U )

k=1

Let 31 and X5 be any set of formulas in Lprop. By the definition of Cn, we have that
if 1 C Y9, then Cn(X;) C Cn(X2).
Lemma 3.3. Given 1 and Y5, we have
Cn(X1NXy) CCn(E1)NCn(Xs).

From the above results, we obtain the following inclusions:

n

[k € Cn (ﬂ 2k> C () Cn(Zk).
k=1 k=1 k=1

Lemma 3.4. Let X1 and Yo be sets of formulas and A be any subset of a set which includes
only tautologies. If Cn(31) N Cn(X3) = Cn(D), then X1 N Xy = (D) or 1 Ny = A.

Proof-  Assume that ¢ is any formula which is not a tautology and ¢ € X7 N 5. Then
¢ € Cn(X1) N Cn(X2). We obtain the conclusion Cn(X1) N Cn(32) # Cn(@). It is contradiction.

Remark 3.1. The converse of this theorem does not hold. To see this, consider the following
formulas from formal number theory:

p1: Vaey(@' =y -z =y),

p2: Vay(z+y = (z+y)),

w3 Vxy(zy = xy+ o).
where ' is the successor function on N. Then let ¥; = {1 A p2} and X2 = {1 A p3}. Now
Y1 NYo =g, but Cn(El) N CTL(ZQ) 75 C’n(@), since 1 F @1 and Yo - 1.

Theorem 3.1. Let > be Cn-complete and ¢ ¢ Cn(X). Then for all » € Lprop, ¢ — ¥ €
€ Cn(Y).
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Proof. Assume that X is Cn-complete and ¢ ¢ Cn(X). Then ¥ U {p} is not consistent. So,
we hold that ¥ U {¢} F 9. By the Lemma 3.1 (v), ¥ F ¢ — 9.

Theorem 3.2. Any theory is complete in Lprop if and only if it is maximal consistent.

Proof. (=) Let X be theory and complete. If ¢ ¢ Cn(X), then ¥ U {¢} is not consistent. As
¥ = Cn(X), ¥ is maximal consistent.

(<) Itis clear.

4. Independent sets of propositional logical formulas and Cn. In this section, we state and
prove some results on independent sets of propositional logical formulas related to logical conse-
quence.

First of all, let > be an independent set of propositional logical formulas and ¢ be a formula. If
we add a formula ¢ to X, and ¢ is pairwise independent with each member of 3, it is possible that
Y U{¢} is not independent. And the union of two independent sets of propositional logical formulas
could not be independent. In the first instance, we ask that “under which conditions is ¥ U {¢}
independent?”. Further, ”when is the union of two independent sets of propositional logical formulas
independent?”’.

These observations allows us to deduce some results on independent sets of propositional logical
formulas with respect to logical consequence operation.

Theorem 4.1. Let Y. be an independent set of propositional logical formulas. If Cn((3 U

{enst D\ {or}) = Cn(E\ {or}) UCn({gns1}), where the union of each i € X and {11} is
independent set, then

Y U{pnt1} is independent if and only if ¥ ¥ ppi1.

Proof. Set 3 = X U {p,+1} and suppose that ¥ is independent. Then ¥\ {@n 41} ¥ @ni1. As
Y\ {¢nt1} =X, we have ¥ ¥ ¢, 1. Thus condition is necessary.
For the converse, assume X ¥ ¢, 1. Then

i\ {Spn+1}% Pn+1- 4.1)

Suppose that ¥ U {¢pn11} \ {¢r} ¥ @i for each ¢ € 3. Since ¥ is independent, we have

Y\ {er} ¥ o, (4.2)
and as {pg, @n+1} is independent for every oy € X it follows that
{ont1} ¥ o 4.3)

From (4.2) and (4.3), we get ¥\ {¢r} ¥ ¢r and {¢n+1} ¥ @r. Thus by the hypothesis

or & On(X\ {pr}) and o & Cn({pni1}) = @ & Cn(E\{er}) UCn({pn1})) =

= ¢k & On(E\ {er} Ufpnta}t) = or & Cn((EU{ent1}) \ {er})-

Thereby we obtain
(EU{en+1}) \{ort ¥ or. (4.4)
From (4.1) and (4.4), we conclude that ¥ U {(,, 11} is independent.

Theorem 4.1 is proved.
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Theorem 4.2. Let 31 and Yo be disjoint independent sets of propositional logical formulas and
let
Cn(Z \ {ex}) UCN(Es), if o €2,
Cn(X1) UCn(Z2\{er}), if ¢k € Do

Then for ¥ = 31 U X9 to be independent it is necessary and sufficient that ¥, ¥ i for every
wi € Yo and X9 ¥ @ for each p; € X.

Proof. (=) Let X be independent. Then, 3\ {¢.,} ¥ @, forall ¢, € 3. As 1Ny = g,
either ¢,, € X1 or ¢, € X is hold.

Suppose that ¢, € 39. As X is independent, we obtain X1 U 3o \ {¢©m } ¥ pm. From hence, we
get (X1 \ {om}) U (X2 \ {¢om}) ¥ ©m. Therefore, we find 31 \ {¢om} ¥ ©m and X \ {©m} ¥ @om.
As X1 N Yy =0 and @, € X, we get X1\ {¢m} = 21. Thus, X ¥ ¢y, is hold for all ¢, € Xs.
Similarly it is proved the condition of ¢, € 3.

(<=) Suppose that 331 ¥ @y, for every ¢ € 39 and Yo ¥ o for each ; € 31 and X = 31 U Xs.
Then either ¢,, € X1 or ¢, € X is hold.

Suppose that ¢, € Yo. We obtain X1 ¥ ¢, because of the hypothesis. Therefore, o \
{om} ¥ ©m and X1 ¥ ¢p,. It means that ¢, ¢ Cn(X2 \ {pm}) and ¢, ¢ Cn(X1). So, pm ¢
¢ (Cn(X2\ {pm})UCn(X1)). We obtain ¢, ¢ (Cn(32\ {¢m})UX1) from the hypothesis. Thus
fm & (Cn(S2UT)\ {pm}) namely,

(B UZ2) \ {om}) # om.

Cn((31U32) \ {ex}) = {

For ¢, € X1, we get ((£1UX2)\{pm}) ¥ ©m by using same method. Therefore, ¥ is independent.

Theorem 4.2 is proved.

Theorem 4.3. Let {X;: i € N} be a family of independent sets. Let Cn((U;—; Xi) \ {¢x}) =
= Ui, Cn(Z; \ {pr}) and £;NE; = & for i # j, i, j € N. Then for | !, ¥; to be independent
it is necessary and sufficient that for each ¢y, € (U;—; Zi) \ 3j, X ¥ ¢

Proof. 1t is proved by using induction on sets of propositional logical formulas.

Theorem 4.4. Let 31 and Yo be independent sets of propositional logical formulas such that
Cn(X1) NCn(X2) = Cn(D). Then in order to have

Cn(EZ \ {pr}) UCn(X2), if o € 31,
Cn(E1) UCn(X2 \ {¢r}), if ¢k € 3o,

it is necessary and sufficient that 31 U X9 is independent.

Proof. (=) Let Cn((21UX2) \ {pr}) = Cn(X1 \ {pr}) UCn(Xz) for all ¢, € ¥q. If
v € Cn(X;1) and 31 \ {vr} ¥ ¢k, then @y is not a tautology and ¢ ¢ Cn(X2) because of
Cn(X1) N Cn(X2) = Cn(@). Thus ¢ ¢ Cn(X1 \ {¢r}) U Cn(X2). By the hypothesis, ¢ ¢
¢ Cn((X1UX2) \ {¢k}). Therefore, (X1 U 32) \ {¢r} ¥ ¢r.

It is similarly showed that for all ¢, € ¥2. As a conclusion, (X; U X2) \ {¢x} ¥ ¢ for all
© € X1 U Xs. It means that 3; U Y is independent.

(<) Let X1U> be independent. If 337 U3, is independent then 3J; and 335 are also independent.
If o, ¢ Cn(31\ {pr}) for g € X4, then ¢ is not a tautology. And also ¢ ¢ Cn(X2) because
Cn(X1) N Cn(X2) = Cn(@). As ¥;1 U X9 is independent, therefore ¢, ¢ Cn((31 U 32) \ {¢r})
for ¢, € ¥1. It means that Cn((X1 U X2) \ {¢r}) € Cn((X1) \ {¢x}) U Cn(X2). We use similar
argument for ¢ € Xy. After that we obtain Cn((X; U X2) \ {pr}) € Cn(X1) UCn(32 \ {vr}).

Cn((X1UX2) \{¢r}) = {
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Namely,

Cn(X1 \ {pr}) UCn(E2), if i € Xy,
Cn(X1)UCn(X2 \ {vk}), ifpr € Xa.
As Cn(X1) N Cn(X2) = Cn(), ¥1 N Xg does not include any formula without tautology.

Thereby ((¥1 U X2) \ {px}) = (X1 \ {wr}) U Bg) for ¢ € Xy and (X1 U Xo) \ {gr}) =
= (21U (B2 \ {pr})) for ¢ € Xq since gy, is not a tautology. By using Lemma 3.2 we obtain

Cn((31UX2) \ {pr}) C (4.5)

Cn(E1\ {er}) UCN(Es), if ¢p € 3,
Cn(El) @] Cn(EQ \ {(pk}), if YL € Y.

Therefore, by using (4.5) and (4.6), we get

Cn((X1UX2) \ {er}) 2 (4.6)

Cn(E1 \ {er}) UCN(E2), if ¢ € X1,

Cn((X1UX2) \{¢r}) = Cn(E)UCn(S2\ {or}), if or € a.

Theorem 4.4 is proved.

5. Conclusion. In this paper, we give some results on consequence operation and indepen-
dent sets of propositional logical formulas by means of logical consequence operation. It turns out
that there is a bridge between propositional logical consequence operation and independent sets of
logical formulas. Our main results in here answer the question under which conditions the sets of
propositional logical formulas preserve independence.

References

1. Tarski A. On some fundamental concepts of metamathematics // Logic, Semantics and Metamathematics. — Oxford:
Clarendon Press, 1969.

2. Tarski A. Logic, semantics, metamathematics. — 2nd ed. — Indianapolis: Hackett Publ., 1983.

3. Wallmann C. A shared framework for consequence operations and abstract model theory // Log. Univers. — 2013. —

7. - P. 125-145.

Priest G. Etchemendy and logical consequence // Can. J. Phil. — 1995. — 25. — P. 283-292.

Sher G. Tarski’s logical consequence // Pacif. Phil. Quart. — 1989. — 70. — P. 341 -368.

Reznikoff 1. Tout Ensemble de Formules de la Logique Classique est Equivalent a un Ensemblelndependent // C. R.

Acad. Sci. Paris. — 1965. — 260. — P. 2385-2388.

Senturk I. On the independence of sets of formulas of first order: Master Thesis (in Turkish) — Ege Univ., 2012.

Senturk I., Oner T. On the some set theoretical properties of logical consequence // 13th Serb. Math. Congr. — 2014.

SN

© %0 N

Senturk 1., Oner T, Nuriyev U. An algebraic approach to categorical syllogisms by using bilateral diagrams // 5th
Intern. Sci. Conf. Students and Young Sci. Theor. and Appl. Aspects Cybernetics (TAAC-2015). — 2015.

10. Etchemendy J. Tarski, model theory and logical truth: Ph. D. Thesis. — Stanford Univ., 1982.

11. Wojtylak P. Independent axiomatizability of sets of sentences // Ann. Pure and Appl. Logic. — 1983. —44. - P. 259 —299.
12.  Wojcicki R. Theory of logical calculi. — Dordrecht: Kluwer Acad. Publ., 1988.

13. Bloom S. L. Some theorems on structural consequence operations // Stud. Log. — 1975. —34. — P. 1-9.

14. Givant S. R., McKenzie R. N. Alfred Tarski’s collected papers. — Birkhauser, 1986.

15. Shapire S. The philosophy of mathematics today. — Oxford: Clarendon Press, 1998.

16. Oner T., Terziler M. Independence of countable sets of formulas of the propositional logic / Ars Combin. — 2013. —
112. - P. 73-80.

Received 20.10.16

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 6



