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SUBDIVISION OF SPECTRA FOR SOME LOWER TRIANGULAR
DOUBLE-BAND MATRICES AS OPERATORS ON ¢y

HIAPO3A1J CIIEKTPIB UIA AEAKUX HUKHBO-TPUKYTHUX
ABOPAIAKOBUX MATPUILb SAK OIIEPATOPIB HA ¢y

The generalized difference operator A, was defined by El-Shabrawy: A sz = Agp (@n) = (an®n + bn1Zn_1)pp
with x_1 = b_1 = 0, where (ax) and (by) are convergent sequences of nonzero real numbers satisfying certain conditions.
We completely determine the approximate point spectrum, the defect spectrum, and the compression spectrum of the operator
A, in the sequence space co.

V3aranpHeHui pisHuULEBHiT onepatop A, 0yio BusHadeHo Enp-1labpasi: A, pz = Agp (Tn) = (an®n + bn,1xn,1)f:0
npu z—1 = b_1 =0, ge (ax), (bx) — 301KHI HOCIIZOBHOCT] HEHYIBOBHX JIHCHUX YKCEI, 10 3310BOJIBHSIIOTH JICAKI YMO-
BU. [IOBHICTIO BU3HAYEHO HAOIMKEHUI TOYKOBHI CIEKTD, Ae()EKTHUIN CIEKTP Ta CTUCKYBAIbHHMIl CcieKTp omeparopa Ag p
y IpOCTOpi HOCHIJOBHOCTEH Cp.

1. Introduction. Spectral theory is an important part of functional analysis. It has numerous appli-
cations in many parts of mathematics and physics including matrix theory, function theory, complex
analysis, differential and integral equations, control theory and quantum physics. For example, in
quantum mechanics, it may determine atomic energy levels and thus, the frequency of a laser or the
spectral signature of a star.

In numerical analysis, matrices from finite element or finite difference problems are often banded.
Such matrices can be viewed as descriptions of the coupling between the problem variables; the
bandedness corresponds to the fact that variables are not coupled over arbitrarily large distances.
Such matrices can be further divided — for instance, banded matrices exist where every element in
the band is nonzero. These often arise when discretizing one-dimensional problems.

Problems in higher dimensions also lead to banded matrices, in which case the band itself also
tends to be sparse. For instance, a partial differential equation on a square domain (using central
differences) will yield a matrix with a bandwidth equal to the square root of the matrix dimension,
but inside the band only 5 diagonals are nonzero. Unfortunately, applying Gaussian elimination (or
equivalently an LU decomposition) to such a matrix results in the band being filled in by many
nonzero elements. And so, the resolvent set of the band operators is important for solving such
problems.

Many problems in computational physics can be reduced to linear algebra problems. In this
laboratory you will use several fundamental techniques of computational linear algebra to solve
physics problems common in many different areas of science. In order to solve the problem with
some variations you will need to solve a system of linear equations by Gauss—Jordan Elimination,
“LU decomposition plus back substitution,” matrix inversion and matrix diagonalization.

In recent years, spectral theory has witnessed an explosive development. There are many types
of spectra, both for one or several commuting operators, with important applications, for example the
approximate point spectrum, Taylor spectrum, local spectrum, essential spectrum etc.
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1.1. The spectrum. Let X and Y be the Banach spaces, and L: X — Y also be a bounded
linear operator. By R(L), we denote the range of L, i.e.,

R(L)={yeY:y=_Lx, x € X}.

By B(X), we also denote the set of all bounded linear operators on X into itself. If X is any
Banach spaces and L € B(X), then the adjoint L* of L is a bounded linear operator on the dual X*
of X defined by (L*f)(z) = f(Lz) forall f € X* and z € X.

Let L: D(L) — X be a linear operator, defined on D(L) C X, where D(L) denotes the domain
of L and X is a complex normed linear space. For L € B(X) we associate a complex number A
with the operator (Al — L) denoted by L) defined on the same domain D(L), where I is the identity
operator. The inverse (A — L)_1 , denoted by L;l is known as the resolvent operator of L.

A regular value of L is a complex number A\ of L such that L;l exists, is bounded and, is
defined on a set which is dense in X.

The resolvent set of L is the set of all such regular values a of L, denoted by p(L, X). Its
complement is given by C\p(L; X) in the complex plane C is called the spectrum of L, denoted
by o(L, X). Thus the spectrum o (L, X) consist of those values of A € C, for which L) is not
invertible.

The spectrum o (L, X) is union of three disjoint sets as follows: the point (discrete) spectrum
op(L, X) is the set such that L} ' does not exist. Further A € 0,,(L, X) is called the eigen value of
L. We say that A € C belongs to the continuous spectrum o.(L, X ) of L if the resolvent operator
L;l is defined on a dense subspace of X and is unbounded. Furthermore, we say that A\ € C
belongs to the residual spectrum o, (L, X) of L if the resolvent operator L;l exists, but its domain
of definition (i.e., the range R(A — L) of (A — L) is not dense in X; in this case L;l may
be bounded or unbounded. Together with the point spectrum, these two subspectra form a disjoint
subdivision

o(L,X) = 0p(L, X) Uoe(L, X) Uon(L, X) (1)

of the spectrum of L.
Also the spectrum o (L, X) is partitioned into three sets which are not necessarily disjoint as
follows:
we call a sequence (z); in X a Weyl sequence for L if |zx|| = 1 and || Lzg| — 0 as k — oo.
We call the set

oap(L, X) := {\ € C: there exists a Weyl sequence for A\ — L}
the approximate point spectrum of L. Moreover, the subspectrum
o5(L, X) :={A € C: Al — L is not surjective}
is called defect spectrum of L. There exists another subspectrum,
eo(L, X) ={A € C: R(AI — L) # X}

which is often called compression spectrum in the literature. Clearly, o,(L, X) C 04,(L, X) and
oeo(L, X) C os5(L, X). Moreover, comparing these subspectra with those in (1) we note that

ISSN 1027-3190.  Vkp. mam. scypn., 2018, m. 70, Ne 7



SUBDIVISION OF SPECTRA FOR SOME LOWER TRIANGULAR DOUBLE-BAND MATRICES ... 915

0r(L, X) = 0¢o(L, X)\op(L, X)
and
oo(L,X) =0o(L,X)\[op(L, X) Uoc(L, X)].

Sometimes it is useful to relate the spectrum of a bounded linear operator to that of its adjoint.
Building on classical existence and uniqueness results for linear operator equations in Banach spaces
and their adjoints.

Proposition 1 ([4], Proposition 1.3). The spectra and subspectra of an operator L € B(X) and
its adjoint L* € B(X™) are related by the following relations:

(@) o(L*, X*)=0(L,X),

(b) oc(L*, X*) C oap(L, X),

(©) Uap(L*vX*) = o5(L, X),

(d Ué(L*v X*) = Uap(La X),

(e) op(L*, X*) = 0co(L, X),

® eo(L*, X7) 2 0, (L. X),

(g) o(L,X) =04p(L, X)Uop(L*, X*) = 0p(L, X) Uogp(L*, X*).

1.2. Goldberg’s classification of spectrum. 1f T € B(X), then there are three possibilities for
R(T):

() R(T) = X,

(I R(T) =X, but R(T) # X,

(1) R(T) # X
and three possibilities for 77!

(1) T~! exists and continuous,

(2) T~! exists but discontinuous,

(3) T does not exist.

If these possibilities are combined in all possible ways, nine different states are created. These
are labelled by: (Iy), (I2), (Is), (IIy), (IIy), (1I3), (III;), (IIly), (Ill3). If an operator is in state (I1I,) for
example, then R(T) # X and T~! exists but is discontinuous (see [12]).

If A is a complex number such that 7' = A — L € (I}) or T'= A\ — L € (II}), then X € p(L, X).
All scalar values of A not in p(L, X) comprise the spectrum of L. The further classification of
o(L,X) gives rise to the fine spectrum of L. That is, o(L,X) can be divided into the sub-
sets () o(L,X) = @, (I3)o(L,X), (I))o(L,X), (I3)o(L,X), (I))o(L,X), (L) o(L, X),
(Ils) o(L, X). For example, if T = Al — L is in a given state, (IIl;) (say), then we write A €
€ (Ily)o(L, X).

By the definitions given above, we can write Table 1.

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace
of w is called a sequence space. We shall write /., ¢, ¢ and bv for the space of all bounded,
convergent, null and bounded variation sequences, respectively. Also by /1, ¢,, bv, we denote
the spaces of all absolutely summable sequences, p-absolutely summable sequences and p-bounded
variation sequences, respectively.

Several authors have studied the spectrum and fine spectrum of linear operators defined by some
particular limitation matrices over some sequence spaces. We summarize the knowledge in the
existing literature concerned with the spectrum and the fine spectrum. The fine spectrum of the
Cesaro operator on the sequence space £, for 1 < p < oo has been studied by Gonzalez [13].
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Table 1
1 2 3
Possibility L;l exists L;l exists L;l
and is bounded | and is unbounded | does not exists
I |RAM—L)=X | Xep(L,X) - j:;ﬁ%j&
A€o (L, X) A€ op(L, X)
I | RAM—-L)=X| \e€p,X) A€ oap(L,X) | X€og(L,X)
A€ os(L,X) A€ os(L, X)
A€oy (L, X) A€ o(L,X) A€ op(L, X)
A€ ogp(L, X) | A€ ogp(L,X)
Il | RAM —L)# X | A€ os(L,X)
A€ os(L,X) A€ os(L,X)
A€ 0e(L,X) | A€ow(L,X) | A€ oae(L,X)

Also, Wenger [19] examined the fine spectrum of the integer power of the Cesaro operator over c,
and Rhoades [16] generalized this result to the weighted mean methods. Reade [15] worked the
spectrum of the Cesaro operator over the sequence space cg. The spectrum of the Rhaly operators
on the sequence spaces cg and c is studied by Yildirim [17] and the fine spectrum of the Rhaly
operators on the sequence space cg is studied by Yildirim [18]. In the last year, several authors
have investigated spectral divisions of generalized differance matrices. For example, Akhmedov and
El-Shabrawy [1, 2] have studied the spectrum and fine spectrum of the generalized lower triangle
double-band matrix A, over the sequence spaces ¢y, ¢ and £, where 1 < p < co. The fine spectrum
of the difference operator A over the sequence spaces £1 and bv is investigated by Kayaduman and
Furkan [14] and ¢y and c, is investigated by Altay and Basar [3] etc.

The above-mentioned articles, concerned with the decomposition of spectrum which defined by
Goldberg. However, in [8] Durna and Yildirim have investigated subdivision of the spectra for
factorable matrices on ¢y and in [6] Basar, Durna and Yildirim have investigated subdivisions of the
spectra for genarilized difference operator over certain sequence spaces.

2. The fine spectrum of the operator A, on co. The generalized difference operator A,
has been defined by El-Shabrawy [9]. Let (ay) and (by) are two convergent sequences of nonzero
real numbers satisfying

lim ap =a >0 and

lim by = b # 0. (2)
k—o00 k—oo
We consider the operator A, p: co — co, which is defined as follows:
Aaybx = Aa,b (:Ck) = (akxk + bk—lxk—l)zo:o with z_1=06_1=0.

It is easy to verify that the operator A, ; can be represented by a lower triangular double-band matrix
of the form
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an 0 0
Aa,b _ bo al 0
0 b1 a9

Note that, if (aj) and (b) are constant sequences, say a =7 # 0 and by, = s # 0 forall k € N,
then the operator A, ; is reduced to the operator B (r, s) and the results for the subdivisions of the
spectra for generalized difference operator A, ; over cg, ¢, £, and buv, have been studied in [6].

2.1. Subdivision of the spectrum of Aqp on co. If T': ¢ — co is a bounded linear operator
with matrix A, then it is known that the adjoint operator 7™ : /1 — ¢; is defined by the transpoze of
the matrix A. It is well known that the dual space cj of ¢ is isomorphic to ¢;.

The spectra and the fine spectra of the operator A, ;, over the sequence space c( has been studied
by El-Shabrawy [10]. In this subsection we summarize the main results.

Theorem 1 ([10], Theorem 2.1). Let D = {A€C: [A—a|<|b|} and E = {ax: k € N,
lax — a| > |b|}. Then o (Agp, co) = DU E.

Theorem 2 ([10], Theorem 2.2). 0}, (Aqp, o) = E U K, where

o
. bi—
K = {aj:j €N, |ax—al = bl H =L diverges to zero for some mEN}.
; a; — a4
=m

Theorem 3 ([10], Theorem 2.3). 0, (A%, cf) = {A € C: |\ —a| < [b|} UE U H, where

<oo}.

Theorem 4 ([10], Theorem 2.5). o, (Agp,co) ={A € C: |A—a| <|b|}U(H\K).

Theorem 5 ([4], Theorem 2.6). o (Agp,co) ={A € C: |A—a| = b} \H.

Lemma 1 ([12], Theorem II 3.11). The adjoint operator T* is onto if and only if T has a
bounded inverse.

Lemma 2 ([12], Theorem II 3.7). A4 linear operator T' has a dense range if and only if the
adjoint operator T is one-to-one.

Lemma 3. [f limy . ar = a # 1 for all k € N where ay, # 0 for all k € N, then the product
Hk ay, is divergent.

Lemma 4. For p,r € N,

k

[e.9]

H:{)\E(C:|)\—a:]b|, >

k=0

)\—ai
b;

=0

n—r

where (ay,) and (byy) are nonnegative real numbers and p > 2r.
Proof. We have

00 n—r p—r p+1l—r p+2—r p+3—r
3] OIZEH E) SREAE) SRS DRTHED DRt
k=r k=r k=r k=r

n=p \k=r
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= (arbpr + ar+1bp,r+1 + a,42b 2o+ apfrbp,pfr) +
+(arbpr1r + @rp1bpr1 1 + arp2bprip2 + o+ apr1rbpriprior) +
+(arbpyoy; + arr1bprori1 + arpobpiorio + .o+ aprorbprapio )+ =

= ar (bpr + bpt1,r +bpr2r +...) + arp1 Opra1 + bpr1r41 + bpr2rr1 +..0) +

+ar+2 (bprt2 + bpript2 +bprorp2 +..) +..0 =

00 0o 0o
= ar g bpr + arg1 E bn,r+1 + arq2 E bn,r+2 +...=
n=p n=p n=p

Theorem 6. (1)) o (Ayp, ¢p) ={ar: k€N, |ag —a| < |b]} U(H\K).

Proof. Let we investigate whether the operator (Al — A, 3)* = Al — A}, is surjective or not.
Does there exist x € ¢1 for y € ¢1 such that ()\I—A;b):v =y? Iffor y € 44, then (N — A;b)x =y
and we get

(A —ao) zo — boz1 = Yo,
A—a1)x1 — bizg =y,
(A —az) x2 — baxg = Yo,

Therefore, we obtain

A — ap 1
xr1 = o — —Y1,
1 bo 0 bOyl
/\—CL1 1 )\—ao)\—al 1)\—0,1 1
To = Tl — —Y1 = - — - —y1,
2 by 1 by n bo by 0 by b Yo by Y1
)\—az 1 )\—ao)\—al)\—ag
Ty = To — —1UYg = xro—
3 by 2 by Y2 bo by by 0
1)\—CL1)\—CLQ 1)\—0,2 1
Hence, we get
n—1 A a n—1 y n—1 A a y
— ag k—1 —ay n—1
Tn = Tg + + , n>2.
" kl:[() b — bp I:I b; bn—1
= = i=k
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o
Now, we must show that x € ¢1. That is, is the series E 0 |z, | covergent? We obtain
n—=

00 9]
D laal = lzol + |21+ ) | <
n=0 n=2
oo |n— 1 00 n—lA
< [ao| + [a1] + [ao] Y H +Z B 1H
n=2 k=0 n=2 | k=1 i=k
Let
oo |n— 1 —ak Ykt - o ] Yn1
>, =2 |11 TP ZZ Hbl.z’ 2= 2 |5
n=2 | k=0 n=2 k=1 n=2

1 1 1
Since limg_, o b = b #£ 0 from (2), limy_ o = and so (b) is bounded. Hence, since
k k

there exists M >0 suchthat |—| < M forall neN, 3)

n

the series

=3[

< MZ lyn—1] < Mllylle,

is convergent.

—ak.

If [\ —a| < |b], then limy_,o is

< 1 # 1 and the product H

A—ag|  |A—a
bk B b
divergent from Lemma 3. Hence for A € o, (A, 4, co) , the series Zl is covergent if and only 1f A€

€ (H\K)U{ax: k € N,|ap — a| < |b|} . Now, let we investigate the series ZQ to be convergent. If

A€ {ar: k€ N,|ag —al < |b|}, then it is clear that the series ZQ is convergent. Let A € (H\K).
Then, from (3) and triangle inequality, we get

DD IR TE

n=2 k=1 =k

<uy [zyk y

n=2 Lk=1

i

A —aq;
b

-1
Therefore, if we take p =2, r = 1, a;, = |yx| and b, = ‘ I |n . in Lemma 4, we have
1=

>, <MZ|yk 1IZ

n=1

Hi

i=k

o0

Since A € H, ZZO

n—1\—a;
=1 Hi:k b;

. . n—1\A—a .
is covergent. Setting L := E ) | | kb ‘|, we obtain
n= 1= A
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oo
22 <ML |kl < ML|lylle,
k=2

and so 22 is covergent. That is, for A € o, (Aqp,co), the operator (A — A, )" is surjective
if and only if A\ € {ay: k€N, |ay —a| < |b]} U(H\K). Hence from Lemma 1, \I — A, has
bounded inverse.
Corollary 1. () 0 (Agp,c0) ={A € C: A —a| < [b]}\{ar: k€N, |ap —al < |b]}.
Proof. 1t is clear from Theorems 4 and 6, since

() o (Agp, co) = op (Aap, co) \(1) o (Agp, co) -

Theorem 7 ([10], Theorem 2.8). (III3) 0(Aqp,4p) = E UK.

Corollary 2. (I3)o (Aa,b7 Co) =)o (A%b, Co) = o dir.

Proof.  Since from Table 1, 0,(Agp,c0) = (I3)0(Agp,co) U I3)o(Agp, co) U (II3) 0(Agp,
co) = EUK and (I3) 0(Aqp, co) N (I3) 0(Agp, co) N (3) 0(Agp, co) = @ the proof is finished
from Theorem 7.

Theorem 8. (a) o4y (Agp,co) = (DUE)\ [{ar: k€N, |ag —al < |b}UH],

(b) o5 (Aap;c0) =DUE,

(©) Teo (Agp,c0) ={AeC:|A—a|<[b|}JUHUE.

Proof. (a) It is clear from Theorems 1 and 6.

(b) It is clear from Theorem 1 and Conclusion 2, since from Table 1, o5 (Agp,co) =
— 0 (B 0) \13) 7 (A o)

(c) Since from Table 1, 0¢o(Agp, co) = (1) 0(Agp, co) UI) 0(Agp, co) UI3) 0(Agp, co) =
= 0,(Agp,co) U (TI3) 0(Agp, ¢o), the proof is finished from Theorems 4 and 7.

Corollary 3. (a) o4 <Az7b,£1) =DUE,

(b) ag(A;b,ﬁl) = (DUE)\[{ar: k€N, |ay —a| < [b]} UH].

Proof. 1t is clear from Theorem 8§ and Proposition 1 (c) and (d).

3. Remarks and some special cases. In recent years, some special cases of the operator Ay,
has been studied. These special cases are related to sequences (ay) and (bg) . In here, we give some
cases:

If we take ar = 1 and by = —1 for all £ € N in the operator A, then it reduces to the
backward difference operator A which has been studied in [7].

If we take a, = r and b, = s for all & € N in the operator A, 3, then it reduces to the generalized
difference operator B (r, s) which has been studied in [6].

If we take ap = —by, = vy, for all k € N in the operator A, then it reduces to the generalized
difference operator A, which has been studied in [5].

If (ay) is a sequence of positive real numbers such that ay # 0 for all & € N with limy_, ay =
= U # 0 and (b) is either constant or strictly decreasing sequence of positive real numbers with
limg oo b = V # 0 and supar, < U + V, then the operator A, reduces to the generalized
difference operator A, which has been studied in [11].

Remark 1. 1If (aj) and (bg) are convergent sequences of nonzero real numbers such that

lim ap =a >0 and lim by = b, |b| = a,
k—o0 k—o0

and
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supag < a and bi < ai forall k€N,
k

then we can prove that H = & and so we have

Tap (Aap, o) =
={reC:|A—a|<|b|}U{ar: keN, |ag —a|l > [b|})\{ar: k€N, |ar —al < 0]},
05 (Agprco) ={A€C:|A—a| < b} U{ar: k€N, |ap —al > 0]},
Oco (Dap,c0) ={AeC:|A—a| <|b]}U{ar: k€N, |ar —al > |b|},
Oap (A% 1) ={A€C:|A—a| < [p|} U{ar: k€N, |ar —a| > [b]},
o5 (A} 4, 01) =

—({AeC:A—al<Pp}Ufar:keN, Jay—al > b))\ {ar: k€N, |ax —al < [b]}.

4. Conclusion. Many researchers have determined the spectrum and the fine spectrum of a

matrix operator in some sequence spaces. Although the fine spectrum with respect to the Goldberg’s
classification of the generalized difference operator A, ; over the sequence space cy were studied
by El-Shabrawy [10], in the present paper, the concepts of the approximate point spectrum, defect
spectrum and compression spectrum are introduced, and given the subdivisions of the spectrum of
the generalized difference operator A,; over the sequence space cp, as the new subdivisions of
spectrum. It is immediate that our new results cover a wider class of linear operators which are
represented by infinite lower triangular double-band matrices on the sequence space cg. For this
reason, our study is more general and more comprehensive than the previous work. We note that our
new results in this paper improve and generalize the results which have been stated in [5—7].
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