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GENERALIZATIONS OF SHERMAN’S INEQUALITY
VIA FINK’S IDENTITY AND GREEN’S FUNCTION

Y3ATAJIBHEHHSA HEPIBHOCTI HIEPMAHA
3A JOIMMOMOT OO TOTOXHOCTI ®IHKA TA ®YHKIIII TPTHA

New generalizations of Sherman’s inequality for n-convex functions are obtained by using Fink’s identity and Green’s
function. By using inequalities for the Chebyshev functional, we establish some new Ostrowski- and Griiss-type inequalities
related to these generalizations.

OTpuMaHo HOBI y3aranbHeHHs HepiBHOCTI [llepmana utsd n-omykimnx QyHKIIH 32 JonoMoror TotokHocTi PiHka Ta GpyHKIiT
I'pina. 3a gonomororo HepiBHOCTEW Ay (yHKIioHANa YebnIoBa BCTaHOBIEHO JIesiki HOBI HepiBHOCTI TuIly OCTPOBCHKOTO
ta I'procca, OB’ s13aHi 3 UMK y3arajJbHEHHSIMH.

1. Introduction. S. Sherman [9] obtained generalization of the well known majorization theorem,
proved by G. H. Hardy et al. [4], which can be stated as follows: For every convex function ¢:
[, B] — R, the inequality

D bioly) <D aio(w;) (1.1)

y=xAT and a=DbA (1.2)
is satisfied for some row stochastic matrix A € M,,;(R), i.e., matrix with

a;; >0 forall i=1,....m, j=1,...,[,
l
Zaijzl forall i=1,...,m,
j=1

while AT denotes the transpose of A. If ¢ is concave, then the reverse inequality in (1.1) holds.
Some related results can be found in [1, 6, 7].

Sherman’s result holds for convex functions under assumption of non negativity of entries of
vectors a, b and matrix A. The main purpose of this paper is to present generalizations of Sher-
man’s theorem for convex function of higher order (n-convex functions) which are in a special case
convex in the usual sense. Moreover, obtained generalizations hold for real choice, not necessary
nonnegative, of vectors a, b and matrix A. For more details about n-convexity see [8].

The techniques that we use are based on the classical real analysis and an application of Fink’s
identity and Green’s function which we introduce in the sequel.
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Theorem 1.1 [3]. Let n > 1 and ¢: o, 3] — R be such that $*=V) is absolutely continuous

on |, B]. Then
B —1
o n = w @) — )" — 6V (B~ 5)"
(b(x)_ﬁ_a/qﬁ(t)dt—; w! f—a i
B
_ pyn—1 (n)
+@—1 (/x "L Ek(t, )™ (1) dt, (1.3)
where
t—Oé, aStS$S67
k(t,x) = (1.4)
t— B, a<z<t<p.

The sum in (1.3) is zero when n = 1.

Green’s function G : [o, 8] X [a, B] — R is defined by

t=Bs—a) a<s<t
B—Og M —_ —_ )

G(t,s) = (1.5)
(S_;)_(ta_a), t<s<p

This function is convex and continuous with respect to both variables s and ¢. Furthermore, for any
function ¢ € C2([a, (]), it can be easily shown integration by parts that the next identity is valid

B
o) = S 0(a) + 5—26(6) + [ Gl )9/ (s)ds. (1.6

For more details see [10].
To establish some new Ostrowski- and Griiss-type inequalities related to obtained generalizations,
we use recent results for the Chebyshev functional, which for two Lebesgue integrable functions f, g

[, B] — R is defined by
! ff@(ﬂﬁ— ! jf@ﬁ ! j(ﬂﬁ
-« g g —a “a )Y

Theorem 1.2 ([2], Theorem 1). Let f: [, 5] — R be Lebesgue integrable and g [a, B] — R
be absolutely continuous with (- — )(8 —-)(¢')? € Li[a, B]. Then

T(f,9) =

s 1/2
119 < TGN | [e-a-al@Pa) - )

a

1
The constant — in (1.7) is the best possible.

V2
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Theorem 1.3 ([2], Theorem 2). Let g: [«, 5] — R be monotonic nondecreasing and f : [a, B] —
— R be absolutely continuous with " € Lo, B]. Then

B
1.9 < 55— o [ (2= 0)(8 = ) dg(a). (18)

«

1
The constant 3 in (1.8) is the best possible.

With ||-]|,,, 1 <p < oo, we denote the usual Lebesgue norms on space Ly|a, ].

Through the paper, we consider simultaneously two aspect, i.e., represent two types of results, in
first case results obtained by using only Fink’s identity and in another case results obtained by using
Fink’s identity with Green’s function.

2. Main results. We start with two identities which are very useful for us to obtain generaliza-
tions.

Theorem 2.1. Let x € [a, 8], y € [o, B™, a € R! and b € R™ be such that (1.2) holds for
some matrix A € M, (R) whose entries satisfy the condition Zl;l ai; =1 fori=1,...,m
Let k(-,-) and G(-,-) be defined as in (1.4) and (1.5), respectively. Ljet ¢ [a, B] — R be such that
¢ is absolutely continuous on [, f].

(i) For n > 1, the identity

l m
> ajd(a;) =Y bio(y) =
j=1 i=1

l
1 _
=m0 2 OO Dy~ B) = Dbt~ B)" | -
w=2 ’ j=1 i=1
_ 1 n—1 n w¢(w 1) (O[) ! aj (:L'j _ Oé)w _ i bl(yz _ O[)w +
b-a w=2 w! j=1 i=1
1 B l m
_ #\n—1 Ao \n—1 ) (n)
T (n_l)!(g_a)a/ Z% )" k(t, z;) — ;bz(yz " k(t,y) |6 () At (2.1)
holds.
(i) For n > 3, the identity
l w3 n—w-—2
Zaj(b(x] sz(b yz = Z mx
j=1 w=0

A l m
<[ 65 = 3060w | (6 (3105 - B — @) (s — ) s+
j=1 i=1

[0
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1 B B I m
(n) a: Ti 8) — . g s — n—3 $)ds
+(n_3)1(5_a)a/¢ (t) (a/ (?1: iG(@j, ) ;:1 biG(yi, ))( )" k(t, s)d )dt

2.2)

holds.
. . . . l m
Proof. (i) By using (1.3) in the difference ijl ajop(z;) — Zi:l bip(y;), we get

l m
Z%M%’) - Zbi¢(yi) =
=1 i=1

1 n—1 m
:5—aznwl G (Z“J Ebi(yz'ﬂ)w)
w=1 1=1
1 n—1 . m
S o "
w=1 =1
o) / {Z aj(z; — )" k(t,x5) = Y bilys — )" k(L yi)] ¢! (t) dt
i=1
Since under assumption (1.2) we have
l m l m
Y ajlay—a) = bilyi—a) = aj(z;—B) =Y bilyi— ) =0,
j=1 i=1 j=1 i=1

the identity (2.1) immediately follows.
(ii) By using (1.2), and (1.6) in the difference Z a]gzﬁ xj) — Znil bio(y;), we obtain

l m ! m
> aip(x) =Y bid(yi) = / (Z a;G(zj,8) = Y biGly;, S)) ¢"(s)ds. (2.3)
=1 i—1 =1 i—1

«

Applying Fink’s identity (1.3) to ¢” we get

n-3 (w+1) _ Ayw _ A(w+1) W
1) = $3 =28 B0 B e

w=0
B
+ ! / (s — )" 3k(t, s)o™ () dt. (2.4)
(n=3)!(8—a) ’
By an easy calculation, using (2.3) and (2.4) we have

l m B l m
D ajdlay) =Y bid(y) = / KZ a;G(zj,s) — ZbiG(yi,S)) X
=t =1 j=1 i=1

«

«
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n_sn_w_Q (wt1) s — B — st () (s — )V
< X T (B)( ﬁ)ﬁ_z (@)(s —a)
w=0
1 B
s — )" 3k(t, s)p™ S
3B /< )" k(t, s)o'™ (t) dt | | d

[e7

After interchanging the order of summation and integration and applying Fubini’s theorem we
get (2.2).

The following generalizations of Sherman’s theorem for n-convex functions hold.

Theorem 2.2. Let all the assumptions of Theorem 2.1 be satisfied. Additionally, let ¢ be n-
convex on [a, f3].

(i) Ifn>1and

l m

> ajlay ="kt ay) = Y bilyi — )" k(L y) =0, a<t<pB, (2.5)

j=1 i=1

then

l m
> aji(zs) =Y bip(yi) >
J=1 i=1

1 n—1 . 1 m
> 5 D IO | ey - ) = Y blwi— B | -
w=2 . Jj=1 i=1
n—1 l m
3 i . > n;lw¢(w—1)(a) S as(ay - ) =S by — a)” | 2.6
w=2 ' j=1 i=1

If the reverse inequality in (2.5) holds, then the reverse inequality in (2.6) holds.
(i) If n > 3 and

B l m
/ > a;iGlaj,8) = > biGlyis) | (s =) Pk(t,8)ds >0, a<st<f,  (27)
=1 i=1

«

then

l m
D ad(a;) =D bid(y) >
J=1 i=1

_Zn—_a—Q/ Za] (5,5 sz‘G(yi,S) X

«

x (6 (B)(s — B)” — 6 a)(s — )" ) ds. 2.8)
If the reverse inequality in (2.7) holds, then the reverse inequality in (2.8) holds.
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Proof. (i) Since ¢ is n-convex on [a, ], we may assume without loss of generality that ¢ is
n-times differentiable and ¢(™) () > 0, t € [, ] (see [8, p. 16]).

By using this fact and the assumption (2.5), applying Theorem 2.1, we obtain (2.6).

(i) Analogous to the part (i).

The following generalizations under Sherman’s assumption of non negativity are also valid.

Theorem 2.3. Let all the assumptions of Theorem 2.1 be satisfied. Additionally, let a, b and A
be nonnegative and ¢ be n-convex on [« f3].

(1) If n is even and n > 2, then (2.6) holds. Moreover, if the function

n—1

F() = o2 S 600 (8) (- ) — 6 () — ) (2.9)

_ |
I3 af= w

is convex on |a, (], then (1.1) holds.
(i) If n is even and n > 4, then (2.8) holds. Moreover, if the function

n—3 B
)= Y Tt [ G [0 0(B)s - 9 - o D a)(s - )] ds, 10

where s € [, 3], is convex on [, (], then (1.1) holds.
Proof. (i) Consider the function s: [a, 8] — R defined by

(x—t)" Ht—a), a<t<z<p,
s(z) = (x — t)"*lk(t,x) =
(x—t)" Y t—pB), a<z<t<p

Since
") n—1Dn-2)(z—-t)"3(t—-a), a<t<z<p,
D@ -0 -8). a<z<t<p,

it follows that for even n > 2, s is convex on [«, 3]. Then by Sherman’s theorem, the inequality (2.5)
holds. Therefore, by Theorem 2.2, the inequality (2.6) holds. Changing the order of summation, the
right-hand side of (2.6) can be written in the form

l B m -
50 - 3,
where F is defined as in (2.9). If F is convex, then by Sherman’s theorem we have

l m
2 aif(e)) = 3 biF(y) 20
j=1 i=1

i.e., the right-hand side of (2.6) is nonnegative, so the inequality (1.1) immediately follows.
(ii) Further, the function G(-,s), s € [«, ], is convex on [«, 5] and by Sherman’s theorem we

obtain
l m

ZajG(xj,s) - ZbiG(yi,s) > 0.

j=1 i=1
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It is easy to see that for even n > 3, the inequality

l

/ Z (xj,s ZbiG(yi, s) | (s— t)”_3k(t, s$)ds >0, a<s<t, (2.11)
i=1

holds, while for every n > 3, we get

A l m
/ ZajG(xj,s) — ZbiG(yi,s) (s —t)"3k(t,s)ds >0, t<s<§p.
a \J=l1 '

Now applying Theorem 2.3, we have the inequality (2.8).

The rest of proof is analog to the part (ii), whereby instead of F' we consider the function F
defined by (2.10).

Remark 2.1. Let all the assumptions of the previous theorem be satisfied.

(i) For even n > 2, the inequality (2.6) holds. Further, the function s — (s — )" is convex on
[a, B] for every w, while s +— (s — )" is convex on [«, 3] for even w and concave for odd w.

If for even w, ¢*"V(a) < 0 and ¢*~V(8) > 0 and for odd w, ¢ ~D(a) < 0 and
¢(w*1)(6) < 0, then the right-hand side of (2.6) is nonnegative. Therefore, (1.1) immediately
follows.

(ii) For even n > 4, the inequality (2.8) holds. Further, when oo < s < 3, we have (s—a)"” >0
for every w while (s — 3)* > 0 for even w and (s — 3)* < 0 for odd w.

If for even w, ¢**(a) < 0 and ¢ (8) > 0 and for odd w, ¢™F(a) < 0 and
pwtD) (8) < 0, then the right-hand side of (2.8) is nonnegative and the inequality (1.1) immedi-
ately follows.

3. The Ostrowski- and Griiss-type inequalities. To avoid many notations, we define the
functions B, B: [o, 3] — R by

m

Zaj =" k() =Y by — 0" k(L y), n>1, (3.1)

i=1

B l m
= / Y 4Gy s) =D biGlyis) | (s — )" k(t,s)ds, a<s<p, n>3
o \u=1 i=1
where x € [0, 8!, y € [a,8]™, a € R! and b € R™ are such that (1.2) holds for some matrix
!
A € M,;;(R) whose entries satisfy the condition Z LG = 1fori=1,...,m,and G(-,-) and
]:

Ek(-,-) are defined by (1.5) and (1.4), respectively.
We also consider the Chebyshev functionals defined by

B B
T(B,B):ﬁia/BQ(t)dt— Bia/lﬁ(t)dt ,
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Theorem 3.1. Let x € [a, 8], y € [o, B™, a € R! and b € R™ be such that (1.2) holds for
1
some matrix A € M, (R) whose entries satisfy the condition E g =1 fori=1,...,m
]:

Let B, B be defined as in (3.1). Let ¢: [, B] = R be such that &™) is absolutely continuous with
(- = a)(B =)o) € Li[a, B].

(i) For n > 1, we have

l m
S ajplay) = bip(y:) =
j=1 =1

S D(B) — o V(a) [
t (B—a)2(n—1) /B(t) dt + Rn(o; v, B), (3.2)

«

where the remainder satisfies
1/2

5
| R (50, B)| < 2(5_;)@_1 1/2(/ta "+1>(t)]2dt) . (33)

(i) For n > 3, we get

l m
> ajo(a) =Y bio(y) =
j=1 i=1

B
B Z 0 _— a_ : / (s) ((ﬁ(wﬂ)(ﬁ)(s B /B)w - ¢(w+1)(04)(8 — a)w) ds+

ﬂ
(n— 1) _ A(n— 1)

(n—

l m
where G(s) = ijl a;G(zj,s) — ZZ ) biG(yi,s) for G(-,-) defined by (1.5), and the remainder
satisfies

5 1/2

B (6100 8)| € e ;) e T8 v ( / (t—a)(B - 1) [¢><"+1><t>]2dt) SER)

&7
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Proof. Our proof proceeds similarly to the proof of Theorem 9 in [1].

By using Theorem 1.3, we obtain the Griiss-type inequality.

Theorem 3.2. Let x € [a, ]!, y € [, B|™, a € R! and b € R™ be such that (1.2) holds for
some matrix A € M, (R) whose entries satisfy the condition 22:1 aij; =1 fori=1,...,m
Let B, B be defined as in (3.1). Let ¢: [a, f] — R be such that #"™) is absolutely continuous and
¢t > 0 on [a, ).

(i) For n > 1, the representation (3.2) holds and the remainder R, (¢;«, [3) satisfies

¢ (B) + 9" V(a)  ¢"D(B) — 6" (o)
2 0 — «

|Ru(¢; 0, B)] < HB’H

(n—1)!

] . (3.6)

(1) For n > 3, the representation (3.4) holds and the remainder Rn(qﬁ; a, () satisfies

(n—1) (n—1) (n—2) _ 4(n—2)
‘ ‘ < |H H [¢ (ﬁ)‘gﬁb () _ ¢ (B/;_Z (O‘)]. (3.7)

Proof. Our proof proceeds similarly to the proof of Theorem 10 in [1].
We present the Ostrowski-type inequality related to the identity (2.1).

Theorem 3.3. Suppose that all assumptions of Theorem 2.1 hold. Furthermore, let B, B be
defined as in (3.1). Let (p,q) be a pair of conjugate exponents, thatis 1 < p,q < oo, 1/p+1/¢=1
and ¢ € Ly[a, ).

(i) For n > 1, we have

l m
> ajp(a;) =Y bib(yi) —
j=1 i=1

D Dt Zaa IR
w=2 =1
n—1 m
a2 a0 z% SO SUTEIL I
w=2 i=1
Sl / 1B(1) " di ||¢ |, (8)

The constant on the right-hand side of (3.8) is sharp for 1 < p < co and the best possible for p = 1.

(i) For n > 3, we get
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/‘B(t)‘th 6™, (3.9)

where G(s) = 21;1 a;G(xj,s) — Zzl b;G(yi, s) for G(-,-) defined by (1.5). The constant on
the right-hand Sidejof (3.9) is sharp for 1 < p < oo and the best possible for p = 1.

Proof. Our proof proceeds similarly to the proof of Theorem 11 in [1].

4. Some applications. Under the assumptions of Theorem 2.2, using the inequality (2.6) and
(2.8), we can define two linear functionals

l m
A1(¢) = ajp(x;) — > bid(yi)—
j=1 i=1

T ; e gajw )"~ ébxyi ~a)”
and
Aa(9) = Zl;ajsb(xj) - f} bidh(yi)—
= =
n—3 B
- wz::o W / G(s) ("D (B)(s = B)" = 6"V (@)(s — )" ) ds,

a

l m
where G(s) = Zj:1 a;G(zj,s) — Zi:l b;G(y;, s) for G(-,-) defined by (1.5).
For any n-convex function ¢: [«, 5] — R we have

Ap(¢) >0, p=1,2.

By using the linearity and positivity of defined functionals, we can apply Exponentially convex
method, established in [5], in order to interpret our results in the form of exponentially or in the
special case logarithmically convex functions. As outcome we can get some new classes of two-
parameter Cauchy-type means. For such constructions we can use the same ideas as in paper [1].
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