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A STUDY OF MODULES OVER RINGS AND THEIR EXTENSIONS
JTOCJIKEHHS MOJIYJIIB HAJIl KUIBISAMHU TA iX PO3IIUPEHHA

We study the transfer of properties of some types of modules under identity preserving ring homomorphisms. These studies
seem to be overlooked in literature. We have picked a few types of modules and provided proofs for these properties that
are transferable and suitable counterexamples for the properties that are not transferable.

BuBuaetbcst mpobiemMa nepeadi BIIacTUBOCTEH JeSKUX TUITIB MOJYJIIB ITiJT Ai€f0 TOMOMOP(i3MiB, 10 30epiraloTh OAUHUILIIO.
[omiGHi mocmimKEeHHs, 3MA€THCS, BIACYTHI B JiTeparypi. Bubpano kinpka THIIIB MOIYIiB Ta HaBEACHO AOBEACHHS IUIS THX
BIIACTUBOCTEH, 1110 MEepealoThesl, Ta IPUIATHI KOHTPIPUKIIAIH Ul THX BIACTHBOCTEH, 110 HE IEepPeNaloThCs.

Introduction. In this note we consider the ordinary ring extension under identity preserving ring
homomorphisms between two rings with identity and use it to study the transfer of properties of dif-
ferent types of modules and their submodules over these rings. These studies seem to be overlooked
in literature and in several cases may not be trivial to prove. Moreover, several properties do not
transfer under such extensions. In this paper we have picked some very commonly studied classes of
modules and planned to cover more in future. Almost all statements and counter statements are de-
fended and followed by examples and counterexamples. As a summary, the lists of types of modules
that we have studied here are given at the end.

1. Preliminaries. Throughout this note, unless otherwise specified, the term ring means an
associative ring with identity 1 # 0, homomorphisms are identity preserving, and all modules are
unital. For a ring R, we shall denote the Jacobson radical of R by J(R). We will denote the
annihilator of a module M by ann M. The symbols N*, Z, Q, R (Z,,, n € N*) will denote the set
of all positive integers, integers, rational numbers, real numbers and integers modulo n, respectively.

Suppose that R and S are rings and ®: R — S is a ring homomorphism, then S is called an
extension of R by ®. Let Vg be a right S-module. Then Vg can be considered as a right R-module
by the action

x-r=x®(r) VreVs VreR (1.1)

and is denoted by V|g. As usual, we will write = - 7 = ar.

Note that, if ®(1) = 1, and Vy is a unital S-module, then V|x is a unital R-module too.
However, in general this statement is not true. For instance, suppose that the ring R contains a
nontrivial idempotent e and consider the ring homomorphism ®: Z — R, which is defined by
®(n) = ne for all n € Z. Then R is a unital R-module, but not a unital Z-module.

For any right R-module M, a pair (F, 1) is an injective envelope of M in case F is an injective
right R-module and ¢: M — F is an essential monomorphism. A projective cover of M means an
epimorphism 6: P — M, where Pg is a projective module and ker # is a small (= superfluous)
submodule of P. A projective module M is called semiperfect if every factor module of M has a
projective cover.

The following propositions list some useful and known results.
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Proposition 1.1 ([2, p. 439], Theorem 3.7). (a) The following conditions on a nonzero ring R
are equivalent:

(i) R is semisimple;

(i) every right R-module is projective,

(iil) every right R-module is injective;

(iv) every right R-module is semisimple.

(b) Let M be a semisimple right R-module and N C M be a submodule. Then N is simple iff
N is indecomposable.

Proposition 1.2. (a) Let I be an ideal in a ring R and R = R /1. Let M be a right R-module,
which is, therefore a right R- module. If Mg has a projective cover over R, then Mz also has a
projective cover over R .

(b) Every module over an Artinian ring has a projective cover; hence, every projective module
over an Artinian ring is semiperfect.

Proof. See [6] (Lemma 24.15) and [7] (Corollary 5.4).

2. Main results. Some elementary observations are entered in the following theorem.

Theorem 2.1. Suppose that R and S are rings and ®: R — S is a ring homomorphism. Then
the following statements hold. The converse of each statement also holds provided ® is surjective.

(@) If Vi is generated by X, then Vg is generated by X.

(b) If ViR is a cyclic R-module, then Vg is a cyclic S-module.

(c) If V' is an S-submodule of Vs, then V' is an R-submodule of V|p.

(d) If ViR is a simple R-module, then Vg is a simple S-module.

(e) If'V|g is an indecomposable R-module, then Vg is an indecomposable S-module.

(D) If Vir is Artinian (Noetherian), then Vg is Artinian (Noetherian).

Proof. (a) Since V| is generated by X, by (1.1),

n n
v = inm = inq)(ri),
i=1 i=1

where v € Vg, n € N*, z; € X, r; € R. Thus, Vg is also generated by X.
Conversely, suppose that Vg is generated by X and ® is surjective, then s; = ®(r;), s; € S,

r; € R. Hence, by (1.1),
n n n
v = insi = infﬁ(n) = Zxﬂ"z’,
i=1 i=1 i=1

where v € Vg, n € N*, x; € X. Thus, Vp is also generated by X.

(b) This is a special case of (a).

(c) This holds by following the definition (1.1).

(d) Follows by applying (c).

(e) By (c), Vs is a decomposable S-module iff Vg = Mg & Ng, where Mg and Ng are S-
submodules of Vg iff V\R = Mp & Ng, where Mpr and Ny are R-submodules of V\R iff V|R isa
decomposable R-module.

(f) Again by (c), any descending (ascending) chain of S-submodules of Vg is a descending
(ascending) chain of R-submodules of V)i and vice versa.

Theorem 2.1 is proved.
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Corollary 2.1. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. Then V|g is a semisimple R-module iff Vs is a semisimple S-module.

Proof. By Theorem 2.1(c) and Theorem 2.1(d), V|g is a semisimple R-module iff Vi =
= Ziel @®V;, where Vg ar.e simple R-sujbr'nodules of Vig iff Vs = Ziel ®V;, where V/ are
simple S-submodules of Vg iff Vg is a semisimple S-module.

Some examples and counterexamples relevant to the above observations are as under.

Example 2.1. Let R = {(8 Z): a,be Zg}. Define &: R — Zo by ® <<g Z)) = a.
Then @ is a surjective ring homomorphism and Zs is a cyclic Zy-module generated by 1. Consider
Zy as an R-module by the action

a b a b
x =zd =za, xz,a,b€ Zo.
0 a 0 a

Since (1) <(1) (1)> =1and (1) (8 (1)> = 0, Zs is also a cyclic R-module generated by 1.

Example 2.2. Moreover, in the case of simple modules, obviously in Example 2.1, Zy is a
simple Zy-module as well as an R-module.
Example 2.3. Let R = UT M>(Z¢) be the ring of all 2 x 2 upper triangular matrices over Zj.

Define ®: R — Zg by ® g b
and 47Zg¢ are simple Zg-submodules of Zg and Zg = 3Z¢g & 4Z¢g, by Theorem 2.1(d), 3Ze|R and

4Z¢ g are simple R-modules. Therefore, Z¢ is a semisimple R-module.

= a. Then @ is a surjective ring homomorphism. Since 3Zg

The following is a counterexample of Corollary 2.1 for ® not to be surjective.
Example 2.4. Let R = UTMy(Zg) and ¢ : Zg — R be defined by ®(a) = <8 2) Then
0 Zs

® is a ring homomorphism. Since J(R) = <0 0

>, R is not a semisimple R-module. Consider

R as a Zg-module by the action

a b a b ar bx
T = O(x) = ,  x,a,b,c € Zg.
0 ¢ 0 ¢ 0 cx

Since Zg is semisimple, by Proposition 1.1(a), R is a semisimple Zg-module.

The following is a counterexample of Theorem 2.1(a, ¢, d, f), and Corollary 2.1 for ® not to be
surjective.

Example 2.5. Let &:7Z — Q be defined by ®(a) = a. Then & is a ring homomorphism.
Consider Q as a Q-module. Since it is a field, it is a simple Q-module. Therefore, it is a semisimple
and a cyclic Q-module. Consider Q as a Z-module. Then it is not a cyclic Z-module. Since it
contains Z as a Z-submodule, which is neither semisimple nor Artinian, it is not a semisimple or an
Artinian Z-module.

Example 2.6. Let R = UT'M3(Zg). Define & : R — Zg by © a b

0
a simple Zg-module and R-module, it is an indecomposable Zg-module and R-module.

= a. Since 3Zg is

The following is a counterexample of Theorem 2.1(e, f) for ® not to be surjective.
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Example 2.7. Let &: Q — R be defined by ®(a) = a. Then ® is a ring homomorphism.
Since Ry is simple, it is indecomposable. Consider R as a Q-module. Since QQ is semisimple,
by Proposition 1.1 (a), R is a semisimple Q-module, which is not simple, since it contains Q as a
Q-submodule. Therefore, by Proposition 1.1(b), it is decomposable. Let s; = {\/zTZ : p; 1S a prime

2 3
number}, i € N*. Then the chain of Q-submodules of R, (s1) C .U15i> C -L,Jlsi C ... does

not terminate. Thus, R is not a Noetherian Q-module, but since it is a field, it is a Noetherian
R-module.

Theorem 2.2. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism, then:

(a) V} is an essential R-submodule of Vir itf V¢ is an essential S-submodule of V.

(b) Soc(V|g) = Soc(Vs), where Soc(V|g) and Soc(Vs) denote, respectively, the socle of V|
and Vg.

Proof.  (a) Suppose that V}, is an essential R-submodule of V|r- Since @ is surjective, by
Theorem 2.1(c), V§ is an S-submodule of Vs. Suppose that Mg is an S-submodule of Vg such that
Vé N Mg = 0. By Theorem 2.1(c), Mg is an R-submodule of V|R. Therefore, VJ% N Mg = 0. Since
V}, is an essential R-submodule of Vir, Mg = 0. Therefore, Mg = 0. Thus, V§ is an essential
S-submodule of Vg. Similarly, we can verify the only if part.

(b) Since Soc(Vig) = N{L < Vig: L is essential inV] R} the result is satisfied immediately
from (a).

Theorem 2.2 is proved.

Example 2.8. Let R = UTM3(Zsg) and ®: R — Zg be defined by ® ((g ﬁ)) = a. Then

® is a surjective ring homomorphism. Consider Zg as an R-module by the action

a b a b
ZL‘<<O C))—:U<I><<O C>)—:17a, x,a,b,c € Zsg.

Since Zg and R are Artinian, where J(Zg) = 2Zg and J(R) = (2%8 2ZZ$ ), by [1] (Corol-
8

lary 15.21),
Soc(Zng) = Soc(ZglR) ={r€Zs:za=0, a € 2Zs} =47Zs.

Theorem 2.3. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism, then:

(a) V is a maximal R-submodule of Vir iff V§ is a maximal S-submodule of V;

(b) Vi is a small R-submodule of Vi iff V§ is a small S-submodule of Vs;

() J(VIr) = J(Vs), where J(V|g) and J(Vs) denote, respectively, the Jacobson radicals of
Vir and V.

Proof. (a) Suppose that V7, is a maximal submodule of V. Then V} # V|p. Hence, V3 # V.
Since @ is surjective, by Theorem 2.1(c), Vg is a submodule of V. Now suppose that there exists a
submodule Mg of Vg such that V¢ C Mg C Vg. By Theorem 2.1(c), Mg is a submodule of Vir-
Since, Vj € Mg C V| and V}, is a maximal submodule of Vg, Mg = V or Mg = V|g. Thus,
Mg = V{ or Mg = Vg. Therefore, V§ is is a maximal submodule of Vg. Similarly, we can verify
the only if part.
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(b) Suppose that V7 is a small submodule of V|p. Since ® is surjective, by Theorem 2.1(c),
Vé is a submodule of Vg. Suppose that Mg is a submodule of Vg such that Vé + Mg = Vg. By
Theorem 2.1(c), Mg is a submodule of V|R. Therefore, V}% + Mpr = V\R' Since VJ{z is a small
submodule of Vg, M = V|g. Therefore, Mg = Vg. Thus, V§ is a small submodule of V.
Similarly, we can verify the only if part.

(c) By definition of the Jacobson radical of a module and (a) or (b), we have J(V|r) = J(Vs).

Theorem 2.3 is proved.

Example 2.9. Let R = (Z6 0) and ®: R — Zg be defined by ¢ (<a 0>> = a.

0 Zs 0 b
Then ® is a surjective ring homomorphism. Since J(Zg) = 0, J(R) = 0. Consider Zg as an
R-module. Since R is semisimple, by Proposition 1.1(a), Zg is a projective R-module. Thus,
J(Ze,y,) = ZeJ(R) = 0 = J(Zg) [6] (Theorem 24.7).

The following example shows that if ® is not surjective, then

Soc(Vig) # Soc(Vs)  and  J(V|r) # J(Vs).

Example 2.10. Let ¢ : Z — Q be defined by ®(a) = a. Then Soc(Qg) = Q and J(Qgq) = 0.
Since Q7 has no maximal and no minimal Z-submodules, Soc(Qz) = 0 and J(Qz) = Q.

Theorem 2.4. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. If V| is a faithful R-module, then Vs is a faithful S-module.

Proof. Suppose s € S such that vs = 0 for all v € Vg. Since @ is surjective, there exists r € R
such that s = ®(r). Hence, v®(r) = 0, which implies by (1.1), vr = 0 for all v € V|g. Since V|
is faithful, » = 0. Therefore, s = ®(0) = 0. Thus, Vs is a faithful S-module.

Theorem 2.4 is proved.

Example 2.11. Let R = UTMy(Zg) and ®: R — Zg be defined by ® ((g i)) = a.

Consider 3Z¢ = {0,3} as a Zg-module. Then ann3Z¢ = {0,2,4}. Thus, 3Zg is not a faithful
Zg-module. Now consider 3Zg as an R-module by the action

a b a b
x =xd = zxa, x € 3Zg, a,b,c€ Zg.
0 ¢ 0 c
a b
ann3Ze g = 0 € R:ac€{0,2,4} ;.
c

Thus, 3Zg g is not a faithful R-module.
The following example shows that the converse of Theorem 2.4 is not true in general.

Then

Example 2.12. Let R = {(Z 2): a,be R}. Then R is a subring of M3(R). Define &
a b . T . R
R— Rby ® b o4)) =0 b. Then @ is a surjective ring homomorphism. Let A = L

Then A is a left R-module by the action r <Z> = (::Z), reR.IFO# <Z> €Aandr <(Z> =0,

then ra = 0 and rb = 0. Since R is a field, » = 0. Thus, A is a faithful R-module. Consider A as
a left R-module by the action
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a b\[d o a b a’ (a —b)d
b oa)\v) boa))\v) \a—bW)
a’ a b\[(d , , . .
If 0 # y ) € A and b 4 =0, then (a —b)a’ =0 and (a — b)b’ = 0. Since R is a field,
a = b. Hence, ann A = { (Z Z): a € R ;. Thus, A is not a faithful R-module.

The following is a counterexample for ® not to be surjective.

Example 2.13. Let R = UTMj(Zs) and &: 3Zg — R be defined by ®(a) = <3 2)

3Ze
3Z¢

a 0b\/[d aa’ + bv
= €A, abcels, dbe3Ls.
0 ¢/\V cb

Also A is a left 3Zg-module by the action

b b ab
a( ) :fb(a)<> = ( ), a,b,c € 3Zg.

If 0 # <i> and a(i) =0, then ab = 0 and ac = 0. Since a,b € 3Zg, a = 0. Thus, A is a faithful

a € 3Z¢ = {0,3}. Consider A = ( ) Then A is a left R-module by the action

3Zg-module. But A is not a faithful R-module, since for all (Z) €A, (é i) (Z) =0.

Lemma 2.1. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. If s € S is not a zero divisor, then there exists r € R, which is not a zero divisor such that
s=(r).

Proof. Suppose s € S is not a zero divisor. Then for all 0 # s’ € S, we have ss’ # 0 and
s's # 0. Since @ is surjective, there exist 7, 7’ € R such that s = ®(r), ' = ®(r’). Since (0) =0
and s’ # 0, r" # 0. Therefore, ss’ # 0 implies ®(rr’) # 0 and so r’ # 0. Similarly, if s's # 0,
then r'r # 0. Hence, 7 is not a zero divisor.

Lemma 2.1 is proved.

Theorem 2.5. Suppose that R and S are rings and ® : R — S is a surjective ring homomor-
phism. If V| is a divisible R-module, then Vs is a divisible S-module.

Proof. Suppose s € S is not a zero divisor and v € Vg. Then by Lemma 2.1, there exists
r € R, which is not a zero divisor such that s = ®(r). Since V| is divisible, there exists v € V|
such that v = v'r; so by (1.1), v = v'r = v'®(r) = v's. Thus, Vg is divisible.

Theorem 2.5 is proved.

Example 2.14. Let R = (0 7 0 b
is a surjective ring homomorphism. Consider Z as a Z-module. Then Z is not divisible, since there
does not exist x € Z such that 3 = 2z. Now consider Z as an R-module by the action

a 0 a 0
z =z0 =za, z,a,b€Z.
0 b 0 b
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Then Z is not a divisible R-module, since for r = <2 0

0 3
2 0
that5—x<0 3>.

The converse of Theorem 2.5 is not true in general and the following example illustrates this.
Example 2.15. Let ®: Z — Zs be defined by ®(a) = @. Then @ is a surjective ring homomor-

) € R, there does not exist x € Z such

phism. For 1, 2 € Z3, we have T = 1(x) for all T € Zs3, 0 = 2(0), 1 = 2(2) and 2 = 2(1). Thus,
Zs is a divisible Zs-module. Consider Z3 as a Z-module by the action az = a®(z) = az. Then Zs
is not a divisible Z-module, since there does not exist @ € Zs such that 2 = 3a.

Remark 2.1. Since every Abelian group is a unital Z-module in a unique way [1, p. 27], the
action of Z on Zg in the previous example is the usual action by simple calculations.

The following is a counterexample for ¢ not to be surjective.

Example 2.16. Let ®: R — R[z| be defined by ®(a) = a. Then ® is a ring homomorphism.
Consider the ideal V = (z2) of R[z]. Let f(z) = x € R[z]. Then there does not exist g(x) € V
such that 22 = f(z)g(z), since deg(g(x)) > 2. Thus, V is not a divisible R[z]-module. Consider V/
as a left R-module by the action af(z) = ®(a)f(z) €V, a € R, f(x) € V. Then forall 0 #r € R
and f(x) € V, there exists r~!f(x) € V such that f(z) = r[r~1f(z)]. Thus, V is a divisible
R-module.

Theorem 2.6. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism.

(@) If Vs is a torsion S-module, then V| is a torsion R-module.

(b) If'V|g is a torsion free R-module, then Vs is a torsion free S-module.

Proof. (a) Suppose v € Vg. Since Vg is a torsion S-module, there exists s € S, which is
not a zero divisor such that vs = 0. Therefore, by Lemma 2.1, there exists » € R, which is not a
zero divisor such that s = ®(r). Hence, by (1.1), 0 = vs = v®(r) = vr. Thus, V| is a torsion
R-module.

(b) Suppose s € S, which is not a zero divisor such that vs = 0. Then by Lemma 2.1, there exists
r € R, which is not a zero divisor such that s = ®(r). Therefore, by (1.1), 0 = vs = v®(r) = vr.
Since Vg is torsion free, v = 0. Thus, Vg is a torsion free S-module.

Theorem 2.6 is proved.

The converse of Theorem 2.6(a) or Theorem 2.6(b) is not true in general and the following
example illustrates this.

Example 2.17. Let ®: Z — 73 be defined by ®(a) = a. Since Zs is a field, it is a torsion free
Zsz-module, whence it is not a torsion Zgz-module. But Zj3 is clearly a torsion Z-module, whence, it
is not a torsion free Z-module.

The following is a counterexample of both cases of Theorem 2.6 for ¢ not to be surjective.

Example 2.18. Let ®: R — R[x] be defined by ®(a) = a. Consider the R[x]-module R?. Then
R? is a torsion R[z]-module [3, p. 185]. Therefore, it is not a torsion free R[z]-module. Consider R?
as an R-module by the action r(a,b) = ®(r)(a,b) = (ra,rb). If 0 # r € R and r(a,b) = 0, then
ra =0 and b = 0 implies a = 0 and b = 0. Hence, R? is a torsion free R-module. Therefore, it is
not a torsion R-module.

Lemma 2.2. Suppose that R and S are rings and ® : R — S is a ring homomorphism, then:

(@) If Ms and Vs are S-modules and 0: Mg — Vg is an S-homomorphism, then 0: Mp —
— V|g is an R-homomorphism.
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(b) If @ is surjective and 0: M|r — V| is an R-homomorphism, then 0: Ms — Vg is an
S-homomorphism.

(¢) Ends(Vs) € Endr(V|g). Equality holds if ® is surjective.

Proof. () Suppose m € Mg, r € R. Then by (1.1),

O(mr) = 0(m®d(r)) = 0(m)P®(r) = 6(m)r.

Therefore, 6 is an R-homomorphism.
(b) Suppose m € Mg;s € S. Since P is surjective, there exists r € R such that s = ®(r).
Hence, by (1.1),

O(ms) = 0(m®P(r)) = O0(mr) = 0(m)r = 6(m)®(r) = 6(m)s.

Therefore, 0 is an .S-homomorphism.

(c) Put Mg = Vg and M| = V|, then by (a) Endg(Vs) C Endg(V|r) and if @ is surjective,
then by (b) Endgs(Vs) = Endg(V|g)-

Lemma 2.2 is proved.

The following is a counterexample for ¢ not to be surjective.

Example 2.19. Let R = UT'My(Zg). Define ®: Zg — R by ®(a) = (a

0). Consider Zg
0 a

as an R-module by the action

a b
T = xc € Zg. (2.1)
0 ¢
Then Zg)z, is a Zg-module by the action
z 0
xz=x®(z) =x , T,z € Zg. (2.2)
0 =z
Consider Zg @ Zg as an R-module by the action
a b
(z,y) 0 = (za,zb+ yc) € Ze ® Lg. (2.3)
c

Then Zg & Zg is a Zg-module by the action
(.ZU,y)Z = (.le, y)q)(z) = (I’Z,yZ), T,Y,z € ZG' (24)

Now define 0: Zgz, — Ze © ZLg|z; by 0(x) = (v,0). It is clear that 0 is a group homomor-
phism. By (2.4), 8(xz) = (22,0) = (z,0)z = 6(x)z. Hence, 0 is a Zg-homomorphism. But 6 is
not an R-homomorphism, since by (2.1) and (2.3),

0 o =0 = 0

(IL’ (0 C)) - (‘TC) - (IEC, )7

p a b (2.0 a b B ) a b R z
(CB) (0 C) - (ma )<0 C) - (a:a,x )7 <O c) € I, T,z € L.
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Theorem 2.7. Suppose that R and S are rings and ®: R — S is a surjective ring homo-
morphism, which is an R-homomorphism also. If § € Hompg(V|g,R) = |*R, then ® o 6 €
€ Homg(Vs, S) = Vg.

Proof. Since S is an R-module by the action sr = s®(r), s € S; r € R, we can consider ® as
an R-homomorphism. Suppose v € Vg. Since  is surjective, s = ®(r) for s € S, r € R. Hence,

by (1.1),

Thus, ® o § € Homg(Vg, S) = Vs.

Theorem 2.7 is proved.

Theorem 2.8. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. If V|g is an injective R-module, then Vg is an injective S-module.

Proof. Let Lg and Mg be S-modules, f: Lg — Mg be an S-monomorphism and g: Lg —>
— Vg be an S-homomorphism. Then by Lemma 2.2, f: Ljp — Mg is an R-monomorphism and
g: Ljr — V| 1s an R-homomorphism. Since V| is injective, there exists an -homomorphism £ :
M|r — V|g such that ho f = g. Since @ is surjective, by Lemma 2.2, h is an S-homomorphism.
Thus, Vg is an injective S-module.

Theorem 2.8 is proved.

Remark 2.2. (a) The converse of Theorem 2.8 is not true in general.

(b) The injective envelopes of Vg and Vs, which are denoted, respectively, by E(V|R) and
E(Vs), may not be the same. These facts are illustrated in the following example.

Example 2.20. Let ®: 7 — Z3 be defined by ®(a) = a@. Then Zs is an injective Zs-module
and E(Zs3) = Zs. Consider Zs as a Z-module. By Example 2.15, Z3 is not a divisible Z-module.
Thus, Zs is not an injective Z-module and E(Zs3) = Zs~ (the Priifer 3-group) [5] (Proposition 3.19,
Example 3.36).

The following is a counterexample for ¢ not to be surjective.

Example 2.21. Let ®: R — R[z] be defined by ®(a) = a and V = (22). By Example 2.16, V
is not a divisible R[z]-module. Therefore, V' is not an injective R[z]-module [3] (Proposition 5.2.11).
Since R is semisimple, by Proposition 1.1(a), V' is an injective R-module.

Lemma 2.3. Suppose that R and S are rings and ®: R — S is a ring homomorphism. If M
is a right S-module, N is a left S-module and B is an Abelian group, then:
(@ If 7: Mg xs N — B is an S-balanced map, then 7: M|r Xg N — B is an R-balanced
map.
(b) If @ is surjective and T: M|px r/N — B is an R-balanced map, then 7: Mg xs N — B
is an S-balanced map.
Proof. (a) Since 7: Mg xg N — B is an S-balanced map,
T(m+m/,n) =71(m,n) + 7(m',n),
T(m,n+n') = 7(m,n) + 7(m,n’),
7(ms,n) = 7(m,sn) Ym,m' € M Yn,n' € N Vs € S.
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So, to make 7 an R-balanced map, we need only to verify the third condition. Suppose r € R.
Then by (1.1),

T(mr,n) = 71(m®(r),n) = 7(m, ®(r)n) = 7(m,rn).

Thus, 7 is an R-balanced map.
(b) Since 7 is an R-balanced map and & is surjective, by (1.1), we have

7(ms,n) = 7(m®(r),n) = 7(m, ®(r)n) = 7(m, sn), seS, reR, with s=o(r).

Hence, 7 is an S-balanced map.
Lemma 2.3 is proved.

Lemma 2.4. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. If M = Mg = Mg and N = gN = g|N, then

M@r N =2 M®sN as groups.

Proof. The pair (1, M ®r N) is a tensor product of M and N over R, where 7: M x N —
— M ®gr N is an R-balanced map. Since ¢ is surjective, by Lemma 2.3, 7 is an S-balanced
map. Now suppose that A is an Abelian group and 5: M x N — A is an S-balanced map. Then,
by Lemma 2.3, 5 is an R-balanced map. By definition of a tensor product, there exists a unique
Z-homomorphism f: M ®r N — A such that the diagram

M x N
T N\ B
MerN L A

commutes. Since 7 and 3 are S-balanced maps, the pair (7, M ®r N) is a tensor product of M
and N over S. Since the tensor product is unique to within isomorphism, M ®r N = M ®g N.

Lemma 2.4 is proved.

Example 2.22. Let R be aring and ®: R — R 7I be the natural epimorphism, where [ is
an ideal of R. Let B = U /I, where U is an ideal of R such that I C U. Then B is an ideal
of R/I. Since IB={I}, R/I ®zr B = B/IB = B,/{I} = B [2, p. 217] (Execise 9). Also,
R/I ®R/I B = B.

The following is a counterexample for ¢ not to be surjective.

Example 2.23. Let : R — C be defined by ®(a) = a. Then ® is a ring homomorphism. By
considering C as a vector space over C, we obviously have

CecC=C.
and as vector spaces over R, C = R2, Hence,
CeorC=C®rR*=C%

Theorem 2.9. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. If Vig is a flat R-module, then Vg is a flat S-module.
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Proof. Let
0—A—>B—C—0

be a short exact sequence of left S-modules. Then by Lemma 2.2,
0—pg A—p B—p C—0
is a short exact sequence of left R-modules. Since V| is a flat R-module,
0—Vr®rA—Vg®rB—Vg®rC-—0
is a short exact sequence of Abelian groups. Hence, by Lemma 2.4,
0 —=Vs®sA—Vs®sB—Vs®sC — 0

is a short exact sequence of Abelian groups. Thus, Vs is a flat S-module.
Theorem 2.9 is proved.

Example 2.24. Let R = <Z2 0 > Define ®: R — Zy by ® <<a 0)) = a. Then & is

0 Z 0 b
a surjective ring homomorphism. Since R and Z, are semisimple, by Proposition 1.1(a) and [1]
(Proposition 19.16), Z, is a flat Z-module and R-module.

The following example shows that the converse of Theorem 2.9 is not true in general.

Example 2.25. Let ®: 7 — Z3 be defined by ®(a) = @. Then Zjz is a flat Zz-module. Since
Zs3 is not a torsion free Z-module, it is not a flat Z-module [8] (Corollary 3.51).

Theorem 2.10. Suppose that R and S are rings and ® : R — S is a surjective ring homomor-
phism. If V| is a free R-module, then Vg is a free S-module.

Proof. Suppose that X = {x;};cs is an R-basis for V|r- Then by Theorem 2.1(a), X generates

Vs, so it remains to prove that X is linearly independent over S. Suppose s; € S and Z‘e] TiS; =
(2

= 0, which implies Z x;®(r;) =0, r; € R, since P is surjective. By (1.1), we get Z Tir; =
el 1€l

= 0. Since X is linearly independent over R, r; = 0 Vi € I. Therefore, s; = ®(r;) = ®(0) =0
Vi € I. Thus, Vg is a free S-module.

Theorem 2.10 is proved.

Example 2.26. Let ®: Z[x] — 7Z be defined by ®(f(x)) = a, where a is the constant term
of f(x). Then ® is a surjective ring homomorphism. Consider Z[z] as a Z-module. Then Z[z]
is a free Z-module with basis {z":n € Z*}. Consider Z[z] as a Z[z]-module by the action
f(@)g(x) = f(z)®(9(x)) = f(z)a, f(x), g(z) € Z[z], a is the constant term of g(x). Then Z[x]
is a free Z[x]-module with the same basis.

The following is a counterexample for ® not to be surjective.

Example 2.27. Let R = UTM,(Z,). Define ®: Zy — R by ®(a) = (a

O> . Consider
0 a

Zo @ Zo as an R-module by the action

a b
(x,y) <O ) = (ma,beryc) € ZQ @ZQ
C

Since Zy @ Zo and R", for any n € N*, are of different orders, they can not be isomorphic.
Hence, Zy & Zs is not a free R-module [2, p. 181] (Theorem 2.1). On the other hand, Zs & Zs is a
free Zo-module.
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Theorem 2.11. Suppose that R and S are rings and ®: R — S is a surjective ring homomor-
phism. If V|g is a projective R-module, then Vg is a projective S-module.
Proof. Suppose that V| is a projective R-module and let

O%LSL)MSi)VS—)O

be a short exact sequence of S-modules. Since f and g are S-homomorphism, by Lemma 2.2, f
and g are R-homomorphism. Thus,

O%L‘RLMUQL)‘/‘R—)O

is a short exact sequence of R-modules. Since V|g is a projective R-module, this sequence splits.
Therefore, there exists an R-homomorphism ¢’ : ViR — Mg such that g9 = Lvig- Since ¢ is
surjective, by Lemma 2.2, ¢’ is an S-homomorphism and v, = lvs. Thus, Vg is a projective
S-module [2, p. 192] (Theorem 3.4).

Example 2.28. Let ®: Z[z] — Z be defined by ®(f(x)) = a, where a is the constant term of
f(z). By Example 2.26, Z[z] is a free Z-module and Z[z]-module. Therefore, Z[x] is a projective
Z-module and Z[z]-module [2, p. 191] (Theorem 3.2).

The following is a counterexample of Theorems 2.9 and 2.11 for ® not to be surjective.

Example 2.29. Let ®: R — R[z] be defined by ®(a) = a. Since R is semisimple, by Propo-
sition 1.1(a), R? is a projective R-module, therefore, it is a flat R-module [1] (Proposition 9.16).
Since R? is not a torsion free R[x]-module by Example 2.18, it is not a flat R[z]-module [8] (Corol-
lary 3.51), so it is not a projective R[x]-module [1] (Proposition 19.16).

The converse of Theorem 2.10 and the converse of Theorem 2.11 are not true in general. The
following example illustrates these facts.

a

Example 2.30. Let R = {(0 2): a € Zg}. Define ®: R — Zy by @((g 2)) = a.

Then Zs is a free (projective) Zs-module. Consider Zo as an R-module. Since Zo and R", for
any n € N* are of different orders, they can not be isomorphic. Hence, Zy is not a free R-

module [2, p. 181] (Theorem 2.1). Since J(R) = {(8 8), <8 é) }, R is a local ring [1]

(Proposition 15.15). Therefore, Zs is not a projective R-module [4] (Theorem 2).

Theorem 2.12. Suppose that R and S are rings and ® : R — S is a surjective ring homomor-
phism. If Vg has a projective cover over R, then Vg has a projective cover over S also.

Proof. Since ® is surjective, by the first isomorphism theorem

R/ ker® = S.

Therefore, by Proposition 1.2(a), we get the result.
Theorem 2.12 is proved.

Example 2.31. Let R = <Z3 0 > and ®: R — Zs3 be defined by & ((a 0)) = a. Since

0 Zs 0 b
R and Z3 are semisimple rings, by Proposition 1.1(a), Zs is a projective Zs-module and R-module.
Therefore, it has a projective cover over Z3 and R [6] (Remark 24.11(5)).

The converse of Theorem 2.12 is not true in general and the following example illustrates this.
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Example 2.32. Let ®: 7 — 73 be defined by ®(a) = @. Since Zs is a projective Zs-module
and J-semisimple, it has a projective cover over Zs. On the other hand, Zs is not a projective
Z-module, it also does not have a projective cover over Z [6] (Remark 24.11(5)).
Theorem 2.13. Suppose that R and S are rings and ® : R — S is a surjective ring homomor-
phism. If V| is a semiperfect R-module, then Vg is a semiperfect S-module.

Proof. Since V|p is projective, by Theorem 2.11, Vg is projective. Let V = Vs, M be a factor
module of Vg, where M is an S-submodule of Vg. By Theorem 2.1(c), M is an R-submodule
of Vir. Hence, Vip, M is an R-module by the action (v + M)r = vr + M = v®(r) + M =

= (v+ M)®(r). Therefore, Vir, M = (V) g. Since Vg is semiperfect, (V')|r has a projective
cover over R. Thus, by Theorem 2.12, V has a projective cover over S. Hence, Vg is a semiperfect
S-module.

Theorem 2.13 is proved.
Zs 0 > Define ®: R — Z3 by ® <<a 0>> = a. Since R and
0 Zs 0 b
Zs are semisimple, by Proposition 1.1(a), Zs is a projective Zs-module and R-module. Thus, by
Proposition 1.2(b), it is a semiperfect Z3-module and R-module.

Example 2.33. Let R =

The following is a counterexample for ® not to be surjective.

Example 2.34. Let ®: R — R[z] be defined by ®(a) = a. By Example 2.29, R? is not a
projective R[z]-module. Therefore, it is not a semiperfect R[z]-module. Since R is Artinian and R?
is a projective R-module, by Proposition 1.2(b) it is a semiperfect R-module.

Remark 2.3. The converse of Theorem 2.13 is not true in general, since if Vg is a projective
S-module, V|r may not be a projective R-module (see Example 2.30).

3. Conclusion. A summary of above studies is entered in the following tables.

3.1. First column on left-hand side of the following table represents the type of the module Vg,
and the remaining two columns illustrate whether Vg is of the same type or not.

ISSN 1027-3190.

Type of module General case Surjective case
1-generated yes yes
2-simple yes yes
3-semisimple no (Example 2.4) yes
4-indecomposable yes yes
5-Artinian yes yes
6-Noetherian yes yes
7-faithful no (Example 2.13) yes
8-divisible no (Example 2.16) yes
9-torsion no no (Example 2.17)
10-torsion free no (Example 2.18) yes
11-injective no (Example 2.21) yes
12-flat no (Example 2.29) yes
13-free no (Example 2.27) yes
14-projective no (Example 2.29) yes
15-semiperfect no (Example 2.34) yes
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3.2. First column on left-hand side of the following table represents the type of the module Vg,
and the remaining two columns illustrate whether V| is of the same type or not.

Type of module General case Surjective case
1-generated no (Example 2.5) yes
2-simple no (Example 2.5) yes
3-semisimple no (Example 2.5) yes
4-indecomposable | no (Example 2.7) yes
5-Artinian no (Example 2.5) yes
6-Noetherian no (Example 2.7) yes
7-faithful no no (Example 2.12)
8-divisible no no (Example 2.15)
9-torsion no (Example 2.18) yes
10-torsion free no no (Example 2.17)
11-injective no no (Example 2.20)
12-flat no no (Example 2.25)
13-free no no (Example 2.30)
14-projective no no (Example 2.30)
15-semiperfect no no (Example 2.30)
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