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GLOBAL EXISTENCE RESULTS FOR NEUTRAL FUNCTIONAL
DIFFERENTIAL INCLUSIONS WITH STATE-DEPENDENT DELAY

PE3YJIBTATHU IPO INIOBAJIBHE ICHYBAHHS PO3B’SI3KIB HEUTPAJIBHUX
OYHKIIOHAJIBHUX JUPEPEHIJAJIBHUX BKJIIOYEHD 13 3ATPUMKOIO,
O 3AJIEKUTD BIJI CTAHY

We consider the existence of global solutions for a class of neutral functional differential inclusions with state-dependent
delay. The proof of the main result is based on the semigroup theory and the Bohnenblust —Karlin fixed point theorem.

Po3rstHyTO MUTAaHHS PO iCHYBaHHS IMI00ATBHUX PO3B’SI3KIB OHOTO KJIACy HEUTpANbHUX (YHKIIOHATHHUX AH(EpeHIiaTb-
HHX BKJIIOYEHb i3 3aTPUMKOIO, 1110 3aJI€KHUTh Bill cTaHy. JloBeIGHHSI OCHOBHOTO pe3yJsibTaTy 0a3yeThesl Ha Teopil HamiBrpyn
Ta TeopeMi 1po Hepyxomy Touky BonenOmocra ta Kaprina.

1. Introduction. Neutral functional differential equations arise in many areas of applied mathematics
and for this reason these equations have received much attention in the last decades. The literature
relative to ordinary neutral functional differential equations is very extensive and refer to [8, 9,
11, 22, 32, 33]. Partial neutral differential equation with finite delay arise, for instance, from the
transmission line theory [38]. Wu and Xia have shown in [39] that a ring array of identical resistibly
coupled lossless transmission lines leads to a system of neutral functional differential equations with
discrete diffusive coupling which exhibits various types of discrete waves. For more results on partial
neutral functional differential equations and related issues we refer to Adimy and Ezzinbi [2], Hale
[20], Wu and Xia [38, 39] for finite delay equations, and Hern’andez and Henriquez [24, 25] for
unbounded delays. Functional differential equations with state-dependent delay appear frequently
in applications as model of equations and for this reason the study of this type of equations has
received a significant amount of attention in the last years, see for instance [1-3, 6, 10, 15, 35] and
the references therein. We also cite [4, 5, 16, 19, 23, 30, 31, 40] for the case neutral differential
equations with state-dependent delay. In [12, 13] Benchohra et al. considered the global existence of
mild solutions for some classes of functional evolutions equations on unbounded intervals.

In this work we prove the existence of solutions of a neutral functional differential inclusion. Our
investigations will be situated in the Banach space of real functions which are defined, continuous
and bounded on the real axis R. We will use Bohnenblust—Karlin fixed point theorem, combined
with the Corduneanu’s compactness criteria. More precisely we will consider the following problem:

%[y(t) = 9t Ypy)] — AlY®) = 9 Yptep))] € F(tYpiey) ae. t€J:=1[0,400), (1)

y<t) - (b(t)? le (_0070]7 (2)
where F': JxB — P(F) is a multivalued map with nonempty compact values, P(E) is the family of
all nonempty subsets of F, g: JxB — E is given function, A: D(A) C E — F is the infinitesimal
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generator of a strongly continuous semigroup {7'(¢)}+>0, B is the phase space to be specified later,
peB, p:JxB— (—oo,+00) and (E,|-|) is a real separable Banach space. For any function y
defined on (—oo, +00) and any t € J we denote by y; the element of B defined by y.(60) = y(t +
+0),60 € (—00,0]. Here y:(-) represents the history of the state from time —oo, up to the present
time ¢. We assume that the histories y; belongs to some abstract phases B, to be specified later.

To our knowledge the literature on the global existence of neutral evolution inclusions is very
limited. Some of the exiting ones are obtained in the Fréchet space setting. The present results are
given in the Banach space setting, and hence are considered as a contribution of this class of problems.

2. Preliminaries. In this section we present briefly some notations and definition, and theorem
which are used throughout this work.

In this paper, we will employ an axiomatic definition of the phase space B introduced by Hale
and Kato in [21] and follow the terminology used in [27]. Thus, (B, || - ||g) will be a seminormed
linear space of functions mapping (—oo, 0] into E, and satisfying the following axioms:

(A) If y: (—o0,b) — E,b > 0, is continuous on J and yy € B, then for every t € J the
following conditions hold:

(1) y: € B;

(if) there exists a positive constant H such that |y(t)| < H||y:||5;

(iii) there exist two functions L(-), M(-): Ry — R, independent of y with L continuous and
bounded, and M locally bounded such that

lyells < L(t) sup {Jy(s)]: 0 < s <t} + M(t)llyol -

(Az) For the function y in (A1), y; is a B-valued continuous function on J.
(A3) The space B is complete.
Assume that
l=sup{L(t):t€J}, m=sup{M(t):teJ}.

Remark 2.1. 1. Condition (ii) is equivalent to |p(0)| < H||¢||s for every ¢ € B.

2. Since || - ||g is a seminorm, two elements ¢,1 € B can verify ||¢ — 1|z = 0 without
necessarily ¢(6) = ¢ (6) for all § < 0.

3. From the equivalence of in the first remark, we can see that for all ¢,7» € B such that
l¢ — ¢||B = 0: we necessarily have that ¢(0) = 1(0).

By BUC we denote the space of bounded uniformly continuous functions defined from (—o0, 0]
to E.

Let BC' := BC(]0,+00)) be the Banach space of all bounded and continuous functions from
[0, +00) into E equipped with the standard norm

lyllec = sup [y(t)].
te[0,+00)

Let (E,d) be a metric space. We use the following notations:

Pua(E) ={Y € P(E): Y closed}, Pev(E) = {Y € P(E): Y convex},
Py(E) ={Y € P(E): Y bounded}.

Consider H;: P(E) x P(E) — Ry U{oo}, given by
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Hy(A, B) = max {sup d(a,B), sup d(A, b)} ,
acA beB
where d(A,b) = inf,e 4 d(a,b), d(a,B) = infyep d(a,b).

Definition 2.1. Let X, Y be Hausdorff topological spaces and F : X — P(Y) is called upper
semicontinuous (u.s.c.) on X if for each xo € X, the set F(xg) is a nonempty closed subset of Y
and if for each open set N of Y containing F(xq), there exists an open neighborhood Ny of x
such that F(Ny) C N.

Let (E,| - ||) be a Banach space. A multivalued map A: E' — P(FE) has convex (closed) values
if A(z) is convex (closed) for all € E. We say that A is bounded on bounded sets if A(B) is
bounded in £ for each bounded set B of FE, i.e.,

sup {sup{[lyl|: y € A(x)}} < oo.

F is said to be completely continuous if F'(B) is relatively compact for every B € P,(E). If the
multivalued map F' is completely continuous with non empty values, then F' is u.s.c. if an only if ¥
has a closed graph (i.e., T;, = Zx, Yn — Ysx, Yn € F(x,) implies y,. € F(x,)).

Definition 2.2. 4 function F: J x B — P(E) is said to be an L*-Carathéodory multivalued
map if it satisfies:

(1) y— F(t,y) is upper semicontinuous for almost all t € J,

(ii) t— F(t,y) is measurable for each y € B,

(iii) for every positive constant | there exists hy € L'(J,R")

|Ety)|| =sup{|jv|:veFty} <h

Sor all |y| < for almost all t € J.
Definition 2.3. A function F: J x B — P(FE) is said to be an Carathéodory multivalued map
if it satisfies (1) and (ii).
The following two results are easily deduced from the limit properties.
Lemma 2.1 (see, e.g., [7], Theorem 1.4.13). If G: X — P(X) is u.s.c., then, for any zy € X,
lim sup G(z) = G(zo).
T—x0

Lemma 2.2 (see, e.g., [7], Lemma 1.1.9). Let (K,)neny C K C X be a sequence of subsets
where K is compact in the separable Banach space X. Then

%( lim sup Kn> = co ( Kn>,
nee QO an-JN
where 0 A refers to the closure of the convex hull of A.

The second one is due to Mazur (1933).

Lemma 2.3 (Mazur’s lemma [41]). Let E be a normed space and {xy}ren C E be a sequence
weakly converging to a limit x € E. Then there exists a sequence of convex combinations Yy, =
= Z::1 Ak Zk With oy, >0 for k=1,2,....m and Z::1 Qi = 1, which converges strongly
to x.
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Lemma 2.4 [29]. Let E be a Banach space. Let F : J x E — Py o,(E) be a L'-Carathéodory
multivalued map, and let T be a linear continuous from L*(J; E) into C(J; E), then the operator

I'oSp: C(J,E) — Pepeo(C(J, X)), y+— (Lo Sp)(y) =T (SFy)

is a closed graph operator in C(J; X) x C(J; X).
Finally, we say that A has a fixed point if there exists © € E such that x € A(x).
For each y: (—o0, +00) — E let the set Sg, known as the set of selectors from F defined by

Spy={v €L (J;E): v(t) € F(t,ypy,)) ae.teJ}.

For more details on multivalued maps we refer to the books of Deimling [18], Hu and Papageor-
giou [28], Gorniewicz [34], and Perestyuk et al. [37].

Theorem 2.1 (Bohnenblust —Karlin fixed point [14]). Let B € Py cp(E), N: B — Py cv(B)
be a upper semicontinuous operator and N (B) is a relatively compact subset of E. Then N has at
least one fixed point in B.

Lemma 2.5 (Corduneanu [17]). Let D C BC([0,+0o0), E). Then D is relatively compact if the
following conditions hold.:

(a) D is bounded in BC.

(b) The function belonging to D is almost equicontinuous on [0, +00), i.e., equicontinuous on
every compact of [0, 400).

(c) The set D(t) := {y(t): y € D} is relatively compact on every compact of [0, +00).

(d) The function from D is equiconvergent, that is, given € > 0, responds T(e) > 0 such that
|u(t) — limy— 400 u(t)| <€, for any t > T(€) and u € D.

3. Existence of mild solutions. Now we give our main existence result for problem (1), (2).
Before starting and proving this result, we give the definition of the mild solution.

Definition 3.1. We say that a continuous function y: (—oo,+00) — E is a mild solution of
problem (1), (2) if y(t) = ¢(t) for all t € (—o0,0], and the restriction of y(-) to the interval J is
continuous and there exists f(-) € L'(J; E): f(t) € F(t,Yp(ty,)) a-e. in J such that y satisfies the
integral equation

t
y(t) = T(£)[6(0) = g(0, (0))] + g(t, Yp(ry)) + /T(t —s)f(s)ds, te 3)
0

Set
R(p™) = {p(s:0): (s,0) € J x B, p(s,¢) <0}.

We always assume that p : J x B — R is continuous. Additionally, we introduce following
hypothesis:

(Hy) The function t — ¢; is continuous from R(p~) into B and there exists a continuous and
bounded function £?: R(p~) — (0, 00) such that

lell < L2(D)[| 6] for every € R(p™).

Remark 3.1. The condition (Hy), is frequently verified by functions continuous and bounded.
For more details, see, for instance, [27].

ISSN 1027-3190.  Vkp. mam. scypn., 2018, m. 70, Ne 11



GLOBAL EXISTENCE RESULTS FOR NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS ... 1447

Lemma 3.1 [26]. Ify: (—oo,+00) — E is a function such that yo = ¢, then
lyslis < (M + L2)[|6]l5 + Lsup {|y(6)]; 6 € [0,max{0,s}]}, s€R(p™)UJ,
where L? = SUPeRr (p-) LO(t).

Let us introduce the following hypotheses:

(Hy) The semigroup 7'(¢) is compact for ¢ > 0, and there is a positive constant M such that
1T#) gy < M.

(Hy) The multifunction F': J x B — P(FE) is Carathéodory with compact, closed and convex
values.

(H3) There exists a continuous function k: J — [0, +00) such that
Hy(F(t,u), F(t,0)) <k(t)||lu— vl
for each ¢t € J and for all u,v € B and
d(0, F(t,0)) < k(t)

with
t
E* = sup/k(s) ds < 0. 4)
teJ 0

(H4) The function g(¢,-) is continuous on J and there exists a constant k, > 0 such that
lg(t,u) — g(t,v)| < kgllu —v||g  for each wu,ve B

and

g" := sup|g(t,0)] < ox.
teJ

(Hs) Foreach t € J and any bounded set B C B, the set {g(t,u): u € B} is relatively compact
in F.

(Hg) For any bounded set B C B, the function {t — ¢(¢,u): u € B} is equicontinuous on each
compact interval of [0, +00).

Set
Q= {y: (—00,400) = E : y|(_cc0] € B and ylp 1) € BCY.

Remark 3.2. By the condition (H4) we deduce that
lg(t,u)| < kgllulls + g, ted, uehB.

Theorem 3.1. Assume that (H,)—(He) and (Hy) hold. If (Mk*+ky) < 1, then the problem (1),
(2) has at least one mild solution.
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Proof. Transform the problem (1), (2) into a fixed point problem. Consider the operator
N: Q — P(Q) defined by

o(t), if te(—o0,0],
Ny = L e Qs hie) =  T@[6(0) = 9(0,6(0))] +

¢
+g(t,yp(t,yt)) —i—/o T(t—s)f(s)ds, if telJ

where f € SF,yp(t,yty
Let x(-): (—o0, +00) — E be the function defined by

o(t), if te (—o0,0l,
z(t) =
T(t)p(0), if teJ
Then zy = ¢. For each z € Q with z(0) = 0, we denote by Z the function

0, if te (—o00,0],

z(t), if teJ,

if y(-) satisfies (3) we can decompose it as y(t) = z(t) + x(¢t), t € J, which implies y; = 2 + x¢
for every t € J and the function z(-) satisfies

t
Z(t) = g(tv Zo(t,z+xt) + xp(t,zt—&—a:t)) - T(t)g(07 ¢(0)) + /T(t - S)f(S) dS, te Ja
0

where f € Sg, Set

p(t,zp+ay) Tp(t 2 +ay)

Qo ={2€Q:2(0) =0}

and let
|2]lay =sup {|z(t)|: t € J} 2z € Qo.

o is a Banach space with the norm || - [|q,-
We define the operator A: Qg — P () by

0, if t<0,
A(z) = he Qo ht) = { I Zptzta) T Tp(tzta) =

—T(t)g(0, ¢(0)) —|—/0 T(t—s)f(s)ds, if tedJ

where f € SF’ZP(tvzt+zt)+I9(tvzt+zt).
The operator A maps 2y into €y, indeed the map .A(z) is continuous on [0,+o0) for any
z € Qo, h € A(z) and for each ¢t € J we have
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t
‘h(t)’ S ‘g<t7 Zp(t,zt-i-xt) + wp(t,zt—&-:ct))‘ + M‘g(ov ¢(0))| + M/ ’f(s)‘ ds S
0
< M(kglldlls + 9%) + kgllzpt,z0w0) T Tpt,zetan) I8 + 97+
t t
+M/ ’F(‘S?O)‘ds + M/k(s)‘zp(s,szrxs) + mp(s,zs+acs)HBdS <
0 0
< M (kgll¢lls + g*) + kg (1l2()] + (m + L2 + IM H)||¢]|5) + "+

Mg —|—M/k(s)(l]z(s)| (it 20+ IMH)||6]l5) ds.
0

Set

Cy = (m+ L% +IMH)|¢| 5,
Cy = M(k:g||¢||3 +g*) + kyC1 + g% + ME*.

Then we have
¢ ¢
|h(t)] < Ca+ kgl|2(t)| + MCy /k(s) ds + M/l\z(s)]k(s) ds <
0 0
< Cy + kgl||z|loy + MCLE™ + M| z||o k™
Hence, A(z) € Q.
Moreover, let 7 > 0 be such that

, Cy + MCE*
=1 I(Mk* + ky)’

and B, be the closed ball in €y centered at the origin and of radius r. Let z € B, and ¢ € [0, +00).
Then

()| < Cy + kglr + MCyE* + ME*Ir.

Thus
HhHQo <

which means that the operator A transforms the ball B, into itself.

Now we prove that A: B, — P(B,) satisfies the assumptions of Bohnenblust—Karlin fixed
point theorem. The proof will be given in several steps.

Step 1. We shall show that the operator A is closed and convex valued. This will be given in
several claims.

Claim 1. A(z) is closed for each z € B,.

Let (hp)n>0 € A(z) such that h, — h in B,. Then for h, € B, there exists f, €
€ Sk ) such that for each t € J,

p(tzpt+oe) TEp(t 24+
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t
ha(t) = (L, 2p(t,z0t20) + Tp(t,zetar)) — T(£)g(0,9(0)) + /T(t — ) fu(s)ds
0

We shall use the fact that F' has compact values and from hypotheses (H,), (H3), and Mazur’s
lemma we may pass a subsequence if necessary to get that f, converges to f € L'(J, E) and

hence f € Spy. Indeed, Lemma 2.3 yields the existence of o' > 0, i = n,...,k —n), such that
k k

Z‘ (?)a? = 1 and the sequence of convex combinations g, (-) = Z ™ ap fl( ) converges strongly
1=

to f € L'. Since F takes convex values, using Lemma 2.2, we obtain that forae. te J

€ () {on(0)} C

n>1

c (Yoo {fu).k=n} c (Voo | Flt2har ) + Zoebran)

n>1 n>1 k>n
= co( lim supF(t 2 p(ehta) T (tzt+wr))>'
Since F' is u.s.c. with compact values, then by Lemma 2.1, we have
nh_)rrolo sup F(t, Zp(aptan) + Tt zpta) = F (6 2ot m040) + Tolt,zetar))  fOrae. e

This implies that f(t) € € F(, 2p(t 2i420) T Tp(t,ze4a0))- Since F (-, ) has closed, convex values,
we deduce that f(t) € F(t, 2t 24a,) T Tp(t,z042,)) forae t e
Let f € Sp., . Then, for each t € J,

p(S,zS+mS)+xp(S,zs+a:5)

hn(t) — B(t) = g(t, Zp(t,z4ae) T xp(t’Zt_,_zt)) —T(t)g(0,9(0)) + /T(t —3)f(s)ds.
0

So, h € A(z).
Claim 2. A(z) is convex for each z € B,.

Let hq, ha € A(2), the there exists fi, fo € Sp,

Zp(tr2g 4 ae)FTp(trzg ) such that, for each t € J we
have

t
hi(t) = g(t, Zp(t,ze+ae) T xp(t,zﬁxt)) —T(t)g —|— /T (t—s)fi(s 1=1,2.
0

Let 0 < § < 1. Then we have, for each t € J,

(6h1 + (1 - 5)h2)(t) = g(t Zo(t,ze+t) + xp(t,zri—zt)) - T(t)g((), ¢(0))+

+ [ T(t—s)[0f1(s) + (1 = 8) fa(s)]ds
["

Since F' has convex values, one has
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Shi + (1 — O)ha € Al2).
Step 2. A(B,) C B, this is clear.

By)
Step 3. A(B,) is equicontinuous on every compact interval [0, b] of [0, 4+o00) for b > 0.
Let 71,72 € [0,b], h € A(z) with 72 > 71, we have

|h(7’2) — h(7'1>| <
G720 Zp(r 2my 4my) F Tp(raszny 4n)) = 9(TU Zo(r1 2y ) T Tprrzry ) |+

HIT(r2) = T(r2)|| s 900, 6(0)) [+

+/ HT(TQ —-s)—T(n — S)HB(E)|f(5)|d5+
0

+/ 1T (2 = s)lpr)lf(s)|ds <

S ’9(7—2’ Zp(TQ’ZT2+1'T2) + xp(T2,27—2+£E7—2)) - 9(7-17 Zp(Tlval +$-,—1) + xp(71’27'1 +x7'1)) ’+

H|T(r2) = T(m1)|| gy (Rl lls + 97)+

T1
+/ HT(TQ - S) - T(Tl - S)HB(E)(k(S)”Zp(s,zs+xs) + xp(s,szrxs)HB + ‘F(‘S?O)D ds+
0

T2
+/ HT<7—2 - 3)”B(E)(k(s)Hzp(s,szrxs) + xp(s,z5+xs)HB + ‘F(Sv 0)’) ds <
T1

<9(720 2p(ra.2ry tamy) F Tp(razrytry)) = 9(T0s Zp(rr 2, 4amy) T Tprs ey 4ary)) |

e / |72 = 5) = Tr1 = )]y (o) ds+
0

+rz/ |77 = ) = T(r = 8)|| o o) ds
0

T1 T2
+/HT(T2 —5) = T(r1 = )|y () ds+01/||T(72 )l pmyk(s) dst
0

T1
T2 T2
ol / 177 — )| g k(s) ds + / IT(r2 — )| gy k(s) ds.
T1 T1

When 79 — 71, the right-hand side of the above inequality tends to zero, since (Hg) and 7(¢) is a
strongly continuous operator and the compactness of 7'(¢) for ¢ > 0, implies the continuity in the
uniform operator topology (see [36]), this proves the equicontinuity.

Step 4. A(B,) is relatively compact on every compact interval of [0, c0).

Let t € [0,0] for b > 0 and let € be a real number satisfying 0 < € < t. For z € B, we define
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1452 E. ALAIDAROUS, M. BENCHOHRA, 1. MEDJADJ
hs(t) = g(tv Rp(t,ze+xt) + xp(t7zz+xt)) - T(€) (T(t - 6)9(0, ¢(0)))+
t—e
+T'(¢) / T(t—s—e)f(s)ds.
0

Note that the set

{g(t’ Zp(t,zi+xt) + xp(t,zt+a:t)) - T(t - 5)9(07 ¢(0))+

t—e
+/Tt—s—5 ()ds:zeBr}
0

is bounded,

g(tv Zp(t,zi+xt) + xp(t,zt—i-mt)) - T(t - 6)9(07 ¢(O))+

3

T(t—s—e)f(s)ds| <.

_l’_

O —T

Since T'(t) is a compact operator for ¢ > 0, and (Hs) we have that the set
{he(t): z € B,}

is precompact in E for every €, 0 < € < t. Moreover, for every z € B, we have

n(e) ~ b0 < M [ 7)) ds <
t—

¢
<M / k(s)ds + MCy / k(s)ds+rM / lk(s)ds —0 as &—0.
t—e t—e t—e
Therefore, the set {h(t): z € B, } is precompact, i.e., relatively compact.
Step 5. A has closed graph.

Let {z,} be a sequence such that z, — z., h, € A(z,) and h,, — h,. We shall show that
hs € A(2x).

hpn, € A(z,) means that there exists f, € Sp .» Rt by T ) such that
t
ha(t) = 9t e op ) + Tptteptan) = T()g )+ /T (t = 5)fuls
0

we must prove that there exists f

P (t) = g(t7 Zp(t,zi+xt) + 'rp(t,zt—&-xt)) - T( + T t—s f*

o .
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Consider the linear and continuous operator K : L' (.J, E) — B, defined by

K(’U)(t) = g(tv Zp(t,ze+t) + xp(t,zt-i-xt)) - T(t)g(oa ¢(0)) + /T(t - S)’U(S) ds.
0

We have

’K(fn) K(f*) ‘ - ’( tvzp(t zt+xt) +x p(t, zﬁ-m)) +T( ) (07 ¢(O)))_
_(h* (t) - g(tv Zp(t,ze+at) + xp(t,thrwt)) + T( )9(07 )‘ <
< |lhn — hsllo =+ 0 as n — oo.

From Lemma 2.2 it follows that K o S is a closed graph operator and from the definition of K has

h ()EKOSFz

p(t, zn+zt) +$P(t z"+zt)

As z, — 2z, and h,, — h,, there exist f, € Sp = such that

p(t,2} s tay) TEp(t,2% +uy)

t
h* (t) = g(t’ Zp(t,Zri’:Et) + xp(t,zt+zt)) - T(t)g(07 d)(o)) + /T(t - S)f*(s) dS
0

Hence the mutivalued operator A is upper semicontinuous.
Step 6. A(B,) is equiconvergent.
Let z € B,, we have, for h € A(z),

A1 < 190t 2p0ta + Tt 0)| + Mlg0,000)] + 31 [ 17()]ds <
M (ks + 97) + kg (=(0)] + (m + L2+ IMH) [0]}5) + "+
FMK 4+ M / ) (U2()| + (m + £° + IMH)|6]]5) ds <

< Oy + kgl 2l pey, + MC1E™ + M| 2| gy k™.
Then we obtain
|h(t)] =1 < Co+ kglr + MCLE™ + Mirk™ as t — +oo.

Hence,
|h(t) — h(+00)| = 0 as ¢ — +oo.

As a consequence of Steps 1-4, with Lemma 2.5, we can conclude that A: B, — P(B,) is
continuous and compact. From Schauder’s theorem, we deduce that A has a fixed point z*. Then
y* = z* 4 x is a fixed point of the operators N, which is a mild solution of the problem (1), (2).
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4. An example. Consider the following neutral functional partial differential inclusion

2
%[z(t,x) —g(t,z(t — o(t, z(t,O)),m))] — % [z(t, x) — g(t, z(t — o(t, z(t, 0)),33))] €

t

€ / f(s,z(t —o(s,2(s,0)),x))ds, =z€l[0,x], teJ:=][0,+00), (5)
2(t,0) = z(t,m) =0, teJ, (6)
z(0,x) = z2(0,x), t € (—o00,0] x€]0,n], (7)

where f is a given multivalued map, g a given function, and o : R — R*. Take F = L?[0, 7] and
define A: EF — E by Aw = " with domain

D(A) = {w € E, w, w' are absolutely continuous w” € E, w(0) = w(m) = 0}.

Then
Aw = ZnQ(w,wn)wn, we D(A),

n=1

2 . . . .
where wy,(s) = 1/ —sinns, n = 1,2,..., is the orthogonal set of eigenvectors in A. It is well know
™

(see [36]) that A is the infinitesimal generator of an analytic semigroup 7'(t), ¢ > 0, in E and is
given by

T(t)w = iexp(—n2t)(w,wn)wn, weE.
n=1
Since the analytic semigroup 7'(t) is compact for ¢ > 0, there exists a positive constant M such that
1T() Bey < M.
Let B=BCU(R;E) and ¢ € B, then (Hy) is satisfied with
plt,p) =t—o(p), te
Set

y(t)(z) = z(t,x), (t,x) € J x[0,7],
F(t.o)w) = [ flsg)ds. ()€ T x 0.7,

o(t)(x) = Z(t,z), (t,x) € (—o00,0] x [0,7].
Hence, the problem (1), (2) in an abstract formulation of the problem (5)—(7), and if the condi-
tions (H;)—(Hg) are satisfied, Theorem 3.1 implies that the problem (5)—(7) has at least one mild

solutions.
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