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SUBCLASS OF k-UNIFORMLY STARLIKE FUNCTIONS
DEFINED BY SYMMETRIC g-DERIVATIVE OPERATOR

HIJIKJIAC k-PIBHOMIPHO 3IPKOIIOJIBHUX ®YHKIIIA, [IIO BUSHAUEHI
3A JIONOMOT'OK0 CUMETPUYHOTI'O OIMEPATOPA ¢-IIOXIJTHOI

The theory of g-analogs is frequently encountered in numerous areas, including fractals and dynamical systems. The
q-derivatives and g¢-integrals play an important role in the study of g-deformed quantum-mechanical simple harmonic
oscillators. We define a symmetric g-derivative operator and study a new family of univalent functions defined by using
this operator. We establish some new relations between the functions satisfying analytic conditions related to conical
sections.

Teopist g-aHAJOTIB 4acTO 3yCTpidaeThesl B OaraThbox raiyssix, BKJIIOYalOuM (pakTand Ta AWHAMIUHI cHCTeMH. BaxiuBy
POJb y BUBYCHHI ¢-1e(OPMOBAHUX KBAaHTOBO-MEXaHIYHHUX MPOCTHX TAPMOHIYHHX OCHUISATOPIB BiIrparTh ¢-TOXiTHI Ta
q-iHTerpanu. HaBeneHo BH3HAUCHHS CUMETPUYHOTO ONEpaTopa ¢-MOXiAHOI Ta BUBYEHO HOBY CiM’IO OAHOJIHMCTHX (YHKIIMH,
[0 BU3HAYCHI 3a JIOMIOMOTOI0 I[LOTO oreparopa. BcTaHOBICHO TaKoK JEsiKi HOBI CHIBBIIHONICHHS MK (QYHKIISMH, IO
3aJJ0BOJIBHAIOTH aHAIITHYHI YMOBH BiTHOCHO KOHIYHHX TEpepi3iB.

1. Introduction, definitions and notations. The intrinsic properties of g-analogs, including the
applications in the study of quantum groups and ¢-deformed superalgebras, study of fractals and
multifractal measures, and in chaotic dynamical systems are known in the literature. Some integral
transforms in the classical analysis have their g-analogues in the theory of g-calculus. This has
led various researchers in the field of ¢-theory for extending all the important results involving the
classical analysis to their g-analogs.

For the convenience, we provide some basic definitions and concept details of g-calculus which
are used in this paper. Throughout this paper, we will assume that ¢ satisfies the condition 0 < ¢ < 1.
We shall follow the notation and terminology of [?]. We first recall the definitions of fractional g-
calculus operators of complex valued function f.

Definition 1.1 [?]. Let q € (0,1) and X € C. The g-number, denoted [\],, we define as

In the case when A\ = n € N we obtain [Ng =1+ q+ @+ ...+ ¢, and when ¢ — 17 then

[n]g = n. The symmetric q-number, denoted [n|, is defined as a number

q
__ qn _ q—n
[y = —7
97 g—q !
that reduces to n, in the case when ¢ — 1.
We note that the symmetric g-number do not reduce to the defined above g-number, and fre-
quently occurs in the study of g-deformed quantum mechanical simple harmonic oscillator (see [?]).
Applying the above g-numbers we define g-derivative and symmetric g-derivative, below.
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Definition 1.2 [?]. The g-derivative of a function f, defined on a subset of C, is given by

o) -t
D) =] A-gqz P70
1'(0) for z=0.

We note that lim,_,;- (D, f)(z) = f'(2) if f is differentiable at z. Additionally, if f(z) = z +
+agz? + ..., then

(Dgf)(z) =1+ Z[n]qanzn_l-

Definition 1.3 [?]. The symmetric q-derivative ]_~)q f of a function f is defined as follows:

flaz) — fla”'2)

~ — for z#0,
(Dgf)(z) = (g—q 1)z (1.1)
1/(0) for z=0.
From (1.1), we deduce that l~)qz" = [,nv]qznfl, and a power series of ﬁqf, when f(z) =

=24 a2’ +...,is
~ o0 —_—
(Dgf)(2) =14 _[n],anz""".
n=2

It is easy to check that the following properties hold:

Dy(f(2) + 9(2)) = (D f)(2) + (Dgg)(2),
Dy (f(2)9(2)) = gla™"2)(Dygf)(2) + f(a2)(Dgg)(2) = 9(a2)(Dyf)(2) + f(a™2)(Dqg)(2),
Dyf(z) = Dy f(q'2).

The defined above fractional g-calculus are the important tools used in a study of various families
of analytic functions, and in the context of univalent functions was first used in a book chapter by
Srivastava [23]. In contrast to the Leibnitz notation, being a ratio of two infinitisemals, the notions
of g-derivatives are plain ratios. Therefore, it appeared soon a generalization of g-calculus in many
subjects, such as hypergeometric series, complex analysis, and particle physics. It is also widely
applied in an approximation theory, especially on various operators, which includes convergence
of operators to functions in real and complex domain. In the last twenty years g-calculus served
as a bridge between mathematics and physics. The field has expanded explosively, due to the fact
that applications of basic hypergeometric series to the diverse subjects of combinatorics, quantum
theory, number theory, statistical mechanics, are constantly being uncovered. Specially, the theory of
univalent functions can be newly described by using the theory of the g-calculus. In recent years,
such g-calculus operators as the fractional ¢-integral and fractional ¢-derivative operators were used
to construct several subclasses of analytic functions (see, for example, [?, ?, ?, ?]). In the present
paper we study the symmetric g-operator, and related problems involving univalent functions.

Let A denote the class of functions of the form:
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f(z) =2+ Zanz”, (1.2)
n=2

which are analytic in the open unit disk D = {z € C: |z| < 1}. Also, let S, T be the subclasses of
A consisting of functions which are univalent in D, and with negative coefficients, respectively. We
denote by ST (o) (0 < o < 1) a subset of S consisting of all functions starlike of order «;, i.e., such
that R(zf'(2)/f(z)) > a, 2 € D. When a = 0 the class ST (a) becomes the class ST of functions
f that maps D onto a starlike domain with respect to the origin. By k-S7 () we denote the class
of k-starlike functions of order o, 0 < @ < 1, that is a class of function f, which satisfy a condition

!/ /
R 5 1
f(2) f(z)
(for details see [?] and [?]).
We remark here that the class of k-starlike functions of order « is an extension of the relatively

—4+m k>0 (1.3)

more familiar class of k-starlike functions investigated earlier by Kanas et al. [?-?, ?] (see also
[2, ?]). For the case £k = 1 that class was studied by Regnning [?], and called there “a parabolic
class”. We mention here that the name k-uniformly starlike was incorrectly attributed to the class
of k-starlike functions defined by (1.3) (for a = 0), and related to the class of k-uniformly convex
functions by the well known Alexander relation. A class of uniformly starlike functions is due to
Goodman [?] and was defined by the condition

R(L=0re
f(z2) = f(Q)
and is completely different that the class k-stalike functions.

Definition 1.4. Let 0 < k <ocoand 0 < a < 1. By k—ﬁq(a) we denote the class of functions
f € A satisfying the condition

2(Dyf)(2)
%( ) >>k

>>0, z,¢ €D,

2(Dyf)(2)

e

+a, zeD. (1.4)

We also set k—ﬁ;(a) = k-g’fq(a) N'T. We note that lim,_,; - k-:S'\’fq(a) = k-ST ().
Let P be the Caratheodory class of functions with positive real part consisting of all functions p
analytic in D satisfying p(0) = 1, and R(p(z)) > 0. Making use of a properties of the Carathé¢odory
- D
functions we may rewrite a definition of k-ST, (). Setting p(z) = W we may rewrite a
z

condition (1.4) in a form Rp(z) > k|p(z) — 1| + a (z € D), or p < pk,qa, Where py o is a function
with a positive real part, that maps the unit disk onto a domain €2, ., described by the inequality
Rw > k|w— 1|+ « (here < denotes a symbol of a subordination of the analytic functions). We note
that €2, ,, is a domain bounded by a conic section, symmetric about real axis and contained in a right
half plane. It is also known that p;, , has the real and positive coefficients (see [?, 13]). We will use
the notation py o =1+ Pz + P22+ ...

It is known, that if p € P has a Taylor series expansion p(z) = 1 + Byz + Bgz? + B3z3 + ...,
then |B,,| < 2 for n € N [?].

More refinement result was obtained by Grenander and Szegd [6].
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Lemma 1.1 [6]. [If the function p € P, then
2By = B? + x(4 — B}),
3 2 2,2 2 2
4B3 = By +2(4 — B{)Biz — B1(4 — B)z* +2(4 — B{)(1 — |z|%)z

Sfor some x, z with |x| <1 and |z| < 1.

2. Fundamental properties. Several new subclasses of the families of k-starlike and k-uni-
formly convex functions making use of linear operators and fractional calculus were studied (see, for
example, [?, ?]), and various interesting properties were obtained. In light of this, it is of interest to
consider the behaviour of the classes k-g\fq(a) and k-ST ;(a) defined by symmetric g-derivative
operator. We provide necessary and sufficient coefficient conditions, distortion bounds, and extreme
points. In the first theorems we provide a necessary and a necessary and sufficient conditions to be a
member of k—gfq(a) and k-ST. ;(a), respectively.

Theorem 2.1. Let 0 < g <1, and f € S be given by (1.2). If the inequality

> [mq(kJrl)—(kJra)}lanl <l-a 2.1)

n=2

holds true for some k, 0 < k < oo and o, 0 < a <1, then f € k—§7/-q(oz).
Proof. By a Definition 1.4, it suffices to prove that

2Def)(2) (| of2Def)(2) L
k ) 1 3’%( 702) 1> <1 )
Observe that
2Def)(2) | [ 2(Def)(z) 2Def)(2) | _
=55 1 &e( o) 1) < (k+1)| =575 1| =
N . an2" !
=(k+1) Z”:2 <[ ]o‘i 1) <
1+ anz an2" !
A S G L

The last expression is bounded by 1 — «, if the inequality (2.1) holds.

Theorem 2.1 is proved. -

The inequality (2.1) gives a tool to obtain some special members k-S7 (). For example, we
have the following corollary.

Corollary 2.1. Let 0 < k <00, 0 < qg<land 0 < «a < 1. 1If, for f(z) = 2z + anz", the
inequality

|a,| < = Lo , n>2,
(k1) — (k + o)

(1-a)q

holds, then f € k-ST,(a). Specially f(z) = z + (2 +1)(k+1) —q(k+a)

22 e k-:S‘\’fq(a).
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Theorem 2.2. Let 0 < k < o0, 0 < q<1,and 0 <« < 1. A4 necessary and sufficient condition

for f of the form f(z) = z —az2% — ..., a, >0, to be in the class k—g'f;(a) is that
S [[?Z]q(kﬂ) _ (k:+a)]an <1-a 2.2)
n=2

The result is sharp, equality holds for the function f given by

1l—-—a
f(z2)=2z— = z".
) [n],(k+1) — (k+a)

Proof. In view of Theorem 2.1, we need only to prove the necessity. If f € k—gfq_ (), then
by |R(z)| < |z| for any z we get

1- Z::2mqanz Z )anz -1
1-— Z:OZQ anz"t 1+ Zn ) ‘

Choose values of z on the real axis so that Dq f(z) is real. Upon clearing the dominator of (2.3) and
letting z — 1~ through the real values, we obtain (2.2).

Theorem 2.2 is proved.

Theorem 2.3. Let 0 < k < o0, 0 < g < 1and 0 < o < 1. Let the function f defined by

f(z)=2—az®— ..., a, >0, be in the class k:—g?q_(a). Then for |z| = r < 1 it holds

(2.3)

Q(l_a) 2 q(1 - a) 9
_ (q2+1)(/€+1)—q(k:+a)r < ’f(2)| <r+ (q2—|—1)(k—|—1)—q(k:—|—a)r . (2.4)

Equality in (2.4) holds true for the function f given by

- q(1 —a)
f&) =2 e Da D) it a) 2:3)

Proof. Since f € k—g’\'f_ (), then in view of Theorem 2.2, we have

2,0k +1) - k+a]2a“z[ Sk 1) = (ot o) Jan| <1 -0,

n=2

which gives

Za _ 1-a . (2.6)

] (k+1)—(k+ )
Therefore
= n q(1-a)
|f(z)|§z|+7;a”|z| STJF(q2+1)(l<:+1)—q(l~c+oz)r2
and
q(1—a)
G2 e = 72“”’2 2T +1)(k+1)—q(k+a)r2'

The results follows by letting » — 17.
Theorem 2.3 is proved.
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Theorem 2.4. Let 0 < k <00, 0<g<1and 0 <« < 1. Let the function f with the Taylor

series f(z) = z —az2® — ..., an > 0, be a member of the class k—g’f;(a). Then for |z| =r <1
2¢(1 - o) / 2¢(1 - )
— r < 2)| <1+ T 2.7
(P+1)(kE+1) —qlk+a) SO (P+1)(k+1)—qlk+a) @7
Proof. Differentiating f and using triangle inequality for the modulus, we obtain
If'(z)] <1+ Znan 2"t <14 TZnan (2.8)
n=2 n=2
and - -
! z)‘ >1- Znan\z|”_1 >1-— anan. (2.9)
n=2 n=2

The assertion (2.7) now follows from (2.8) and (2.9) by means of a rather simple consequence of (2.6)

given by
2(1 —
Zm _ -o)
J,(k+1) = (k+ )

Theorem 2.4 is proved.
Theorem 2.5. Let 0 <k <oo,0<qg<1,0< a<],and set
1—
fl(Z):Z, fn(z):Z_N - va n:2a37""
[n],(k+1) — (k+a)

Then f € k‘-g'f;(a) if and only if f can be expressed in the form

=3 Mafalz), A >0, D M=1
n=1 n=1

Proof. Suppose that

=Y Aafa(z) = MAi(2 +2Anfn =
n=1

1l -«
=\ M lz — = 2" =
iz +Z [ (n], (k + 1) — (k + )

_)\1z+Z)\nz—Z)\nN @ o

(kz—i—l) (k+ )

:<7§)\n>z—z/\N @ o

(k+1) — (k +a)

—z—Z)\nN —a 2"

(k:—l—l) (k+a)
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Then

— [](k+1)
py—
Z (k+1) (k + ) 1 -

(k+ ) _Z)\n_ZA — A =1-) <1,

and we have f € k—STq_(a).

Conversely, suppose that f € k:—:§7/'q_(oz). Since |a,| < (1 — a)/[mq(k +1) = (k+ )], we
may set

0] (k+1) — (k+a) oo
Ap = —2 T lan]  and A =1- A
Then
>° —
Z):Z—l- a'nz =z + )\nN 2" =
2 Z H) v o)

—z—|—Z)\ (z+ ful(z —z—i—Z)\ z—{—Z)\nfn =

n=2

= (1—2/\R>Z+Z)\nfn( —>\IZ+Z>\nfn Z/\nfn
n=2 n=2

n=2

Theorem 2.5 is proved.
3. Hankel determinant. Let n and s be the natural numbers, such that n > 0 and s > 1.
In 1976 Noonan and Thomas [?] defined the st Hankel determinant of f as

an, an+41 ce Gn4-s—1
Ap+1 Q42 s An+s
Hyn)=| o T @=0. (3.1)
Qpts—1 An4-s te An42s5—2

This determinant has been considered by several authors. For example, Noor [?] determined the rate
of growth of Hs(n) as n — oo for functions f given by (1.2) with bounded boundary. In particular,
sharp upper bounds on Hs(2), known as a second Hankel determinant, were obtained in [?, ?] for
different classes of functions.

Note that
al as a2 a3
Hg(l) = = as — a%, H2(2) = = a20a4 — a%,
az as az a4
and the first Hankel determinant Ho(1) = a3 — a3 is known as a special case of the Fekete -

Szego functional.

In this section will look more closely at the behaviour of the first and second Hankel determinant
in the class k-ST. (), additionally we find a bound of the Fekete — Szego functional and, as a special
case, we obtain a bound of |H2(1)|. For convenience, in the sequel we use the abbreviations

q2 = {2](1 - 1) QB = {3](1 - 1) Q4 = {4](1 - ]" Where 0 < q < 1
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1506 S. KANAS, §. ALTINKAYA, S. YALCIN

Theorem 3.1. Let0 <k <oo, 0<qg<1l,0<a<]1,andlet f € k-ﬁq(a).

LI
U— Piga(qeqa —1) <0, V- Plg3q4 <0,

then the second Hankel determinant satisfies

P2
‘a2a4 — a%’ < —%
g3
2 If
U—Piga(q2qs — 1) > 0, 28 — U — Piqa(1 + q2q4) > 0,
or

U~—Piga(qequ — 1) <0, V= Plgdqs >0,

then the second Hankel determinant satisfies

‘a2a4 — a%’ < L
T Biw
3. 1f
U— Piga(q2qs — 1) > 0, 2V — U — Piga(1 + qoqu) <0,
then

4 P23quV — 2P2qo(1 + qoqa)U — U? — P2 (1 + qaqa)?
4(V = U — Pla2) 430304

lazas — aé} < ;
where U, V, and M, N, S are given by
U=|M+2P{q+2Pi2qsS|,  V =|M+ N + Plgy — 15 + 2P1¢2u S|,
N = Pig3[P} + (Ps — 2P2)qaqs + Pi (P — P1) (g2 + a3) + Pigags] (3.2)
M = Pig3[2q2g3(P> — P1) + PP (g2 + q3)], S =P +q(P—P).

Proof. Let f € k-ﬁq(a). Then, there exists a Schwarz function w, w(0) = 1, |w(z)| < 1 for
z € D, such that

B i)
Let )
po(z)—l—l_zgi—l—i—Blz—i—Bgzﬁ—i—..., (3.3)
or, equivalently,
Cpo(z)—1 1 B2\ ,
w(Z)—W—i <B12+ <B2—2>Z —|—>

Such function pg is analytic in the unit disk, and has a positive real part there. By using the Taylor
expansion of py , and w, we obtain

P B PiB, BXP,—P
Pralw(z) =1+ — 1Z+( 1Bz | (P 1)>ZQJr

2 2 4
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P\Bs+ (P,— P\)BiBy B3P3+P) P,B?
+ 1 B3 + (P 1)12_|_1(3 1)—21,23 G4
2 8 4

Since
D
( fq(g( Loty a2z + [g3a3 — g2a3] 2% + [qaas — (@2 + g3)azas + q2a3] 2° + ...,
then, combining (3.3) with (3.4), we have
P B 1
ag = 21q21, az = s [PEB% — PiBig + P2Bigo + 2P Bags),
(3.5)
oy = P+ (P 2Py + Paags + PU(P2 — P)(@ + a))
4 ==
842934
23132 (P1 (g2 + g3) + 2q2q3(P2 — Pl)) + 4B3P1g2q3
842434 '

From the above we find that

2
BN + (2B2)B*M + (4B3)BP}qaq3 — [(2B2) Pigz + B2S] 4
16(]2%,‘14

Hy(2) = agay — a% =

where, without loss of generality, we set B := By > 0, and N, M, S are given by (3.2). Applying
Lemma 1.1 and performing the necessary computations, we obtain

B*[N + M + Piqs — q4S? + 2P1g2q4 S| + 2B*(4 — B*)[M + 2P?q, — 2P1q2q45]

Hy(2) =
2( ) 1GQQQ3Q4
+*$2(4 — B?)[B?Pq2 + 4P q3qs] + 2B(4 — B?)(1 — |a|*) 2 PR 243
16¢5¢3q4
Set now p = |z|, where

p < 1, and take an absolute value of H2(2). Applying additionally
@(p,

<
< B) = W(ap* + Bp + ), where

|z] <1, we have |H2(2)|
a = (4— B*)[B?Plq; + 4Pl¢}q] — 2B(4 — B*)?Plgxq3,

B =B*4-

v =2B(4 - B?)

and W = 1/(16¢3q3q4). We note that o > 0, B8 > 0. Indeed, an inequality 3 > 0 is obvious, and
we get a = (4 — B?)P?q; [ B? — 2Bq3 + 4¢2q4]. The expression in a square brackets ¥(B) = B? —
—2Bg3 +4q2q4 is a quadratic function of B (0 < B < 2) withroots at B = 2, and B = 2(¢5 —1) >
> 2. Since ¥(0) = 4q2g4 > 0, then ¥(B) > 0 for 0 < B < 2. Hence 9®/9p = W (2ap + 3) > 0,
and from this fact we conclude that @ is increasing function of p. Therefore, for fixed B € [0, 2],
the maximum of ®(p, B) is attained at p = 1, that is max ®(p, B) = ®(1, B) =: G(B). We note
that
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1

G(B) = ———
(B) 16454344

(34 [‘M + N+ Plgp — quS® + 2P1q2qs S| —
—|M + 2P g3 + 2P1g2q4S| — Pqu] + B? {4\]\/[ + 2P g2 + 2P1g2q4 S|+

+4PEgo(1 — q2q4)] + 16P12Q§Q4> .

Let
P =|M+ N + Plqy — u5* + 2P1q2qsS| — |M + 2P} g2 + 2P1g24S| — Plqg,
Q = 4|M + 2P} qy + 2P1q2qsS| + 4PPq2(1 — q2q4), (3.6)
R = 16P{q3qa.
Now, analyzing the maximum of a Pt? + Qt + R, over 0 < t < 4, we conclude that
R for Q<0, P<-Q/4,

[H2(2)] <

< =55 (16P+4Q+R for Q>0,P>-Q/8 or Q<0,P>-Q/4,
16(]2‘]3(]4

R-Q*(4P) for Q>0, P<-Q/8,

where P, (), R are given by (3.6).
Theorem 3.1 is proved.

Corollary 3.1. Let ¢ — 17. Then k-g’\'fq(a) — k-ST (), for which P, = % Then we get
T

16

’a2a4 — a%’ < 3

Theorem 3.2. Let 0 < k < 00, 0<¢q¢<1,0< a<1,andlet f € k—g’fq(a). Then for
complex i it holds

P2lqs — pgs| + Paq3

— a2l <
Jas — paa] < 343

In the case, when u is real, then

2 2 o 4 2 _

?m }?qu4 q+1z M@'ZU for ng@11q+1x
| )| < ¢t +1 (¢*+1)(>—q+1) ¢t +1
ag — pas| <

Pyg? +Pzﬂ%¢+1%—df—q+l) L —g+1)

1 14 1 2 2 Jor = 7

¢t +1 (¢*+1)(¢?—q+1) ¢ +1

Proof. We apply a form of as, as, given by (3.5), and assume as in the proof of the first part
that B := By > 0. Then, for complex u, we have

o  B?(Plq2+ ¢3(P2 — P1) — nPlq3) + (2B2) Pig3
as — paz = 5 .
4q5q3
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Making use of Lemma 1.1, we obtain

»  B?(Plga+5(Py— P1) — uPPgs) + (B® + x(4 — B?)) Pig3
as — pay = 5
4(12(]3

Y

where z is a complex number satisfying |x| < 1. Hence

s B@(P! + Paqa) — pPlgs] + (4 — B?)Pig3
ag — pay = 5 .
4(12‘]3

After simplification and using B < 2, we get

|P2(g2 — pugs) + P23
4543
We note also that P, P» are nonnegative, and ¢o, g3 are positive real number, therefore

lag — pa3| =

PY|gs — pas| + Pog3

2
| >
q543

lag — a3
that establishes our first assertion. For real p our claim is deduced by the observation that go =
=q+1/g—1,and g3 = ¢> +1/¢?, where 0 < ¢ < 1.

Theorem 3.2 is proved.

A trivial computation gives the bound for the first Hankel derivative, and for the third coefficient,
below. -

Corollary 3.2. Let 0 <k <oo, 0<q<1,0<a<1,andlet f € k-STy(a). Then the first
Hankel determinant satisfy

(P +Plg) Pl

_— 2 p—
|ag — a3 < At P —qg+1l

Corollary 3.3. Under the assumption the same as in the Corollary 3.2 we have

¢*(P, + Pq)

<
las] < ¢t +1
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