T. S. Ma, H. Y. Li, L. H. Dong (School Math. and Inform. Sci., Henan Normal Univ., Xinxiang, China)

## A CLASS OF DOUBLE CROSSED BIPRODUCTS\* ПРО ОДИН КЛАС ПОДВІЙНИХ ПЕРЕХРЕСНИХ БІДОБУТКІВ

Let H be a bialgebra, let A be an algebra and a left H-comodule coalgebra, let B be an algebra and a right H-comodule coalgebra. Also let  $f: H \otimes H \longrightarrow A \otimes H$ ,  $R: H \otimes A \longrightarrow A \otimes H$ , and  $T: B \otimes H \longrightarrow H \otimes B$  be linear maps. We present necessary and sufficient conditions for the one-sided Brzeziński's crossed product algebra  $A\#_R^f H_T\#B$  and the two-sided smash coproduct coalgebra  $A \times H \times B$  to form a bialgebra, which generalizes the main results from [On Ranford biproduct // Communs Algebra. -2015. -43, N 9. -P. 3946-3966]. It is clear that both Majid's double biproduct [Double-bosonization of braided groups and the construction of  $U_q(g)$  // Math. Proc. Cambridge Phil. Soc. -1999. -125, N 1. -P. 151-192] and the Wang - Jiao - Zhao's crossed product [Hopf algebra structures on crossed products // Communs Algebra. -1998. -26. -P. 1293-1303] are obtained as special cases.

Нехай H — біалгебра, A — алгебра та водночас ліва H-комодульна коалгебра, а B — алгебра та водночас права H-комодульна коалгебра. Крім того, нехай  $f:H\otimes H\longrightarrow A\otimes H$ ,  $R:H\otimes A\longrightarrow A\otimes H$  та  $T:B\otimes H\longrightarrow H\otimes B$  — лінійні відображення. Наведено необхідні та достатні умови для того, щоб одностороння алгебра Бжезінського  $A\#_R^fH_T\#B$  з перехресним добутком та двостороння коалгебра  $A\times H\times B$  зі схрещеним кодобутком утворювали біалгебру, що узагальнює основні результати, отримані в [On Ranford biproduct // Communs Algebra. — 2015. — 43, № 9. — Р. 3946—3966]. Очевидно, що як подвійний бідобуток Маджіда [Double-bosonization of braided groups and the construction of  $U_q(g)$  // Math. Proc. Cambridge Phil. Soc. — 1999. — 125, № 1. — Р. 151—192], так і перехресний добуток Ванга—Джао—Жао [Hopf algebra structures on crossed products // Communs Algebra. — 1998. — 26. — Р. 1293—1303] можна отримати як частинні випадки.

1. Introduction and preliminaries. Let H be a Hopf algebra over a field K. S. Majid [10, 11] made the following conclusion: A is a bialgebra in Yetter-Drinfeld category  ${}^H_H\mathcal{Y}\mathcal{D}$  if and only if  $A\star H$  is a Radford biproduct [14]. The Radford biproduct plays an important role in the lifting method for the classification of finite dimensional pointed Hopf algebras [2]. Let A be a bialgebra in  ${}^H_H\mathcal{Y}\mathcal{D}$  and B a bialgebra in  $\mathcal{Y}\mathcal{D}^H_H$ . In [9], S. Majid gave the sufficient conditions for a two-sided smash product algebra A#H#B and a two-sided smash coproduct coalgebra  $A\times H\times B$  to be a bialgebra, named the double biproduct and denoted by  $A\diamondsuit H\diamondsuit B$ . Some related results about the double biproduct were recently given in the literature [6, 7, 9, 13].

Let A be an associative and unitary algebra and B a vector space endowed with a distinguished element B. Let  $A = A \otimes B$  and  $B : B \otimes A \longrightarrow A \otimes B$  be two linear maps. Let  $A \#_R^f B$  be an associative and unitary algebra, with underlying vector space  $A \otimes B$ . Following [4], T. Brzeziński gave the necessary and sufficient conditions for the crossed product  $A \#_R^f B$  to be an algebra, called Brzeziński's crossed product. Brzeziński's crossed product is an extensive definition that includes the crossed product  $A \#_\sigma B$  in [3] and the twisted tensor product  $A \#_R B$  in [5]. In [6], the authors replaced the left smash product by the crossed product  $A \#_\sigma B$  in the double biproduct  $A \otimes B \otimes B$  and obtained a generalized version of  $A \otimes B \otimes B$ . And in [7], the authors gave a further extension of  $A \otimes B \otimes B$  via Brzeziński's crossed product. When the twisted tensor product takes the place of the right smash product in  $A \otimes B \otimes B$ , we want to know under what conditions the resulting structure will inherit a bialgebra structure. In this paper, we will derive the necessary and sufficient conditions for

<sup>\*</sup>This work was partially supported by China Postdoctoral Science Foundation (No. 2017M611291), Foundation for Young Key Teacher by Henan Province (No. 2015GGJS-088), Natural Science Foundation of Henan Province (No. 17A110007), and National Natural Science Foundation of China (No. 11801150).

the one-sided Brzeziński's crossed product algebra  $A\#_R^f H_T\#B$  and the two-sided smash coproduct coalgebra  $A \times H \times B$  to be a bialgebra, which we call the Brzeziński's double biproduct. The main results in [6, 7] will be included, of course, the celebrated Radford biproduct [14], Majid's double biproduct [9], Agore and Militaru's unified product [1] and Wang – Jiao – Zhao's crossed product [16] are all examples of the Brzeziński's double biproduct.

Throughout the paper, we follow the definitions and terminologies in [12, 15] and all algebraic systems are over a field K. Let C be a coalgebra. Then we use the simple Sweedler's notation for the comultiplication,  $\Delta(c) = c_1 \otimes c_2$ ,  $c \in C$ . We denote the category of left H-comodules by  ${}^H\mathcal{M}$ , for  $(M,\rho) \in {}^H\mathcal{M}$  and write  $\rho(x) = x_{(-1)} \otimes x_{(0)} \in H \otimes M$  for all  $x \in M$ . We denote the category of right H-comodules by  $\mathcal{M}^H$  for  $(M,\psi)\in\mathcal{M}^H$ , write  $\psi(x)=x_{[0]}\otimes x_{[1]}\in M\otimes H$ , for all  $x \in M$ . We denote the left-left Yetter-Drinfeld category by  ${}^H_H \mathcal{YD}$  and the right-right Yetter-Drinfeld category by  $\mathcal{YD}_H^H$ . Given a K-space M, we write  $id_M$  for the identity map on M.

Next we recall [4, 9, 12, 14] some basic definitions and results which will be used later.

**Brzeziński's crossed product.** Let A be an algebra, H a vector space and  $1_H \in H$ . The vector space  $A \otimes H$  is an algebra with unit  $1_A \otimes 1_H$  and a product such that

$$(a \otimes 1_H)(a' \otimes x') = aa' \otimes x'$$

if and only if there exist linear maps  $f: H \otimes H \longrightarrow A \otimes H$  (write  $f(x \otimes x') = x^f \otimes x'_f$  for all  $x, x' \in H$ ) and  $R: H \otimes A \longrightarrow A \otimes H$  (write  $R(x \otimes a) = a_R \otimes x_R$  for all  $x \in H$  and  $a \in A$ ) that satisfy the following conditions:

- $(A_1) \ a_R \otimes 1_{HR} = a \otimes 1_H, \ 1_{AR} \otimes x_R = 1_A \otimes x;$
- $(A_2) \ (aa')_R \otimes x_R = a_R a'_r \otimes x_{Rr};$
- (A<sub>3</sub>)  $x^f \otimes 1_{Hf} = 1_H{}^f \otimes x_f = 1_A \otimes x;$ (A<sub>4</sub>)  $x'^f{}_R x_R{}^g \otimes x''_{fg} = x^f x'_f{}^g \otimes x''_g;$

(A<sub>5</sub>)  $a_{Rr}x_r{}^f \otimes x'_{Rf} = x^f a_R \otimes x'_{fR}$  for all  $a, a' \in A, \ x, x', x'' \in H$ , where g = f and r = R.

The product  $\mu_{A \otimes H}$  in  $A \otimes H$  explicitly reads

$$(a \otimes x)(a' \otimes x') = aa'_R x_R{}^f \otimes x'_f$$

for all  $a, a' \in A$  and  $x, x' \in H$ . In this case, we call the algebra Brzeziński's crossed product [4] and denote it by  $A\#_R^f H$ .

- Let A be a bialgebra and H a coalgebra with  $1_H \in H$ . A Brzeziński's crossed product,  $A\#_R^J H$ , equipped with the usual tensor product coalgebra structure is a bialgebra if and only if the following conditions hold:
  - $(B_1)$   $\Delta_H(1_H) = 1_H \otimes 1_H$  and  $\varepsilon_H(1_H) = 1$ ;
  - $(B_2)$  f is a coalgebra map;
  - $(B_3)$  R is a coalgebra map.

**Double biproduct.** We recall, from [9], the construction of the so-called double biproduct. Let H be a bialgebra, A a bialgebra in  ${}^H_H\mathcal{YD}$ , and B a bialgebra in  $\mathcal{YD}^H_H$ . Adopt the following notation for the structure maps: the counits are  $\varepsilon_A$  and  $\varepsilon_B$ , the comultiplications are  $\Delta_A(a)=a_1\otimes a_2$ and  $\Delta_B(b) = b_1 \otimes b_2$ , and the actions and coactions are

$$H \otimes A \longrightarrow A$$
,  $x \otimes a \mapsto x \triangleright a$ ,

$$A \longrightarrow H \otimes A, \quad a \mapsto a_{(-1)} \otimes a_{(0)},$$
  
 $B \otimes H \longrightarrow B, \quad b \otimes x \mapsto b \triangleleft x,$   
 $B \longrightarrow B \otimes H, \quad b \mapsto b_{[0]} \otimes b_{[1]}$ 

for all  $x \in H$ ,  $a \in A$ ,  $b \in B$ . Let  $A \diamondsuit H \diamondsuit B$  denote the vector space  $A \otimes H \otimes B$ , which becomes an algebra (called the two-sided smash product, A # H # B) with unit  $1_A \otimes 1_B \otimes 1_B$  and multiplication

$$(a \otimes x \otimes b)(a' \otimes x' \otimes b') = a(x_1 \triangleright a') \otimes x_2 x_1' \otimes (b \triangleleft x_2')b',$$

and a coalgebra (called the two-sided smash coproduct,  $A \times H \times B$ ) with counit  $\varepsilon(a \otimes x \otimes b) = \varepsilon_A(a)\varepsilon_H(x)\varepsilon_B(b)$  and comultiplication

$$\Delta : A \diamondsuit H \diamondsuit B \longrightarrow (A \diamondsuit H \diamondsuit B) \otimes (A \diamondsuit H \diamondsuit B),$$
$$\Delta (a \otimes x \otimes b) = a_1 \otimes a_{2(-1)} x_1 \otimes b_{1[0]} \otimes a_{2(0)} \otimes x_2 b_{1[1]} \otimes b_2.$$

Moreover, assume that the following condition holds:

(DB) 
$$b_{[1]} \triangleright a_{(0)} \otimes b_{[0]} \triangleleft a_{(-1)} = a \otimes b, \ a \in A, \ b \in B.$$

It follows that  $A \diamondsuit H \diamondsuit B$  is a bialgebra, called the *double biproduct*.

**Remark 1.1.** When A = K (or B = K), the double biproduct is exactly the right (or left) variant of Radford biproduct.

**2. Main results and its consequence.** In this section, we give an extended version of the structure of the Majid's double biproduct.

First, we list the right version of twisted tensor product.

**Proposition 2.1.** Let B and H be two algebras,  $T: B \otimes H \longrightarrow H \otimes B$  a linear map. Then  $H_T \# B \ (= H \otimes B \ as \ a \ linear \ space)$  with the multiplication

$$(x \otimes b)(x' \otimes b') = xx'_T \otimes b_T b',$$

where  $x, x' \in H, b, b' \in B$ , and unit  $1_H \otimes 1_B$  becomes an algebra if and only if the following conditions hold:

$$(RT_1)$$
  $b_T \otimes 1_{HT} = b \otimes 1_H$ ,  $1_{BT} \otimes x_T = 1_B \otimes x$ ,

$$(RT_2)$$
  $x_T \otimes (bb')_T = x_{Tt} \otimes b_t b'_T$ ,

$$(RT_3)$$
  $(xx')_T \otimes b_T = x_T x'_t \otimes b_{Tt}$ ,

where  $x, x' \in H$ ,  $b, b' \in B$ , and t = T. We call this algebra right twisted tensor product algebra and denote it by  $H_T \# B$ .

**Proof.** Straightforward.

**Lemma 2.1.** Let H be a vector space and  $1_H \in H$  and A, B be two algebras. Let  $f: H \otimes H \longrightarrow A \otimes H$ ,  $R: H \otimes A \longrightarrow A \otimes H$  and  $T: B \otimes H \longrightarrow H \otimes B$  be linear maps. If conditions  $(RT_1), (RT_2), (A_1) - (A_3)$  and

$$(BT_1) \ x'^f{}_R x_R{}^F \otimes x''{}_{fTF} \otimes b_T = x^f x'{}_{Tf}{}^F \otimes x''{}_{tF} \otimes b_{Tt};$$

$$(BT_2) \ a_{Rr}x_r^f \otimes x'_{RTf} \otimes b_T = x^f a_R \otimes x'_{TfR} \otimes b_T$$

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 11

are satisfied for all  $a \in A$ ,  $b \in B$ ,  $x, x', x'' \in H$  and F = f, r = R, t = T, then  $A \#_R^f H_T \# B$   $(= A \otimes H \otimes B \text{ as a vector space})$  is an associative algebra with unit  $1_A \otimes 1_H \otimes 1_B$  and multiplication given by

$$(a \otimes x \otimes b)(a' \otimes x' \otimes b') = aa'_R x_R{}^f \otimes x'_{Tf} \otimes b_T b',$$

where  $a, a' \in A$ ,  $x, x' \in H$  and  $b, b' \in B$ . In this case, we call  $A \#_R^f H_T \# B$  the one-sided Brzeziński crossed product.

**Proof.** We check associativity as follows. For  $a, a', a'' \in A$ ,  $x, x', x'' \in H$ ,  $b, b', b'' \in B$  and F = f,  $\bar{R} = r = \bar{r} = R$ ,

$$(a \otimes x \otimes b) \left( (a' \otimes x' \otimes b') (a'' \otimes x'' \otimes b'') \right) =$$

$$= a \underbrace{(a'a''_R x'_R{}^f)_r \underline{x_r}^F} \otimes x''_{TftF} \otimes b_t b'_T b'' \stackrel{(A_2)}{=}$$

$$\stackrel{(A_2)}{=} a a'_r a''_{R\bar{R}} \underline{x'_R}^f \underline{\bar{r}} x_{r\bar{R}\bar{r}}^F \otimes \underline{x''_{TftF}} \otimes \underline{b_t} b'_T b'' \stackrel{(BT_1)}{=}$$

$$\stackrel{(BT_1)}{=} a a'_r \underline{a''_{R\bar{R}}} x_{r\bar{R}}^f \underline{x'_{Rtf}}^F \otimes x''_{T\bar{t}F} \otimes \underline{b_{t\bar{t}}} b'_T b'' \stackrel{(BT_2)}{=}$$

$$\stackrel{(BT_2)}{=} a a'_r x_r^f a''_R x'_{tfR}^F \otimes \underline{x''_{T\bar{t}F}} \otimes \underline{b_{t\bar{t}}} b'_T b'' \stackrel{(RT_2)}{=}$$

$$\stackrel{(RT_2)}{=} a a'_r x_r^f a''_R x'_{TfR}^F \otimes x''_{tF} \otimes (b_T b')_t b'' =$$

$$= \left( (a \otimes x \otimes b) (a' \otimes x' \otimes b') \right) (a'' \otimes x'' \otimes b'').$$

It's obvious that  $1_A \otimes 1_H \otimes 1_B$  is a unit by conditions  $(A_1)$ ,  $(A_3)$  and  $(RT_1)$ .

- **Remark 2.1.** (1) If there is an element  $\varepsilon_B \in \text{Hom}(B,K)$  such that  $\varepsilon_B(1_B) = 1$  and T is trivial, i.e., T is the flip map, then the conditions  $(A_4)$  and  $(A_5)$  can be obtained by setting  $b = 1_B$  and applying  $\text{id}_A \otimes \text{id}_H \otimes \varepsilon_B$  to the condition  $(BT_1)$  and  $(BT_2)$ , respectively.
- (2) If H is an algebra, and there is an element  $\varepsilon_A \in \operatorname{Hom}(A,K)$  such that  $\varepsilon_A(1_A) = 1$ , and f, F are trivial, then the condition  $(RT_3)$  can be obtained by setting  $x = 1_H$  and applying  $\varepsilon_A \otimes \operatorname{id}_H \otimes \operatorname{id}_B$  to the condition  $(BT_1)$ .
- (3) Taking either A = K or B = K, we obtain the right twisted tensor product and Brzeziński crossed product, respectively.

**Theorem 2.1.** Let H be a bialgebra, A an algebra and a left H-comodule coalgebra such that  $\varepsilon_A(1_A)=1$ , B an algebra and a right H-comodule coalgebra such that  $\varepsilon_B(1_B)=1$ . Let  $f:H\otimes H\longrightarrow A\otimes H,\ R:H\otimes A\longrightarrow A\otimes H,\ T:B\otimes H\longrightarrow H\otimes B$  be linear maps such that

$$(BP) \ a_{(-1)}x'_{T1} \otimes b_{T1[0]}b'_{[0]} \otimes a_{(0)R}x_R{}^f b_{T1[1]}{}^F \otimes x'_{T2f}b'_{[1]tF} \otimes b_{T2t} =$$

$$= (a_{(-1)}x_1')_T \otimes b_{1[0]T}b_{[0]}' \otimes a_{(0)R}(xb_{1[1]})_R{}^f \otimes (x_2'b_{[1]}')_{tf} \otimes b_{2t}$$

holds for all  $a \in A$ ,  $x, x' \in H$ ,  $b, b' \in B$  and F = f, t = T. Then the one-sided Brzeziński crossed product  $A \#_R^f H_T \# B$  equipped with the two-sided smash coproduct  $A \times H \times B$  becomes a bialgebra if and only if the following conditions hold  $(a, a' \in A, x, x' \in H, b, b' \in B, F = f \text{ and } r = R)$ :

- (C<sub>1</sub>)  $\varepsilon_A$ ,  $\varepsilon_B$  are algebra maps,  $\varepsilon_A(x^f)\varepsilon_H(x'_f) = \varepsilon_H(x)\varepsilon_H(x')$ ;
- $(C_2) \ \varepsilon_A(a_R)\varepsilon_H(x_R) = \varepsilon_A(a)\varepsilon_H(x), \ \varepsilon_B(b_T)\varepsilon_H(x_T) = \varepsilon_B(b)\varepsilon_H(x);$
- $(C_3) \ \Delta_A(1_A) = 1_A \otimes 1_A, \ \Delta_B(1_B) = 1_B \otimes 1_B;$

$$(C_4) \ 1_{A(-1)} \otimes 1_{A(0)} = 1_H \otimes 1_A, \ 1_{B[0]} \otimes 1_{B[1]} = 1_B \otimes 1_H;$$

$$(C_5) (bb')_{1[0]} \otimes 1_A \otimes (bb')_{1[1]} \otimes (bb')_2 = b_{1[0]}b'_{1[0]} \otimes b_{1[1]}{}^f \otimes b'_{1[1]}{}_{Tf} \otimes b_{2T}b'_{2};$$

(C<sub>6</sub>) 
$$a_1 \otimes a_{2(-1)} x \otimes a_{2(0)} = a_1 a_{2(-1)}^f \otimes x_f \otimes a_{2(0)};$$

$$(C_7) (aa')_1 \otimes (aa')_{2(-1)} \otimes (aa')_{2(0)} = a_1 a'_{1R} a_{2(-1)R}^f \otimes a'_{2(-1)f} \otimes a_{2(0)} a'_{2(0)};$$

$$(C_8) \ x^f{}_1 \otimes x^f{}_{2(-1)}x'{}_{f1} \otimes x^f{}_{2(0)} \otimes x'{}_{f2} = x_1{}^f \otimes x'{}_{1f} \otimes x_2{}^F \otimes x'{}_{2F};$$

(C<sub>9</sub>) 
$$a_{R1} \otimes a_{R2(-1)} x_{R1} \otimes a_{R2(0)} \otimes x_{R2} = a_{1R} x_{1R}^f \otimes a_{2(-1)f} \otimes a_{2(0)r} \otimes x_{2r}$$
.

In this case, we call the bialgebra *Brzeziński double biproduct*, and denote it by  $A \diamondsuit_R^f H_T \diamondsuit B$ . **Proof.** Sufficiency. It is easy to prove that  $\varepsilon_{A \times H \times B}$  is an algebra map. Here we check only that  $\Delta_{A \times H \times B}$  is an algebra map. We have

$$\Delta_{A \times H \times B}((a \otimes x \otimes b)(a' \otimes x' \otimes b')) =$$

$$= (aa'_R x_R^f)_1 \otimes (aa'_R x_R^f)_{2(-1)} x'_{Tf1} \otimes (b_T b')_{1[0]} \otimes (aa'_R x_R^f)_{2(0)} \otimes x'_{Tf2}(b_T b')_{1[1]} \otimes$$

$$\otimes (b_T b')_2 \overset{(C_6)}{=} (aa'_R x_R^f)_1 (aa'_R x_R^f)_{2(-1)}^F \otimes x'_{Tf1F} \otimes (b_T b')_{1[0]} \otimes (aa'_R x_R^f)_{2(0)} \otimes$$

$$\otimes x'_{Tf2}(b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(C_7)}{=}$$

$$\overset{(C_7)}{=} a_1 (a'_R x_R^f)_{1R} a_{2(-1)R}^{\bar{f}} (a'_R x_R^f)_{2(-1)f}^{\bar{f}} \otimes x'_{Tf1F} \otimes (b_T b')_{1[0]} \otimes a_{2(0)} (a'_R x_R^f)_{2(0)} \otimes$$

$$\otimes x'_{Tf2}(b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(A_4)}{=}$$

$$\overset{(A_4)}{=} a_1 (a'_R x_R^f)_{1\bar{R}} (a'_R x_R^f)_{2(-1)}^{\bar{f}} r_a_{2(-1)\bar{R}^F} \otimes x'_{Tf1\bar{f}^F} \otimes (b_T b')_{1[0]} \otimes a_{2(0)} (a'_R x_R^f)_{2(0)} \otimes$$

$$\otimes x'_{Tf2}(b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(A_4)}{=}$$

$$\overset{(A_5)}{=} a_1 ((a'_R x_R^f)_1 (a'_R x_R^f)_{2(-1)}^{\bar{f}} r_a_{2(-1)r^F} \otimes x'_{Tf1\bar{f}^F} \otimes (b_T b')_{1[0]} \otimes a_{2(0)} (a'_R x_R^f)_{2(0)} \otimes$$

$$\otimes x'_{Tf2}(b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(C_7)}{=}$$

$$\overset{(C_7)}{=} a_1 (a'_{R1} x_R^f 1_{\bar{R}} a'_{R2(-1)}^{\bar{f}} \bar{r} x_R^f (a_{2(-1)\bar{f}}^{\bar{f}}) r_a_{2(-1)r^F} \otimes x'_{Tf1\bar{f}^F} \otimes (b_T b')_{1[0]} \otimes$$

$$\otimes a_{2(0)} a'_{R2(0)} x_R^f (a_{2(0)} \otimes x'_{Tf2} (b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(A_7)}{=}$$

$$\overset{(A_4)}{=} a_1 (a'_{R1} x_R^f 1_{\bar{R}} x_R^f (a_{2(-1)}^{\bar{f}} \bar{r} a'_{R2(-1)\bar{R}}^{\bar{f}}) r_a_{2(-1)r^F} \otimes x'_{Tf1\bar{f}^F} \otimes (b_T b')_{1[0]} \otimes$$

$$\otimes a_{2(0)} a'_{R2(0)} x_R^f (a_{2(0)} \otimes x'_{Tf2} (b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(A_7)}{=}$$

$$\overset{(A_4)}{=} a_1 (a'_{R1} x_R^f 1_{\bar{R}} x_R^f (a_{2(-1)}^{\bar{f}} \bar{r}) a'_{R2(-1)\bar{R}}^{\bar{f}}) r_a_{2(-1)r^F} \otimes x'_{Tf1\bar{f}^{\bar{f}}} \otimes (b_T b')_{1[0]} \otimes$$

$$\otimes a_{2(0)} a'_{R2(0)} x_R^f (a_{2(0)} \otimes x'_{Tf2} (b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(A_7)}{=}$$

$$\overset{(A_7)}{=} a_1 (a'_{R1} x_R^f 1_{\bar{f}} x_R^f (a_{2(-1)}^{\bar{f}} \bar{r}) a'_{R2(-1)\bar{f}}^{\bar{f}}) r_a_{2(-1)r^F} \otimes x'_{Tf1\bar{f}} \otimes x'_{Tf1\bar{f}} \otimes (b_T b')_{1[0]} \otimes$$

$$\otimes a_{2(0)} a'_{R2(0)} x_R^f (a_{2(0)} \otimes x'_{Tf2} (b_T b')_{1[1]} \otimes (b_T b')_2 \overset{(A_7)}{=}$$

$$\overset{(A_7)}{=} a_1 (a'_{R1} x_R^f 1_{\bar{f}} a'_{R2(-1)} \overset{(A_7)}{=} a'_{R2(-1)\bar{f}} \overset{(A_7$$

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 11

$$\otimes a_{2(0)} a'_{R2(0)} x_R^f_{2(0)} \otimes x'_{Tf2} (brb')_{1[1]} \otimes (brb')_2 \stackrel{\text{CG}}{=} )$$

$$a_{1} (a'_{R1} x_{R1}^f \tilde{R} a'_{R2(-1)\tilde{R}}^f)_r a_{2(-1)r}^F \otimes x'_{Tf\tilde{f}\tilde{F}} \otimes (brb')_{1[0]} \otimes a_{2(0)} a'_{R2(0)} x_{R2}^{\tilde{F}} \otimes \\ \otimes x'_{T2\tilde{F}} (brb')_{1[1]} \otimes (brb')_2 \stackrel{\text{(4)}}{=} )$$

$$\otimes x'_{T2\tilde{F}} (brb')_{T2} (brb')_{T2} (brb')_{T2} (brb')_{T2} (brb')_{T2} (br$$

$$\otimes x'_{T2\bar{F}}(b_Tb')_{1[1]} \otimes (b_Tb')_2 \overset{(C_5)}{=}$$

$$\stackrel{(C_5)}{=} a_1 a_{2(-1)}^f (a'_1 a'_{2(-1)}^f)_{R} x_{1fR}^F \otimes x'_{T1\bar{f}F} \otimes b_{T1[0]} b'_{1[0]} \otimes a_{2(0)} a'_{2(0)\bar{R}} x_{2\bar{R}}^{\bar{F}} b_{T1[1]}^{\bar{F}} \otimes a'_{T2\bar{F}} b'_{1[1]t\bar{F}} \otimes b_{T2t} b'_2 \overset{(C_6)}{=}$$

$$\stackrel{(C_6)}{=} a_1 a_{2(-1)}^f a'_{1R} x_{1fR}^F \otimes (a'_{2(-1)} x'_{T1})_F \otimes b_{T1[0]} b'_{1[0]} \otimes a_{2(0)} a'_{2(0)\bar{R}} x_{2\bar{R}}^{\bar{F}} b_{T1[1]}^{\bar{F}} \otimes a'_{T2\bar{F}} b'_{1[1]t\bar{F}} \otimes b_{T2t} b'_2 \overset{(BP)}{=}$$

$$\stackrel{(BP)}{=} a_1 a_{2(-1)}^f a'_{1R} x_{1fR}^F \otimes (a'_{2(-1)} x'_1)_{TF} \otimes b_{1[0]T} b'_{1[0]} \otimes a_{2(0)} a'_{2(0)\bar{R}} (x_2 b_{1[1]})_{\bar{R}}^{\bar{F}} \otimes a'_{2(2b'_{1[1]})_{t\bar{F}}} \otimes b_{2t} b'_2 \overset{(C_6)}{=}$$

$$\stackrel{(C_6)}{=} a_1 a'_{1R} (a_{2(-1)} x_1)_R^F \otimes (a'_{2(-1)} x'_1)_{TF} \otimes b_{1[0]T} b'_{1[0]} \otimes a_{2(0)} a'_{2(0)\bar{R}} (x_2 b_{1[1]})_{\bar{R}}^{\bar{F}} \otimes a'_{2(2b'_{1[1]})_{t\bar{F}}} \otimes b_{2t} b'_2 = \Delta_{A \times H \times B} (a \otimes x \otimes b) \Delta_{A \times H \times B} (a' \otimes x' \otimes b').$$

Necessity. Since  $\varepsilon_{A\diamondsuit_{R}^{f}H\diamondsuit B}$  is an algebra map, we get

$$(BA_1) \ \varepsilon_A(aa'_Rx_R{}^f)\varepsilon_H(x'_{Tf})\varepsilon_B(b_Tb') = \varepsilon_A(a)\varepsilon_A(a')\varepsilon_H(x)\varepsilon_H(x')\varepsilon_B(b)\varepsilon_B(b').$$

Let  $x = x = 1_H$ ,  $b = b' = 1_B$ ,  $x = x = 1_H$ ,  $a = a' = 1_A$  and  $a = a' = 1_A$ ,  $b = b' = 1_B$  in Eq.  $(BA_1)$ , respectively, we obtain  $(C_1)$ . Similarly,  $(C_2)$  holds.

Apply  $id_A \otimes \varepsilon_H \otimes \varepsilon_B \otimes id_A \otimes \varepsilon_H \otimes \varepsilon_B$  (respectively  $\varepsilon_A \otimes \varepsilon_H \otimes id_B \otimes \varepsilon_A \otimes \varepsilon_H \otimes id_B$ ) to

 $(BA_2) \ 1_{A1} \otimes 1_{A2(-1)} \otimes 1_{B1[0]} \otimes 1_{A2(0)} \otimes 1_{B1[1]} \otimes 1_{B2} = 1_A \otimes 1_H \otimes 1_B \otimes 1_A \otimes 1_H \otimes 1_B$ , we have  $(C_3)$ . Likewise, we get  $(C_4)$ .

Since  $\Delta_{A\times H\times B}((a\otimes x\otimes b)(a'\otimes x'\otimes b'))=\Delta_{A\times H\times B}(a\otimes x\otimes b)\Delta_{A\times H\times B}(a'\otimes x'\otimes b')$ , we obtain

$$(BA_3) (aa'_Rx_R^f)_1 \otimes (aa'_Rx_R^f)_{2(-1)}x'_{1f1} \otimes (b_Tb')_{1[0]} \otimes (aa'_Rx_R^f)_{2(0)} \otimes$$

$$\otimes x'_{Tf2}(b_Tb')_{1[1]} \otimes (b_Tb')_2 = a_1a'_{1R}(a_{2(-1)}x_1)_R^f \otimes (a'_{2(-1)}x'_1)_{Tf} \otimes$$

$$\otimes b_{1[0]T}b'_{1[0]} \otimes a_{2(0)}a'_{2(0)r}(x_2b_{1[1]})_r^F \otimes (x'_2b'_{1[1]})_{tF} \otimes b_{2t}b'_2.$$

Let  $x = x' = 1_H$  and  $a = a' = 1_A$  in Eq. (BA<sub>3</sub>), we have

$$1_A \otimes 1_H \otimes (bb')_{1[0]} \otimes 1_A \otimes (bb')_{1[1]} \otimes (bb')_2 =$$

$$= 1_A \otimes 1_H \otimes b_{1[0]} b'_{1[0]} \otimes b_{1[1]}{}^f \otimes b'_{1[1]}{}_{tf} \otimes b_{2t} b'_2.$$

Apply  $\varepsilon_A \otimes \varepsilon_H \otimes \mathrm{id}_B \otimes \mathrm{id}_A \otimes \mathrm{id}_H \otimes \mathrm{id}_B$  to the above equation, we get  $(C_5)$ . The conditions  $(C_6)$  –  $(C_9)$  can be derived by the similar method.

**Remark 2.2.** 1. Let  $x=x'=1_H$ ,  $b'=1_B$ ,  $R(x\otimes a)=x_1\triangleright a\otimes x_2$  and  $T(b\otimes x)=x_1\otimes b\triangleleft x_2$  in Eq. (BP), we can obtain the condition (DB). Then Brzeziński double biproduct  $A\diamondsuit ^f_R H_T \diamondsuit B$  is the double biproduct  $A\diamondsuit H\diamondsuit B$  when  $f(x\otimes y)=1_A\otimes xy$ ,  $R(x\otimes a)=x_1\triangleright a\otimes x_2$  and  $T(b\otimes x)=x_1\otimes b\triangleleft x_2$  in Theorem 2.1.

- 2. Setting A=K and B=K, we obtain the right version of Radford biproduct in [14] and Brzeziński crossed biproduct in [6], respectively. Furthermore, if the left comodule coaction is trivial, and  $f(x,x')=\sigma(x_1,x_1')\otimes x_2x_2'$ ,  $R(x\otimes a)=x_1\triangleright a_1\otimes x_2\triangleleft a_2$  in Brzeziński crossed biproduct, then we can get Agore and Militaru's unified product [1].
- 3. Taking  $f(x, x') = \sigma(x_1, x_1') \otimes x_2 x_2'$  in Brzeziński crossed biproduct, we obtain Wang-Jiao-Zhao's crossed product in [16].
- 4. Setting  $T(b \otimes x) = x_1 \otimes b \triangleleft x_2$  in Theorem 2.1, we can get the main result in [7] (Theorem 3.2). And the condition (BP) here implies the condition  $(C_{11})$  there.
- 5. Let A = K, the maps  $f: H \otimes H \longrightarrow A \otimes H$  and  $R: H \otimes A \longrightarrow A \otimes H$  be trivial in Theorem 2.1, we can obtain that the right twisted tensor product  $H_T \# B$  equipped with the right smash coproduct  $H \times B$  becomes a bialgebra if and only if the following conditions hold  $(x \in H, b, b' \in B \text{ and } T = t)$ :
  - (D<sub>1</sub>)  $\varepsilon_B$  are algebra maps,  $\varepsilon_B(b_T)\varepsilon_H(x_T) = \varepsilon_B(b)\varepsilon_H(x)$ ;
  - $(D_2) \ 1_{B[0]} \otimes 1_{B[1]} = 1_B \otimes 1_H, \ \Delta_B(1_B) = 1_B \otimes 1_B;$
  - $(D_3) \ \ (bb')_{1[0]} \otimes (bb')_{1[1]} \otimes (bb')_2 = b_{1[0]} b'_{1[0]} \otimes b_{1[1]} b'_{1[1]_T} \otimes b_{2T} b'_2;$
  - $(D_4) \ x_{T1} \otimes b_{T1[0]} \otimes x_{T2} b_{T1[1]} \otimes b_{T2} = x_{1T} \otimes b_{1[0]T} \otimes b_{1[1]} x_{2t} \otimes b_{2t}.$

This exactly is the right version of [8] (Corollary 2.5).

## References

- 1. Agore A. L., Militaru G. Extending structures II: The quantum version // J. Algebra. 2011. 336. P. 321 341.
- 2. Andruskiewitsch N., Schneider H.-J. On the classification of finite-dimensional pointed Hopf algebras // Ann. Math. 2010. 171, № 1. P. 375 417.
- 3. *Blattner R. J., Cohen M., Montgomery S.* Crossed products and inner actions of Hopf algebras // Trans. Amer. Math. Soc. 1986. 289. P. 671–711.
- 4. Brzeziński T. Crossed products by a coalgebra // Communs Algebra. 1997. 25. P. 3551 3575.
- 5. Caenepeel S., Ion B., Militaru G., Zhu S. L. The factorization problem and the smash biproduct of algebras and coalgebras // Algebra. Represent Theory. 2000. 3. P. 19–42.
- 6. Ma T. S., Jiao Z. M., Song Y. N. On crossed double biproduct // J. Algebra and Appl. 2013. 12, № 5. 17 p.
- 7. Ma T. S., Li H. Y. On Radford biproduct // Communs Algebra. 2015. 43, № 9. P. 3946 3966.
- 8. Ma T. S., Wang S. H. General double quantum groups // Communs Algebra. 2010. 38, № 2. P. 645 672.
- 9. *Majid S.* Double-bosonization of braided groups and the construction of  $U_q(g)$  // Math. Proc. Cambridge Phil. Soc. 1999. **125**, No 1. P. 151–192.
- 10. *Majid S.* Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group // Communs Math. Phys. 1993. 156. P. 607–638.
- 11. *Majid S.* Algebras and Hopf algebras in braided categories // Adv. Hopf algebras (Chicago, IL, 1992): Lect. Notes Pure and Appl. Math. 1994. –158. P. 55–105.
- 12. Montgomery S. Hopf algebras and their actions on rings // CBMS Lect. Math. 1993. 82.
- 13. Panaite F., Van Oystaeyen F. L-R-smash biproducts, double biproducts and a braided category of Yetter Drinfeld Long bimodules // Rocky Mountain J. Math. 2010. 40, № 6. P. 2013 2024.
- 14. Radford D. E. The structure of Hopf algebra with a projection // J. Algebra. 1985. 92. P. 322 347.
- 15. Radford D. E. Hopf algebras // KE Ser. Knots and Everything. New Jersey: World Sci., 2012. 49.
- 16. Wang S. H., Jiao Z. M., Zhao W. Z. Hopf algebra structures on crossed products // Communs Algebra. 1998. 26. P. 1293 1303.

Received 21.11.14, after revision — 18.08.18