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A REMARK ON JOHN -NIRENBERG THEOREM FOR MARTINGALES

3AYBAKEHHSA IIOJ0O TEOPEMM /IKOHA - HIPEHBEPTA
JJISA MAPTHUHTAJIIB

This paper is mainly devoted to establishing an extension of the John—Nirenberg theorem for martingales, more precisely,
let 1 <p < ooand0 < g < oo. If the stochastic basis (F,)n>0 is regular, then BMO,, , = BM O, with the equivalent
norms. Our method is to use a new atomic decomposition construction of the martingale Hardy space.

Po6oTy, B OCHOBHOMY, IPHCBSIYCHO IOBEACHHIO y3aranbHeHHs: Teopemu JDxona—HipenGepra s MapTHHTaNB, Giibin
TouHO, 11 1 < p < 0o Ta 0 < ¢ < 00. 3a yMOBH, 110 cToxacTuyHuil 6asuc (Fp)n>0 € peryisipauM, Mmaemo BMOy, o =
= BMO; 3 exkBiBaJIeCHTHIMH HOpMaMu. Hamn MeTos 3BOJHUTHCS 10 3aCTOCYBaHHS HOBOI KOHCTPYKIIi aTOMHOTO PO3KIIAIy
mpocTopy MapTuHramis ["apmi.

1. Introduction. The John— Nirenberg theorem has been successfully extended to different settings
in recent years. A lot of works have been done on this subject (see [5, 6, 8—11, 19, 20]).

This remark deals with the John — Nirenberg theorem on Lorentz space for the martingale setting.
Before describing our main results, we recall the classical John — Nirenberg theorem in the martingale
theory. Let (2, F,P) be a probability space, and {F,},>0 be a nondecreasing sequence of sub-o-
algebras of F such that 7 = o(|J,,~( Fn)- The expectation operator and the conditioned expectation
operator are denoted by [E and En,_respectively. A sequence f = (fy)n>0 of random variables such
that f,, is F,-measurable is said to be a martingale if E(|f,|) < oo and E,(f,+1) = f, for every
n > 0. We always suppose that for a martingale f, fo = 0. The Banach spaces BMO,,, 1 <p < oo
are defined as follows:

1
BMO, = { £ = (fhuzo: | flmvo, =sup B (1 = £,) & < .
n
Here the f in |f — f,|P means fo.. It can be shown that || f| a0, admits an alternative definition

lssro, = sup 1~ I X<l
PoreT ||X{T<OO}HP

where 7 denotes the set of all stopping times with respect to {F,},>0. The well-known John -
Nirenberg theorem (see [13, 18]) says that if the stochastic basis {F,, },>0 is regular, then
BMO, = BMO;x.

In 2014, Yi, Wu and Jiao [19] extended this result to a wider class of the rearrangement invariant
Banach function space. That is, let £/ be a rearrangement invariant Banach function space on €2 with
upper Boyd indices g < oo and define

BMOg = {f = (fu)nzo0: | fllBMOg < o0},

where
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| fllBroy = sup [[C fV)X{KOO}”E_
Tover eoslle
Then if the stochastic basis is regular,

BMOg = BMO;.

Hence it is natural to consider whether the John — Nirenberg theorem is true for the nonrearrange-
ment invariant Banach function space. We will work on this problem in the present paper. Our goal
is to establish the John—Nirenberg theorem in the context of Lorentz spaces L, 4, 1 < p < oo,
0 < g < 1. Note that such spaces are not the rearrangement invariant Banach function spaces. The
following is one of our main results:

Theorem 1.1. Let 1 < p < 0o and 0 < q < oo. If the stochastic basis (Fy)n>0 is regular, then

BMO,,= BMO: with equivalent norms,
Where

BMOy = {f = (fa)nzo: IflB7mo0,, < 0},

and

H(f - fV)X{Z/<OO}H
| fllBro,,, = sup B
veT HX{V<0°}Hp,q

Our main method is to use a new atomic decomposition construction of Hardy spaces by atoms
associated with Lorentz spaces.

2. Preliminaries. In this section, we give some preliminaries necessary for the whole paper. Let
us first recall some basic facts on the Lorentz spaces. Let (2, F,P) be a complete probability space
and f be a measurable function defined on 2. The distribution function of f is the function A,(f)
defined by

As(f) =P({we Q: |f(w)] >s}), s>0.
And denote by i (f) the decreasing rearrangement of f, defined by
ue(f) =inf{s > 0: X\s(f) <t}, t>0,

with the convention that inf @ = oco.
The Lorentz space L, ,(2, F,P), 0 < p < 00, 0 < ¢ < oo, consists of the measurable functions
f with finite norm or quasinorm || f||,, given by

S

q 1 q dt
s = | 2 [ (Fun)" ] 0<a<
0

1
1fllp.oc = suptr pe(f), q=oo.
t>0

It will be convenient for us to use the equivalent definition of || f||, ;, known as

T 1Nad
I£1na= {0 [ (0£@1 > 02)"F) - 0<q<e
0
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q = 0.

[fllp.co = suptP(|f(z)| > )7,
t>0

These spaces are the generalizations of ordinary L, spaces and they coincide with L,, when ¢ = p.

As we known, if 1 < p <ooand 1< g < o0, orp=gq=1,then | -|,, is equivalent to a norm.
However, for the other values of p and ¢, || - ||5,4 is only a quasinorm. In particular, if 0 < ¢ < 1
and ¢ < p < oo, then | - ||, is equivalent to a g-norm. The following lemmas can be found in

Grafakos [1].
Lemma 2.1. Let 0 < p, p1, po < 00 and 0 < q, py, ph < oo with 1/p = 1/p1 + 1/p} and
1/q = 1/ps + 1/p5, then

< Clfllpr.p2llgllpg oy
Moreover, if p = q, p1 = q1 and p2 = q2, we have

1fglly < [ £llpllg]lp; -

Lemma 2.2. Let 1 <p <ooand 0 <q<1withl=1/p+1/p, then the dual space of Ly 4
is Lyt oo

Now we define the Hardy martingale spaces. For a martingale f = (f,)n>0, the maximal
function of martingale f is defined by

Define
Hy = {1 = (f)nzo: 1 fll; = [|M(f)]|, <o}, 0<p<o,
Hyy = {1 = Gadnzo: Iflliy, = [|M(F)]],, <00}, 0<p<oo, 0<g<oc.

The stochastic basis (F,)n>0 is said to be regular, if for n > 1 and A € F,, there exists a
B € F,,—1 such that A C B and P(B) < RP(A), where R is a positive constant independent of 7.
A martingale is said to be regular if it is adapted to a regular o-algebra sequence. This amounts to
saying that there exists a constant R > 0 such that

fn < an—l

for all non-negative martingales ( f,,),>0 adapted to the stochastic basis (F,,),>0. We refer to Long
[13] and Weisz [18] for the theory of martingale Hardy spaces.

3. Main results. In this section we present the new John—Nirenberg theorem by constructing
the atomic decomposition of Hardy spaces H,; via atoms associated with L, o -space for 1 < g < oo.
We refer to [2—-4, 7, 14, 17] for more information on the classical atomic decompositions.

Definition 3.1. Let 0 < p < o0 and 1 < q < oo. A measurable function, a, is called a
(p, Ly 00 )-atom if there exists a stopping time v such that

(1) ap,=FEp,a=0ifv>n,

H HX{V<°°}quo
4,00 IP (v < c0)V/p~
We denote the set of (p, Lg,oo) atoms by A, 1, .-

@) [[M(a)

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 11



1574 L. LI

Theorem 3.1. Let the stochastic basis (Fp)n>0 be regular and 0 < p < 1 < ¢ < oo. Then
I € Hy if and only if there exist a sequence (a¥) of (p, Lq.co) atoms and a sequence (uy) € £, of
real numbers such that
f= Z,u,kak a.e.,

keZ
and

£ 1y~ inf () lle, }

where the infimum is taken over all the preceding decompositions of f.

The proof of Theorem 3.1 uses the following well known lemma which is proved in Theo-
rem 7.1.2 of [13, p. 265].

Lemma 3.1. [f the stochastic basis (Fy)n>0 is regular, then for all non-negative adapted pro-
cesses ¥ = (Yn)n>0 and X\ > ||vol|co, there exist a constant R > 0 and a stopping time Ty such
that

{M(V) > )‘} g {T)\ < 00}7
P(7y < 00) < RP(M(y) > \),
sup v = My, () < A,

n<Ty
M0l <A1 < Ao implies Ty, < T,.
Proof of Theorem 3.1. Let f € H,. For the process (|fn|)n>0 and A\, = 2F  define the stopping

time 75 associate with A satisfying the Lemma 3.1. Since {75} is increasing and P(7, < co) — 0
as k — oo, we see limg_,o, 7 = 00, a.c.,

lim f,, = f ae  and lim |f,|< lim 28=0 ae.
k—o00 k——o0 k——o0

Therefore, we get the following decomposition which converges pointwise:

o0

fo= 3 (= FEY) Ve,

k=—o00

Set ug = 2k+1P(Tk_1 < oo)l/p for all k£ € Z. When pu; # 0, we define

L _ f;;k _ ;L'k—l

Vn > 0.
" [k

a

If pg, = 0, then let af = 0 for all k € Z, n € N. Then (a¥),,>¢ is a martingale for each fixed k € Z.
Since M., (f) < 2*, we obtain

< P(Tk,1 < OO)il/p.

Y, (aﬁ) < M (f™) 1\4 (f71)

Hence it is easy to check that (afl) is a bounded Lo-martingale. Consequently, there exists an

n>0
element a® € Ly such that E,a* = a,k If n < 1,1, then afL =0, and
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HX{Tk,1<oo}Hq,oo
P(rp_1 < Oo)l/p.

1M(a")]] 0 < 1M @) o lDxtr s <o0 lace <

Thus we conclude that (a The 1) is really a (p, Ly 0 )-atom. In view of Lemma 3.1, we have

S =320 Pp(n_ < 00) < RY 2Hrp (M(f) - 21<:—1) -
kEZ keZ keZ
o(k—1)p

<8pRY t'P(M(f) > t)dt = 8"pR]|f |7,

kGZQ(k 2p

For the converse part, it suffices to prove that for any a € A, 1, .,
lall; = | M(a)]|, < C.

Indeed, for 0 < p < 1,

s = [M0) (ZHMM H) (kezzprM(ak)HZ)w

We first consider the case 0 < p < 1. Given a (p, Ly, )-atom a, we get

1M @], = [M(axp<ooplly < CIM @] ollxiv<octllg 1 <

1-1
,,1:OP(Z/<OO) /p,

< Ol Xqwoo}lly 0P < 00) 7| Xppcocy [,

where v is the stopping time corresponding to a. Note that 1 + we obtain

B S

p/(l—=p) p’

1M @)[l, = [|M (axp<op)ll, < [M(@)]y]Ixp<ocyll 2 <
< CP(v < 00) " VPP < 00) 7 = C.

As for the case p = 1, we directly have

1M @), = [M(axp<oopll; < C[M(a)

wcolXtv<oar g <
< ClIxw<oo} |y s P < 00) X pw<oo} |1 = C-

Theorem 3.1 is proved.
Theorem 3.2. Let 1 < p < oo and 0 < q < 1. If the stochastic basis (Fy)n>0 is regular, then

BMO, , = BMO; in the sense of equivalent norm.
Before proving Theorem 3.2, we present the maximal inequality for the martingale Lorentz—

Hardy spaces.
Lemma 3.2 (see [12]). Let f = (fn)n>0 € Lgoo, 1 < g < 00, then there exists a constant C,
(depending only on q) such that

1fllg.c0 < I flla .. < Coll fllgo0-
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Proof of Theorem 3.2. First suppose that f € BMO,,,, then by Lemma 2.2 we have

|(F = )X qw<ootll; < sup ClI(f - fV)X{v<oo}Hp,q X <00}

— p/’oo =
IflBro, = ilel?_ P(v < o0) T over P(r < o0) B
(f - fV)X <00
_ Csup H {v< }Hp,q = C||fllsrmo,.,-
veT HX{V<OO}Hp,q

On the other hand, assume that f € BMOq, then from Lemma 2.1 and the definition of supremum,
there exists a function g € Ly oo with |[g[|r, < 1 such that

|(f = X qp<oot]],, < C / (f — f¥)gdP]|.

p,q —
{vr<oo}

According to Lemma 3.2, there exists a constant C}y such that

HM(f) P00 < Cp’”f”p’,oo Vfe Lp’,OO‘
Let
B HX{v<oo} P00 (9—4g")
o QCp/P(l/ < OO) .
Then we obtain
X <ot ] 00 ) X <00ty o0
HM(a) 0o < Cyllally,00 = %P(y—<opo)‘|g = 9" llpr 00 < IP(I/—<O<I)))7

which means a € Ay, . Then it follows from Theorem 3.1 that a € H7 and ||a|n; = 1. Thus

v

QCP/P(Z/ < OO)
9—9 =37 717

= a € Hf,
X (v<o0}

/
p,00

with its norm
2CyP(v < o0)

g—9" g <
| 7 TXo<or

/
p,00

Since the stochastic basis (F;,),>0 is regular, the dual space of H is BMO; (see [17, 20]). Hence

| e
{v<oo} _

HX{V<OO}Hp,q

C

16— P ixpes]l
HX{V<OO}Hp7q

Cq / f(g —gy)d]p‘
{v<oo} 1

= < C1Callg = 9"l gz Il BMO 77— <
HX{u<oo}||p,q H {V<OO}Hp,q

P(v < oo)|[fllBmo,
X{v<oo} Hp,qHX{V<OO} Hp/,oo

Here C' = 201C2Cyy. This means || f||syo,, < C| fllBrmo;-

< 20105Cy = C|/flBmo, -
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Corollary 1. Let 1 < p < 0o and 0 < q < oo. If the stochastic basis (Fy,)n>0 is regular, then
BMO,,, = BMO, G.1)

in the sense of equivalent norm.

Proof. Now we consider 1 < p < oo and 1 < g < oo. As we known that L, ,-space is a
rearrangement invariant Banach function space with lower and upper Boyd indices both equal to p
in this case. From the Theorem 3.4 of [19], one can obtain that

BMOp,=BMO;, 1<p,q<oo. 3.2)
Combining Theorem 3.2 and (3.2), we have the formula (3.1).

References

1. Grafakos L. Classical and modern Fourier analysis. — London: Pearson Education, 2004.
2. Hao Z. Atomic decomposition of predictable martingale Hardy space with variable exponents / Czech. Math. J. —
2015. - 65, Ne 4. — P. 1033-1045.
3. Hao Z., Jiao Y. Fractional integral on martingale Hardy spaces with variable exponents // Fract. Calc. and Appl.
Anal. —2015. - 18, Ne 5. — P. 1128 -1145.
Hao Z., Li L. Grand martingale Hardy spaces / Acta Math. Hung. — 2017. — 153, Ne 2. — P. 417-429.
5. Ho K.-P. Atomic decompositions, dual spaces and interpolations of martingale Hardy — Lorentz — Karamata spaces //
Quart. J. Math. — 2014. — 65, Ne 3. — P. 985-1009.
6. Hong G., Mei T. John—Nirenberg inequality and atomic decomposition for noncommutative martingales // J. Funct.
Anal. — 2012. - 263, Ne 4. — P. 1064-1097.
7. Jiao Y, Peng L., Liu P. Atomic decompositions of Lorentz martingale spaces and applications // J. Funct. Spaces and
Appl. — 2009. - 7, Ne 2. — P. 153 -166.
8. Jiao Y, Wu L., Yang A., Yi R. The predual and John—Nirenberg inequalities on generalized BMO martingale spaces //
Trans. Amer. Math. Soc. —2017. — 369, Ne 1. — P. 537-553.
9. Jiao Y, Xie G., Zhou D. Dual spaces and John-Nirenberg inequalities of martingale Hardy — Lorentz— Karamata
spaces // Quart. J. Math. — 2015. - 66. — P. 605—623.
10. Jiao Y., Zhou D., Hao Z., Chen W. Martingale Hardy spaces with variable exponents // Banach J. Math. Anal. —
2016. — 10, Ne 4. — P. 750-770.
11. Junge M., Musat M. A noncommutative version of the John —Nirenberg theorem // Trans. Amer. Math. Soc. — 2007. —
359, Ne 1. - P. 115-142.
12. Liu P, Hou Y., Wang M. Weak Orlicz space and its applications to the martingale theory // Sci. China Math. — 2010. —
53, Ne 4. — P. 905-916.
13. Long R. Martingale spaces and inequalities. — Beijing: Peking Univ. Press, 1993.
14. Miyamoto T., Nakai E., Sadasue G. Martingale Orlicz—Hardy spaces // Math. Nachr. — 2012. — 285. — P. 670—-686.
15. Peng L., LiJ. A generalization of ®-moment martingale inequalities // Statist. Probab. Lett. —2015. - 102. — P. 61 - 68.
16. Ren Y. Marcinkiewicz type interpolation theorems for weak Orlicz martingale spaces and application // Indag. Math. —
2015. - 26, Ne 2. — P. 384-392.
17. Weisz F. Martingale Hardy spaces for 0 < p < 1 // Probab. Theory and Relat. Fields. — 1990. — 84, Ne 3. — P. 361 - 376.
18. Weisz F. Martingale Hardy spaces and their applications in Fourier analysis. — Springer, 1994.
19. Yi R, Wu L., Jiao Y. New John—Nirenberg inequalities for martingales // Statist. Probab. Lett. — 2014. — 86. —
P. 68-73.
20. Wu L., Hao Z., Jiao Y. John-Nirenberg inequalities with variable exponents on probability spaces // Tokyo J. Math. —
2015. - 38, Ne 2. — P. 353 -367.

Received 15.04.16,
after revision — 09.12.17

ISSN 1027-3190.  Vkp. mam. ocypn., 2018, m. 70, Ne 11



