UDC 519.21

L. Li (College of Mathematics and Econometrics, Hunan Univ., China)

A REMARK ON JOHN-NIRENBERG THEOREM FOR MARTINGALES ЗАУВАЖЕННЯ ЩОДО ТЕОРЕМИ ДЖОНА-НІРЕНБЕРГА ДЛЯ МАРТИНГАЛІВ

This paper is mainly devoted to establishing an extension of the John-Nirenberg theorem for martingales, more precisely, let $1 and <math>0 < q < \infty$. If the stochastic basis $(\mathcal{F}_n)_{n \geq 0}$ is regular, then $BMO_{p,q} = BMO_1$ with the equivalent norms. Our method is to use a new atomic decomposition construction of the martingale Hardy space.

Роботу, в основному, присвячено доведенню узагальнення теореми Джона—Ніренберга для мартингалів, більш точно, для $1 та <math>0 < q < \infty$. За умови, що стохастичний базис $(\mathcal{F}_n)_{n \geq 0}$ є регулярним, маємо $BMO_{p,q} = BMO_1$ з еквівалентними нормами. Наш метод зводиться до застосування нової конструкції атомного розкладу простору мартингалів Гарді.

1. Introduction. The John-Nirenberg theorem has been successfully extended to different settings in recent years. A lot of works have been done on this subject (see [5, 6, 8-11, 19, 20]).

This remark deals with the John-Nirenberg theorem on Lorentz space for the martingale setting. Before describing our main results, we recall the classical John-Nirenberg theorem in the martingale theory. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\{\mathcal{F}_n\}_{n\geq 0}$ be a nondecreasing sequence of sub- σ -algebras of \mathcal{F} such that $\mathcal{F} = \sigma(\bigcup_{n\geq 0} \mathcal{F}_n)$. The expectation operator and the conditioned expectation operator are denoted by \mathbb{E} and \mathbb{E}_n , respectively. A sequence $f = (f_n)_{n\geq 0}$ of random variables such that f_n is \mathcal{F}_n -measurable is said to be a martingale if $\mathbb{E}(|f_n|) < \infty$ and $\mathbb{E}_n(f_{n+1}) = f_n$ for every $n \geq 0$. We always suppose that for a martingale f, $f_0 = 0$. The Banach spaces BMO_p , $1 \leq p < \infty$ are defined as follows:

$$BMO_p = \left\{ f = (f_n)_{n \ge 0} : ||f||_{BMO_p} = \sup_n ||\mathbb{E}_n (|f - f_n|^p)||_{\infty}^{\frac{1}{p}} < \infty \right\}.$$

Here the f in $|f - f_n|^p$ means f_{∞} . It can be shown that $||f||_{BMO_p}$ admits an alternative definition

$$||f||_{BMO_p} = \sup_{\tau \in \mathcal{T}} \frac{\left\| (f - f^{\tau}) \chi_{\{\tau < \infty\}} \right\|_p}{\|\chi_{\{\tau < \infty\}}\|_p},$$

where \mathcal{T} denotes the set of all stopping times with respect to $\{\mathcal{F}_n\}_{n\geq 0}$. The well-known John–Nirenberg theorem (see [13, 18]) says that if the stochastic basis $\{\mathcal{F}_n\}_{n>0}$ is regular, then

$$BMO_p = BMO_1$$
.

In 2014, Yi, Wu and Jiao [19] extended this result to a wider class of the rearrangement invariant Banach function space. That is, let E be a rearrangement invariant Banach function space on Ω with upper Boyd indices $q_E < \infty$ and define

$$BMO_E = \{ f = (f_n)_{n \ge 0} : ||f||_{BMO_E} < \infty \},$$

where

$$||f||_{BMO_E} = \sup_{\nu \in \mathcal{T}} \frac{\|(f - f^{\nu})\chi_{\{\nu < \infty\}}\|_E}{\|\chi_{\{\nu < \infty\}}\|_E}.$$

Then if the stochastic basis is regular,

$$BMO_E = BMO_1$$
.

Hence it is natural to consider whether the John-Nirenberg theorem is true for the nonrearrangement invariant Banach function space. We will work on this problem in the present paper. Our goal is to establish the John-Nirenberg theorem in the context of Lorentz spaces $L_{p,q},\ 1 <math>0 < q \le 1$. Note that such spaces are not the rearrangement invariant Banach function spaces. The following is one of our main results:

Theorem 1.1. Let $1 and <math>0 < q < \infty$. If the stochastic basis $(\mathcal{F}_n)_{n \ge 0}$ is regular, then $BMO_{p,q} = BMO_1$ with equivalent norms,

where

$$BMO_{p,q} = \{ f = (f_n)_{n \ge 0} : ||f||_{BMO_{p,q}} < \infty \},$$

and

$$||f||_{BMO_{p,q}} = \sup_{\nu \in \mathcal{T}} \frac{||(f - f^{\nu})\chi_{\{\nu < \infty\}}||_{p,q}}{||\chi_{\{\nu < \infty\}}||_{p,q}}.$$

Our main method is to use a new atomic decomposition construction of Hardy spaces by atoms associated with Lorentz spaces.

2. Preliminaries. In this section, we give some preliminaries necessary for the whole paper. Let us first recall some basic facts on the Lorentz spaces. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and f be a measurable function defined on Ω . The distribution function of f is the function $\lambda_s(f)$ defined by

$$\lambda_s(f) = \mathbb{P}(\{\omega \in \Omega : |f(\omega)| > s\}), \quad s \ge 0.$$

And denote by $\mu_t(f)$ the decreasing rearrangement of f, defined by

$$\mu_t(f) = \inf \{ s > 0 : \lambda_s(f) < t \}, \quad t > 0,$$

with the convention that $\inf \emptyset = \infty$.

The Lorentz space $L_{p,q}(\Omega, \mathcal{F}, \mathbb{P})$, $0 , <math>0 < q \le \infty$, consists of the measurable functions f with finite norm or quasinorm $||f||_{p,q}$ given by

$$||f||_{p,q} = \left(\frac{q}{p} \int_{0}^{\infty} \left(t^{\frac{1}{p}} \mu_{t}(f)\right)^{q} \frac{dt}{t}\right)^{\frac{1}{q}}, \quad 0 < q < \infty,$$

$$||f||_{p,\infty} = \sup_{t>0} t^{\frac{1}{p}} \mu_{t}(f), \quad q = \infty.$$

It will be convenient for us to use the equivalent definition of $||f||_{p,q}$, known as

$$||f||_{p,q} = \left(q \int_{0}^{\infty} \left(t\mathbb{P}(|f(x)| > t)^{\frac{1}{p}}\right)^{q} \frac{dt}{t}\right)^{\frac{1}{q}}, \quad 0 < q < \infty,$$

$$||f||_{p,\infty} = \sup_{t>0} t \mathbb{P}(|f(x)| > t)^{\frac{1}{p}}, \quad q = \infty.$$

These spaces are the generalizations of ordinary L_p spaces and they coincide with L_p when q=p. As we known, if $1 and <math>1 \le q \le \infty$, or p=q=1, then $\|\cdot\|_{p,q}$ is equivalent to a norm. However, for the other values of p and q, $\|\cdot\|_{p,q}$ is only a quasinorm. In particular, if $0 < q \le 1$ and $q \le p < \infty$, then $\|\cdot\|_{p,q}$ is equivalent to a q-norm. The following lemmas can be found in Grafakos [1].

Lemma 2.1. Let $0 < p, p_1, p_2 < \infty$ and $0 < q, p_1', p_2' \le \infty$ with $1/p = 1/p_1 + 1/p_1'$ and $1/q = 1/p_2 + 1/p_2'$, then

$$||fg||_{p,q} \le C||f||_{p_1,p_2}||g||_{p'_1,p'_2}.$$

Moreover, if p = q, $p_1 = q_1$ and $p_2 = q_2$, we have

$$||fg||_p \le ||f||_{p_1} ||g||_{p'_1}.$$

Lemma 2.2. Let $1 and <math>0 < q \le 1$ with 1 = 1/p + 1/p', then the dual space of $L_{p,q}$ is $L_{p',\infty}$.

Now we define the Hardy martingale spaces. For a martingale $f=(f_n)_{n\geq 0}$, the maximal function of martingale f is defined by

$$M_n(f) = \sup_{1 \le i \le n} |f_i|, \qquad M(f) = \sup_{i \ge 0} |f_i|.$$

Define

$$H_p^* = \left\{ f = (f_n)_{n \ge 0} \colon \|f\|_{H_p^*} = \|M(f)\|_p < \infty \right\}, \quad 0 < p < \infty,$$

$$H_{p,q}^* = \left\{ f = (f_n)_{n \ge 0} \colon \|f\|_{H_{p,q}^*} = \|M(f)\|_{p,q} < \infty \right\}, \quad 0 < p < \infty, \quad 0 < q \le \infty.$$

The stochastic basis $(\mathcal{F}_n)_{n\geq 0}$ is said to be regular, if for $n\geq 1$ and $A\in \mathcal{F}_n$, there exists a $B\in \mathcal{F}_{n-1}$ such that $A\subset B$ and $\mathbb{P}(B)\leq R\mathbb{P}(A)$, where R is a positive constant independent of n. A martingale is said to be regular if it is adapted to a regular σ -algebra sequence. This amounts to saying that there exists a constant R>0 such that

$$f_n < R f_{n-1}$$

for all non-negative martingales $(f_n)_{n\geq 0}$ adapted to the stochastic basis $(\mathcal{F}_n)_{n\geq 0}$. We refer to Long [13] and Weisz [18] for the theory of martingale Hardy spaces.

3. Main results. In this section we present the new John-Nirenberg theorem by constructing the atomic decomposition of Hardy spaces H_p^* via atoms associated with $L_{q,\infty}$ -space for $1 < q < \infty$. We refer to [2-4, 7, 14, 17] for more information on the classical atomic decompositions.

Definition 3.1. Let $0 and <math>1 < q < \infty$. A measurable function, a, is called a $(p, L_{q,\infty})$ -atom if there exists a stopping time ν such that

(1)
$$a_n = E_n a = 0 \text{ if } \nu \ge n,$$

(2)
$$\|M(a)\|_{q,\infty} \le \frac{\|\chi_{\{\nu<\infty\}}\|_{q,\infty}}{\mathbb{P}(\nu<\infty)^{1/p}}.$$

We denote the set of $(p, L_{q,\infty})$ atoms by $\mathcal{A}_{p,L_{q,\infty}}$.

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 11

1574 L. LI

Theorem 3.1. Let the stochastic basis $(\mathcal{F}_n)_{n\geq 0}$ be regular and $0 . Then <math>f \in H_p^*$ if and only if there exist a sequence (a^k) of $(p, L_{q,\infty})$ atoms and a sequence $(\mu_k) \in \ell_p$ of real numbers such that

$$f = \sum_{k \in \mathbf{Z}} \mu_k a^k \quad a.e.,$$

and

$$||f||_{H_p^*} \approx \inf \{||(\mu_k)||_{\ell_p}\},$$

where the infimum is taken over all the preceding decompositions of f.

The proof of Theorem 3.1 uses the following well known lemma which is proved in Theorem 7.1.2 of [13, p. 265].

Lemma 3.1. If the stochastic basis $(\mathcal{F}_n)_{n\geq 0}$ is regular, then for all non-negative adapted processes $\gamma=(\gamma_n)_{n\geq 0}$ and $\lambda\geq \|\gamma_0\|_{\infty}$, there exist a constant R>0 and a stopping time τ_{λ} such that

$$\begin{split} \{M(\gamma) > \lambda\} &\subseteq \{\tau_{\lambda} < \infty\} \,, \\ \mathbb{P}(\tau_{\lambda} < \infty) &\leq R \mathbb{P}(M(\gamma) > \lambda), \\ \sup_{n \leq \tau_{\lambda}} \gamma_n &= M_{\tau_{\lambda}}(\gamma) \leq \lambda, \\ \|\gamma_0\|_{\infty} &\leq \lambda_1 \leq \lambda_2 \quad \textit{implies} \quad \tau_{\lambda_1} \leq \tau_{\lambda_2}. \end{split}$$

Proof of Theorem 3.1. Let $f \in H_p^*$. For the process $(|f_n|)_{n\geq 0}$ and $\lambda_k=2^k$, define the stopping time τ_k associate with λ_k satisfying the Lemma 3.1. Since $\{\tau_k\}$ is increasing and $\mathbb{P}(\tau_k<\infty)\to 0$ as $k\to\infty$, we see $\lim_{k\to\infty}\tau_k=\infty$, a.e.,

$$\lim_{k\to\infty} f_{ au_k} = f$$
 a.e. and $\lim_{k\to-\infty} |f_{ au_k}| \le \lim_{k\to-\infty} 2^k = 0$ a.e.

Therefore, we get the following decomposition which converges pointwise:

$$f_n = \sum_{k=-\infty}^{\infty} \left(f_n^{\tau_k} - f_n^{\tau_{k-1}} \right) \quad \forall n \ge 0.$$

Set $\mu_k = 2^{k+1} \mathbb{P}(\tau_{k-1} < \infty)^{1/p}$ for all $k \in \mathbb{Z}$. When $\mu_k \neq 0$, we define

$$a_n^k = \frac{f_n^{\tau_k} - f_n^{\tau_{k-1}}}{\mu_k} \quad \forall n \ge 0.$$

If $\mu_k=0$, then let $a_n^k=0$ for all $k\in\mathbb{Z},\ n\in\mathbb{N}.$ Then $(a_n^k)_{n\geq 0}$ is a martingale for each fixed $k\in\mathbb{Z}.$ Since $M_{\tau_k}(f)\leq 2^k$, we obtain

$$M\left(a_n^k\right) \le \frac{M\left(f^{\tau_k}\right) + M\left(f^{\tau_{k-1}}\right)}{\mu_k} \le \mathbb{P}(\tau_{k-1} < \infty)^{-1/p}.$$

Hence it is easy to check that $(a_n^k)_{n\geq 0}$ is a bounded L_2 -martingale. Consequently, there exists an element $a^k\in L_2$ such that $\mathbb{E}_n a^k=a_n^k I$ If $n\leq \tau_{k-1}$, then $a_n^k=0$, and

$$||M(a^k)||_{q,\infty} \le ||M(a^k)||_{\infty} ||\chi_{\{\tau_{k-1} < \infty\}}||_{q,\infty} \le \frac{||\chi_{\{\tau_{k-1} < \infty\}}||_{q,\infty}}{\mathbb{P}(\tau_{k-1} < \infty)^{1/p}}.$$

Thus we conclude that $\left(a^k, au_{k-1}\right)$ is really a $(p, L_{q,\infty})$ -atom. In view of Lemma 3.1, we have

$$\sum_{k \in \mathbb{Z}} \mu_k^p = \sum_{k \in \mathbb{Z}} 2^{(k+1)p} \mathbb{P}(\tau_{k-1} < \infty) \le R \sum_{k \in \mathbb{Z}} 2^{(k+1)p} \mathbb{P}\left(M(f) > 2^{k-1}\right) \le$$

$$\le 8^p p R \sum_{k \in \mathbb{Z}_{2(k-2)p}} \int_{0}^{2^{(k-1)p}} t^p \mathbb{P}(M(f) > t) dt = 8^p p R \|f\|_{H_p^*}^p.$$

For the converse part, it suffices to prove that for any $a \in \mathcal{A}_{p,L_{q,\infty}}$,

$$||a||_{H_p^*} = ||M(a)||_p \le C.$$

Indeed, for 0 ,

$$||f||_{H_p^*} = ||M(f)||_p \le \left(\sum_{k \in \mathbb{Z}} ||\mu_k M(a^k)||_p^p\right)^{1/p} = \left(\sum_{k \in \mathbb{Z}} |\mu_k|^p ||M(a^k)||_p^p\right)^{1/p}.$$

We first consider the case $0 . Given a <math>(p, L_{q,\infty})$ -atom a, we get

$$\begin{split} & \big\| M(a) \big\|_1 = \big\| M(a\chi_{\{\nu < \infty\}}) \big\|_1 \le C \big\| M(a) \big\|_{q,\infty} \big\| \chi_{\{\nu < \infty\}} \big\|_{q',1} \le \\ & \le C \big\| \chi_{\{\nu < \infty\}} \big\|_{q,\infty} \mathbb{P}(\nu < \infty)^{-1/p} \big\| \chi_{\{\nu < \infty\}} \big\|_{q',1} = C \mathbb{P}(\nu < \infty)^{1-1/p}, \end{split}$$

where ν is the stopping time corresponding to a. Note that $1 + \frac{1}{p/(1-p)} = \frac{1}{p}$, we obtain

$$||M(a)||_p = ||M(a\chi_{\{\nu < \infty\}})||_p \le ||M(a)||_1 ||\chi_{\{\nu < \infty\}}||_{\frac{p}{1-p}} \le$$
$$\le C\mathbb{P}(\nu < \infty)^{1-1/p} \mathbb{P}(\nu < \infty)^{\frac{1-p}{p}} = C.$$

As for the case p = 1, we directly have

$$\begin{split} \big\| M(a) \big\|_1 &= \big\| M(a\chi_{\{\nu < \infty\}}) \big\|_1 \le C \big\| M(a) \big\|_{q,\infty} \big\| \chi_{\{\nu < \infty\}} \big\|_{q',1} \le \\ &\le C \big\| \chi_{\{\nu < \infty\}} \big\|_{q,\infty} \mathbb{P}(\nu < \infty)^{-1} \big\| \chi_{\{\nu < \infty\}} \big\|_{q',1} = C. \end{split}$$

Theorem 3.1 is proved.

Theorem 3.2. Let $1 and <math>0 < q \le 1$. If the stochastic basis $(\mathcal{F}_n)_{n \ge 0}$ is regular, then $BMO_{p,q} = BMO_1$ in the sense of equivalent norm.

Before proving Theorem 3.2, we present the maximal inequality for the martingale Lorentz–Hardy spaces.

Lemma 3.2 (see [12]). Let $f = (f_n)_{n \ge 0} \in L_{q,\infty}$, $1 < q < \infty$, then there exists a constant C_q (depending only on q) such that

$$||f||_{q,\infty} \le ||f||_{H_{q,\infty}^*} \le C_q ||f||_{q,\infty}.$$

1576 L. LI

Proof of Theorem 3.2. First suppose that $f \in BMO_{p,q}$, then by Lemma 2.2 we have

$$||f||_{BMO_{1}} = \sup_{\nu \in \mathcal{T}} \frac{\left\| (f - f^{\nu}) \chi_{\{\nu < \infty\}} \right\|_{1}}{\mathbb{P}(\nu < \infty)} \leq \sup_{\nu \in \mathcal{T}} \frac{C \left\| (f - f^{\nu}) \chi_{\{\nu < \infty\}} \right\|_{p,q} \left\| \chi_{\{\nu < \infty\}} \right\|_{p',\infty}}{\mathbb{P}(\nu < \infty)} = C \sup_{\nu \in \mathcal{T}} \frac{\left\| (f - f^{\nu}) \chi_{\{\nu < \infty\}} \right\|_{p,q}}{\left\| \chi_{\{\nu < \infty\}} \right\|_{p,q}} = C ||f||_{BMO_{p,q}}.$$

On the other hand, assume that $f \in BMO_1$, then from Lemma 2.1 and the definition of supremum, there exists a function $g \in L_{p',\infty}$ with $\|g\|_{L_{p',\infty}} \le 1$ such that

$$\left\| (f - f^{\nu}) \chi_{\{\nu < \infty\}} \right\|_{p,q} \le C_1 \left| \int_{\{\nu < \infty\}} (f - f^{\nu}) g \, d\mathbb{P} \right|.$$

According to Lemma 3.2, there exists a constant $C_{p'}$ such that

$$||M(f)||_{p',\infty} \le C_{p'}||f||_{p',\infty} \quad \forall f \in L_{p',\infty}.$$

Let

$$a = \frac{\left\|\chi_{\{\nu < \infty\}}\right\|_{p', \infty} (g - g^{\nu})}{2C_{p'}\mathbb{P}(\nu < \infty)}.$$

Then we obtain

$$||M(a)||_{p',\infty} \le C_{p'}||a||_{p',\infty} = \frac{||\chi_{\{\nu < \infty\}}||_{p',\infty}}{2\mathbb{P}(\nu < \infty)}||g - g^{\nu}||_{p',\infty} \le \frac{||\chi_{\{\nu < \infty\}}||_{p',\infty}}{\mathbb{P}(\nu < \infty)},$$

which means $a \in \mathcal{A}_{1,L_{p',\infty}}$. Then it follows from Theorem 3.1 that $a \in H_1^*$ and $||a||_{H_1^*} = 1$. Thus

$$g - g^{\nu} = \frac{2C_{p'}\mathbb{P}(\nu < \infty)}{\|\chi_{\{\nu < \infty\}}\|_{p',\infty}} a \in H_1^*,$$

with its norm

$$\|g - g^{\nu}\|_{H_1^*} \le \frac{2C_{p'}\mathbb{P}(\nu < \infty)}{\|\chi_{\{\nu < \infty\}}\|_{p',\infty}}.$$

Since the stochastic basis $(\mathcal{F}_n)_{n\geq 0}$ is regular, the dual space of H_1^* is BMO_1 (see [17, 20]). Hence

$$\frac{\left\|(f-f^{\nu})\chi_{\{\nu<\infty\}}\right\|_{p,q}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{p,q}} \leq \frac{C_{1}\left|\int_{\{\nu<\infty\}} (f-f^{\nu})gd\mathbb{P}\right|}{\left\|\chi_{\{\nu<\infty\}}\right\|_{p,q}} =$$

$$= \frac{C_{1}\left|\int_{\{\nu<\infty\}} f\left(g-g^{\nu}\right)d\mathbb{P}\right|}{\left\|\chi_{\{\nu<\infty\}}\right\|_{p,q}} \leq C_{1}C_{2}\left\|g-g^{\nu}\right\|_{H_{1}^{*}}\left\|f\right\|_{BMO_{1}}\frac{1}{\left\|\chi_{\{\nu<\infty\}}\right\|_{p,q}} \leq$$

$$\leq 2C_{1}C_{2}C_{p'}\frac{\mathbb{P}(\nu<\infty)\|f\|_{BMO_{1}}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{p,q}\left\|\chi_{\{\nu<\infty\}}\right\|_{p',\infty}} = C\|f\|_{BMO_{1}}.$$

Here $C = 2C_1C_2C_{p'}$. This means $||f||_{BMO_{p,q}} \le C||f||_{BMO_1}$.

Corollary 1. Let $1 and <math>0 < q < \infty$. If the stochastic basis $(\mathcal{F}_n)_{n > 0}$ is regular, then

$$BMO_{p,q} = BMO_1 \tag{3.1}$$

in the sense of equivalent norm.

Proof. Now we consider $1 and <math>1 < q < \infty$. As we known that $L_{p,q}$ -space is a rearrangement invariant Banach function space with lower and upper Boyd indices both equal to p in this case. From the Theorem 3.4 of [19], one can obtain that

$$BMO_{p,q} = BMO_1, \quad 1 < p, q < \infty. \tag{3.2}$$

Combining Theorem 3.2 and (3.2), we have the formula (3.1).

References

- 1. Grafakos L. Classical and modern Fourier analysis. London: Pearson Education, 2004.
- 2. *Hao Z.* Atomic decomposition of predictable martingale Hardy space with variable exponents // Czech. Math. J. 2015. 65, № 4. P. 1033 1045.
- 3. *Hao Z., Jiao Y.* Fractional integral on martingale Hardy spaces with variable exponents // Fract. Calc. and Appl. Anal. 2015. 18, № 5. P. 1128–1145.
- 4. Hao Z., Li L. Grand martingale Hardy spaces // Acta Math. Hung. 2017. 153, № 2. P. 417 429.
- 5. *Ho K.-P.* Atomic decompositions, dual spaces and interpolations of martingale Hardy Lorentz Karamata spaces // Quart. J. Math. 2014. 65, № 3. P. 985 1009.
- 6. *Hong G., Mei T.* John Nirenberg inequality and atomic decomposition for noncommutative martingales // J. Funct. Anal. 2012. **263**, № 4. P. 1064 1097.
- 7. *Jiao Y., Peng L., Liu P.* Atomic decompositions of Lorentz martingale spaces and applications // J. Funct. Spaces and Appl. −2009. −7, № 2. − P. 153 −166.
- 8. *Jiao Y., Wu L., Yang A., Yi R.* The predual and John Nirenberg inequalities on generalized BMO martingale spaces // Trans. Amer. Math. Soc. 2017. **369**, № 1. P. 537 553.
- 9. *Jiao Y., Xie G., Zhou D.* Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces // Quart. J. Math. 2015. **66**. P. 605–623.
- 10. Jiao Y., Zhou D., Hao Z., Chen W. Martingale Hardy spaces with variable exponents // Banach J. Math. Anal. 2016. 10, № 4. P. 750 770.
- 11. *Junge M., Musat M.* A noncommutative version of the John Nirenberg theorem // Trans. Amer. Math. Soc. 2007. 359, № 1. P. 115 142.
- 12. Liu P., Hou Y., Wang M. Weak Orlicz space and its applications to the martingale theory // Sci. China Math. 2010. 53, № 4. P. 905 916.
- 13. Long R. Martingale spaces and inequalities. Beijing: Peking Univ. Press, 1993.
- 14. Miyamoto T., Nakai E., Sadasue G. Martingale Orlicz-Hardy spaces // Math. Nachr. 2012. 285. P. 670 686.
- 15. Peng L., Li J. A generalization of Φ-moment martingale inequalities // Statist. Probab. Lett. 2015. 102. P. 61 68.
- Ren Y. Marcinkiewicz type interpolation theorems for weak Orlicz martingale spaces and application // Indag. Math. 2015. – 26, № 2. – P. 384 – 392.
- 17. Weisz F. Martingale Hardy spaces for 0 // Probab. Theory and Relat. Fields. <math>-1990. -84, No. 3. -P. 361 376.
- 18. Weisz F. Martingale Hardy spaces and their applications in Fourier analysis. Springer, 1994.
- 19. Yi R., Wu L., Jiao Y. New John-Nirenberg inequalities for martingales // Statist. Probab. Lett. 2014. 86. P. 68–73.
- 20. Wu L., Hao Z., Jiao Y. John Nirenberg inequalities with variable exponents on probability spaces // Tokyo J. Math. 2015. 38, № 2. P. 353 367.

Received 15.04.16, after revision — 09.12.17