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ON GENERALIZED IDEAL ASYMPTOTICALLY STATISTICAL EQUIVALENT
OF ORDER o FOR FUNCTIONS

PO Y3ATAJIBHEHUI IJEAJTBHUMA ACUMIITOTUYHO CTATUCTUYHUM
EKBIBAJIEHT IOPSIJIKY o JJIS ®YHKIIA

We introduce new definitions related to the notions of asymptotically Z, -statistical equivalent of order o to multiple L and
strongly 7 -asymptotically equivalent of order o to multiple L by using two nonnegative real-valued Lebesque measurable
functions in the interval (1, co) instead of sequences. In addition, we also present some inclusion theorems.

BBeneHo HOBI 03HA4YEHHS, ITOB’s[3aHi 3 HOHATTAMH aCHMIITOTUYHO Z) -CTaTHCTHYHOTO SKBiBaJIEHTA MOPSIKY (v IJIsl KPAaTHUX
L Ta cunbHO 7y -aCHMITOTHYHOTO €KBiBAJIEHTA MOPSIKY < UIA KpaTHUX L 3a JOIOMOTO0 JBOX HEBiJ' €MHHX JiHiCHO3HAU-
Hux (yHKuil, BuMipaux 3a JleGerom Ha intepsani (1,00), 3amicth mocmigoBHocTel. KpiM TOro, HaBeseHO TakoxX JAesKi
TEOPEMH HPO BKIIFOUCHHS.

1. Introduction. This paper introduces a class of summability method that can be applied to mea-
surable functions defined on (1,00). These methods are modeled on the methods of asymptotically
statistical equivalent. As part of this paper, we establish some analogs of known results for sequential
summability to the setting of real valued functions defined on (1, c0).

In 1993, Marouf [14] presented definitions for asymptotically equivalent sequences and asymp-
totic regular matrices. In 1997, Li [13] also presented and studied asymptotic equivalence of se-
quences and summability. In 2003, Patterson [17] extended these concepts by presenting an asymp-
totically statistical equivalent analog of these definitions and natural regularity conditions for nonne-
gative summability matrices. Recently, Savas and Basarir [19] defined (o, \)-asymptotically sta-
tistical equivalent sequences. Six years later the notion of asymptotically Z) - statistical equivalent
sequences was studied by Glimiis and Savas [10] (see also Kumar and Sharma [12]).

A sequence () is statistically convergent if “almost all” of & its values have a common limit
point. Over the years and under different names, statistical convergence has been discussed in
number theory, trigonometric series and summability theory. Statistical convergence for sequences
was defined by Fast [8] in 1951 who provided an alternate proof of a result of Steinhaus [29] and
then reintroduced by Schoenberg [27] independently. In the latter years it was further investigated
from the sequence space point of view and linked with summability theory by Fridy [9], Connor and
Savas [4], Salat [18], Cakalli [1] and many others.

The notion of statistical convergence depends on the density of subsets of N. A subset £ of N
is said to have density ¢ (E) if

n—oo n

0(F)= lim ! Z xE (k) exists.
k=1

Note that if X' C N is a finite set, then 6(K) = 0, and for any set K C N,6(K°) =1 — §(K).
We first recall the following definition.
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Definition 1. A sequence x = (xy) is said to be statistically convergent to L if for every € > 0
d{keN: |z — L| >¢})=0.

In this case we write st — limz = L or x; — L(st).

The concept of Z-convergence was introduced by Kostyrko et al. in a metric space [11]. Later
it was further studied by Dems [7], Das, Savas and Ghosal [5], Giimiis and Savas [26] and Savas
[20-25] and many others. Z-convergence is a generalization form of statistical convergence and that
is based on the notion of an ideal of the subset of positive integers N.

On the other hand, in [2, 6] a different direction was given to the study of statistical convergence
where the notion of statistical convergence of order o, 0 < o < 1 was introduced by replacing n by
@ in the denominator in the definition of statistical convergence. One can also see [3] for related
works.

n

In this paper we introduce new definitions to the notions of asymptotically
Ty -statistical equivalent of order « to multiple L and strongly Zy-asymptotically equivalent of order
« to multiple L by using two nonnegative real-valued Lebesque measurable functions x (¢) and y (t)
in the interval (1, 00) instead of sequences. In addition, we also present some inclusion theorems.
Let A = ()\,,) be a nondecreasing sequence of positive numbers tending to oo such that

>\’I’L+1 S)\n"_l, )\1 =1.

The collection of such sequences A will be denoted by A.

A-Statistical convergence was defined by Mursaleen [15]. In his examination he presented a
series of critical results, beginning with the following definition.

Definition 2. A sequence x = (xy) is said to be \-statistically convergent or Sy-convergent to
the number L if for every € > 0

3 1 . p—
nlin;OA—n\{k €l,: |xp—L| >} =0,

where I, = [n— X\, + 1,n] for n = 1,2,3,.... and the vertical bars indicate the number of the
elements in the enclosed sets. In this case we write Sy —limx = L or x,, — L(S\) and S denotes
the set of all \-statistically convergent sequences.

Quite recently Srivastava et al. [28], studied the Sf (Z)-asymptotically statistical equivalent
functions.

2. Main definitions. Before we present the new definitions we shall state a few known defini-
tions.

Definition 3 [11]. A4 family T C 2N is said to be an ideal of N, where N will denote the set of
all positive integers, if the following conditions hold:

(a) A, BeZ implies AUBE€T,

(b) Ae€Z, BC A implies BeT.

Definition 4. 4 nonempty family F C 2N is said to be a filter of N if the following conditions
hold.:

(@ ¢¢F,

(b) A, B € F implies ANB € F,

(c) Ae F, AC B implies B € F.
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If Z is a proper ideal of N (i.e., N ¢ 7 ), then the family of sets F(Z) ={M C N: 3 A€ Z:
M =N\ A} is a filter of N. It is called the filter associated with the ideal.

Definition 5. A proper ideal T is said to be admissible if {n} € T for each n € N.

Throughout Z will stand for a proper admissible ideal of N.

Definition 6 [11]. A sequence (xy,) of elements of R is said to be T-convergent to L € R if
for each € > 0 the set A(e) ={neN: |z, —L| >ec} €.

Let us begin this analysis with the following preliminaries.

Definition 7 [14].  Two nonnegative sequences = = (xy) and y = (yi) are said to be asymp-
totically equivalent if

lim— =1
ko Yk

(denoted by x© ~ y).
Definition 8 [9].  The sequence x = (xy,) is said to be statistically convergent to the number L
if for every € > 0

1
lim—[{k <n: |z — L| >¢e}| =0.
non

In this case we write st — limzy = L.

R. F. Patterson presented the following definition which is natural combination of Definitions 7
and 8.

Definition 9 [17].  Two nonnegative sequences © = (xy) and y = (yi) are said to be asymp-
totically statistical equivalent of multiple L provided that for every € > 0

{kgn: xk—L‘ZeH—O

Yk
(denoted by x 2 y), and simply asymptotically statistical equivalent if L = 1.

1
lim —
non

The generalized La Vallée Poussin mean is defined by

tn(x) = )\i Z Tk

" kelp

A sequence = = () is said to be [V, A]-summable to a number L if ¢,(z) — L and n — oo.
We write

1
V. A] = IITEHM,; |z, — L| = 0 for some L

for the set of sequences that are strongly summable by the La Vallée Poussin method. In the special
case where A, = n, for n = 1,2,3,..., the set [V, A] reduces to the set [C, 1]-summability defined
as follows:

o 1¢
[C,1] = {hyrlnnzmk — L| = 0 for some L}.

k=1

We now introduce the following definitions.
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Definition 10. Let A € A and x (t) be a nonnegative real-valued function which is measurable
in the interval (1,00) . The function x (t) is said to be [V, \] (Z)-summable to L if

n

. 1
I lim - / o () — L|dt = 0.
n—An+1

If Z = Zg, = {A C N: A is afinite subset}, [V, A] (Z)-summability becomes [V, A]-summability,
which is defined as follows (see [16]):

n

lim — / |z(t) — L|dt = 0.

n—An+1

Definition 11. 4 nonnegative real-valued function x (t) is said to be T-statistically convergent
or S\(I) convergent to L, if for every € > 0 and § > 0,

1
{neN:)\HteIn: yx(t)—ng}yza}ez.

In this case we write S\(Z) —limxz(t) = L or x(t) — L (Sx\(Z)). For T = Zgy, S\(Z)-convergence
again coincides with \-statistical convergence [16].

Following the above definitions we introduce the following new definitions related to the notions
asymptotically 7, -statistical equivalent of multiple L, and strongly Z,-asymptotically equivalent of
multiple L for nonnegative real-valued functions z (¢) and y (¢) .

3. Main results. In this section we give the main definitions and theorems of this paper.

Definition 12. Let A € A and T is an admissible ideal in N and x (t) , y (t) be two nonnegative
real-valued Lebesque measurable functions in the interval (1,00). We say that the functions xz(t) and
y(t) are strongly Ty-asymptotically equivalent of order o to L, where 0 < o < 1, if

V(T
(denoted by x(t) "D y(t)), and simply asymptotically statistical equivalent equivalent of order «

ViE(D)™
if L = 1. Furthermore, let V*(I)* denote the set of x(t) and y(t) such that x(t) ) y(t).

Remark 1. 1f T =T, = {A C N: A is a finite subset }, strongly Z)-asymptotically equivalent
of order o becomes strongly A-asymptotically equivalent of order o which is defined as follows:

Finally, for Z = 75, and a = 1 it becomes strongly A-asymptotically equivalent of function [16].
We now have the following definitions.
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Definition 13. Let x (t) and y (t) be two nonnegative real-valued Lebesque measurable func-
tions in the interval (1,00) and I be an admissible ideal in N. We say that the functions x (t) and
y (t) are Z-asymptotically statistical equivalent of order o to multiple L, where 0 < o < 1, if for

every € > 0 and 6 > 0
{nGN:lHkSn: ‘M—L‘zs}
n® y(t)

: : st@*
In this case we write x(t) ~ ~" y(t).
Definition 14. Let A € A and T is an admissible ideal in N and x (t) , y (t) be two nonnegative
real-valued Lebesque measurable functions in the interval (1,00). We say that the functions x (t)

and y (t) are Iy-asymptotically statistical equivalent of order « to multiple L, where 0 < o < 1, if
forevery e >0 and § > 0
t
fren [0 ]2
y(t)

{n eN: =
A%

(denoted by x(t) (t)), and simply asymptotically statistical equivalent of order « if L = 1.

We shall denote by S (Z)“ the collection of all Z,-asymptotically statistical equivalent of order
« to multiple L.

For 7 = Zg,, Z,-asymptotically statistical equivalent of order « again coincides with
A-asymptotically statistical equivalent of order o which is defined as follows:

Definition 15. Let A\ € A and z(t), y(t) be two nonnegative real-valued Lebesque measurable
functions in the interval (1,00). We say that the functions x (t) and y (t) are A-asymptotically
statistical equivalent of order o to multiple L, where 0 < a < 1, if for every € > 0

1 t
neN: —|qtel,: &—L >ep|=0,.
Y y(t)
4. Main theorems.

Theorem 1. Let 0 < a < 3 < 1. Then S)(Z)® C S\(T)”.

25}61

25}61

SL (@~
~Y

Proof. Let 0 < o < 3 < 1. Then for every € > 0 we have
’{te[n: M—L‘Zs}‘ Hte[n: ‘W—L‘Ze}
(1) § y(1)

X - A
and so, for any § > 0,

Yy .
)\5 >0, C<neN: o

n € N:

Hence, if the set on the right-hand side belongs to the ideal Z, then obviously the set on the left-hand
side also belongs to Z. This shows that Sy(Z)® C Sy(Z)”.
Theorem 1 is proved.
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Corollary 1. If two the functions x (t) and y (t) are Iyx-asymptotically statistical equivalent of
order « to multiple L for some 0 < o« < 1, then they are T -statistically convergent functions to L,
ie, S\(Z)* C S\(Z).

Similarly we can show that the following theorems are valid.

Theorem 2. Let 0 < o < B < 1. Then

(i) S(Z)* c S(Z)°.

i) [V A" (Z) c VN (D).

(iii) In particular S(Z)* C S(Z) and [V,N\]* (Z) C [V, N\ (Z) .

Theorem 3. Let A = {\,}nen € A. Then

L a L [
@ 1 () 2 y(0), then 2(t) X (o)
(b) VL(T)* is a proper subset of SL(T)® for every ideal T.
V/\L(I)a

Proof. (a)Lete > 0and z(t) "~ y(t). We have
/ x(t)—L‘dtz / x(t)—L‘dt>s{t€In ‘M—L'>e}
y(t) y(t) y(t)
teln teln& %—L‘>a

So, for given § > 0,

x(t) ‘ } 1 / x(t) '
—ktel,: |—=—L|>ep|>0= — —~ — L|dt > &6,
A%{ ‘y(t) Ay y(t)
tel,
1e.,
{nGN:l{tGIn:‘x(t)—L‘zs} 25}C
A% y(t)
C nEN:i /:E(t)—L’dtzs > &b
AN y(t)
tel,

Since right-hand belongs to Z, then left-hand also belongs to Z and this completes the proof.

S5 (@) V(D) .
(b) To show that z(t) "~ y(t) & x(t) "~ y(t), take a fixed A € Z. Define a function x by

t forn—[/A]+1<t<n, n¢A,
z(t) =<t forn—A¢+1<t<n, neaA,

0 otherwise,

and y(t) = 1. Then, forevery e > 0 (0 <e < 1),

z(t) VAR
— L,: |—%—-L|> =
X {te ‘y@) '—5} T
asn — oo and n ¢ A, so, for every J > 0,
sllrem (55 -1z} 27)
neN: —Ktel,: |—=—L|>cp|>6dp, CAU{L2,....,m
e l{een: 50 { }
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for some m € N. Since Z is admissible so it follows that it is Zy -asymptotically statistical equivalent
of order o to multiple L. Obviously

1

An

tely,

x(t)

o0 L‘—>oo(n—>oo),

i.e., it is not strongly Z)-asymptotically equivalent of order « to multiple L. Note that if A € 7 is
infinite, then it is not 7, -asymptotically statistical equivalent of order v of multiple L.

SH(ID)* A S5 (@) A

Theorem 4. xz(t) ~' y(t) implies x(t)

~" y(t) if iminf—= > 0.
n—oo N
Proof. For given € > 0,

L 28124

> b
T ne A%

Effer -1l

{ren: |50 -o|2<}].
= a, then {nEN:ATo{

< % Lis finite. For >0,
n* 2

o
If lim inf 2
n—oo N

{nEN:éﬁ%GLﬂ 12—1425}25}C
C{neN:nla {te[n: xi;—L‘ZE}‘ZZ(S}U

> <

U{neN:’2<a}.
n 2
Since Z is admissible, the set on the right-hand side belongs to Z and this completed the proof.
Theorem 5. If'\ € A be such that lim,, % =1, then x(t) Ko y(t) implies x(t) sto" y(t).
Proof. Let § > 0 be given. Since lim,, z—g = 1, we can choose m € N such that 2—’2 — 1‘ < g

for all n > m. Now observe that, for ¢ > 0,

o

1) 1
= -+ — I, : —L| >
S Hte L fo() — LI 2 €}
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for all n > m. Hence, for any § > 0 we write

{neNznla{tgn:\x(t)—L\Zg}\zd}C

1 5
c {neN: — el a() — Ll 2 e} > 2}U{1,2,3,...,m}.

L @
This shows that z(t) 8 y(t).

Theorem 5 is proved.

Remark 2. We do not know whether the condition in Theorem 5 is necessary and leave it is an
open problem.

Now we shall prove a more inclusion relation theorem.

Theorem 6. Let A = (\,) and p = (puy) be two functions in A such that \, < uy, for all
n € N and let o and B be fixed real numbers such that 0 < a < g < 1.

@ 7 -
lim inf—g >0, (1)
n—o0 /~Ln
then SL(I)° C SE(T).
@) If
. Un
A=t @

then SL(T)™ C Sﬁ(I)B.
Proof. (i) Suppose that A\, < u, for all n € N and let (1) be satisfied. For given € > 0 we

have
{teJn: x(t)—L‘ 25} o {te[n: x(t)—L‘ 25},
y(t) y(t)
where I, = [n — A\, + 1,n] and J,, = [n — py, + 1, n]. Therefore we can write

O FORED (R S G FORU B

I

and so, for all n € N and for any § > 0, we obtain

{neN:l {te[n: ‘M—L‘Zs} 26}@
AY y(t)
Q{nENzlﬁ{teJn: M—L‘Zs}‘Zé)\g}GI
Wn, yt) Hn

Hence, SH(T)% C SE(T)>.
(ii) Let # = (z4) and y = (yx) € SE(Z)® and (2) be satisfied. Since I, C .J,, for e > 0 we
may write

1n

{n—,un<t§n—)\n:

N FOR RS (b
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+% {te[n: x<t>—L‘>€H§
Hn y(t)
< Hn ﬂA”Jriﬁ {te[n ’ (t)—L‘za}‘g

Ln, An y(t)

8
e FORCED|
+ tel,: |2 >l <

. % Y { y(t)

Hn 1
< (£ i
_<A§ >+A%

for all n € N. Hence, for any § > 0, we have

{neN:lﬁHteJn: m—L’ZEHEé C

n, y(t)

Q{neNzl'{tEIn: M—L‘Zs}‘Zé €7
AL y(t)

This implies that S{(Z)* € SE(T)P.

Theorem 6 is proved.

From Theorem 6 we have the following corollaries.

Corollary 2. Let \ = (\,) and p = (un) be two sequences in A such that N\, < p,, for all
n € N. If (1) holds, then

(i) SHT)> C SE(T)™ for each a € (0,1],

(i) SH(T) C SY(T)™ for each a € (0,1],

(i) SH(T) € S§(2).

Corollary 3. Let \ = (\,) and p = (un) be two sequences in A such that N\, < iy, for all
n € N. If (2) holds, then

(i) SY(T)> C SHT)™ for each a € (0,1],

(i) SL(Z)> C Sﬁ(l’) Sor each a € (0,1],

(i) SY(T) € SL(T).
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