Чжан Чи* (Ун-т науки и технологии Китая), **А. Н. Скиба** (Гомел. гос. ун-т им. Ф. Скорины, Беларусь)

О Σ_t^{σ} -ЗАМКНУТЫХ КЛАССАХ КОНЕЧНЫХ ГРУПП *

All analyzed groups are finite. Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} . If n is an integer, then the symbol $\sigma(n)$ denotes a set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \varnothing\}$. Integers n and m are called σ -coprime if $\sigma(n) \cap \sigma(m) = \varnothing$.

Let t>1 be a natural number and let $\mathfrak F$ be a class of groups. Then we say that $\mathfrak F$ is Σ_t^{σ} -closed provided $\mathfrak F$ contains each group G with subgroups $A_1,\ldots,A_t\in\mathfrak F$ whose indices $|G:A_1|,\ldots,|G:A_t|$ are pairwise σ -coprime.

We study Σ_t^{σ} -closed classes of finite groups.

Усі розглянуті в роботі групи є скінченними. Нехай $\sigma = \{\sigma_i | i \in I\}$ — деяке розбиття множини всіх простих чисел \mathbb{P} . Якщо n — ціле число, символ $\sigma(n)$ позначає множину $\{\sigma_i | \sigma_i \cap \pi(n) \neq \varnothing\}$. Цілі числа n і m називаються σ -взаємно простими, якщо $\sigma(n) \cap \sigma(m) = \varnothing$.

Нехай t>1 — натуральне число і \mathfrak{F} — клас груп. Тоді говорять, що \mathfrak{F} є Σ_t^{σ} -замкненим, якщо \mathfrak{F} містить кожну групу G з підгрупами $A_1,\ldots,A_t\in\mathfrak{F}$, індекси яких $|G:A_1|,\ldots,|G:A_t|$ є попарно σ -взаємно простими.

В даній роботі досліджуються Σ_t^{σ} -замкнені класи скінченних груп.

1. Введение. Все рассматриваемые в данной работе группы конечны, и G всегда обозначает конечную группу. Более того, \mathbb{P} — множество всех простых чисел, $\pi = \{p_1, \dots, p_n\} \subseteq \mathbb{P}$ и $\pi' = \mathbb{P} \setminus \pi$. Если n — натуральное число, то символ $\pi(n)$ обозначает множество всех его простых делителей n; как обычно, $\pi(G) = \pi(|G|)$ — множество всех простых делителей порядка группы G.

Следуя Л. А. Шеметкову [1], символом σ будем обозначать некоторое разбиение множества \mathbb{P} , т. е. $\sigma = \{\sigma_i | i \in I\}$, где $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \varnothing$ для всех $i \neq j$, $\Pi \subseteq \sigma$ и $\Pi' = \sigma \setminus \Pi$. Группа G называется [2] σ -примарной, если $G - \sigma_i$ -группа для некоторого i; σ -разрешимой, если каждый главный фактор группы G является σ -примарным.

В дальнейшем $\sigma(n) = \{\sigma_i | \sigma_i \cap \pi(n) \neq \varnothing\}$ [3, 4], $\sigma(G) = \sigma(|G|)$ и $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$. Натуральные числа n и m называются σ -взаимно простыми, если $\sigma(n) \cap \sigma(m) = \varnothing$.

Напомним, что G называется σ -разложимой [1] или σ -нильпотентной [5], если $G = G_1 \times \ldots \times G_n$ для некоторых σ -примарных групп G_1, \ldots, G_n , и мета- σ -нильпотентной [4], если G является расширением некоторой σ -нильпотентной группы с помощью σ -нильпотентной группы.

Отметим также, что σ -нильпотентные группы оказались весьма полезными в теории формаций (см., например, статьи [6, 7] и монографии [1] (гл. IV), [8] (гл. 6)). В последние годы σ -нильпотентные группы и различные классы мета- σ -нильпотентных групп нашли новые и в определенной степени неожиданные приложения в теориях перестановочных и обобщенно субнормальных подгрупп (см., в частности, статьи [2, 9–18] и обзор [4]). Это обстоятельство указывает на то, что задача дальнейшего изучения σ -нильпотентных и мета- σ -нильпотентных групп является вполне актуальной и интересной.

В данной работе мы изучаем Σ_t^{σ} -замкнутые классы мета- σ -нильпотентных групп в смысле следующего определения.

^{*} Исследования Чжан Чи поддержаны Китайским стипендиальным советом и НФСО Китая (11771409).

1708 ЧЖАН ЧИ, А. Н. СКИБА

Определение 1.1. Пусть t > 1 — натуральное число и \mathfrak{F} — класс групп. Тогда мы говорим, что \mathfrak{F} является Σ_t^{σ} -замкнутым, если \mathfrak{F} содержит каждую группу G, имеющую подгруппы $A_1, \ldots, A_t \in \mathfrak{F}$, индексы которых $|G: A_1|, \ldots, |G: A_t|$ попарно σ -взаимно просты.

Символ σ в этом определении мы опускаем в случае, когда $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}$ (здесь используем обозначения из работы [9]). Таким образом, в этом случае мы рассматриваем Σ_t -замкнутые классы групп в обычном смысле [1, с. 44].

Напомним, что класс групп $\mathfrak F$ называется формацией, если: (i) $G/N \in \mathfrak F$ для каждой группы $G \in \mathfrak F$ и любой ее нормальной подгруппы N, (ii) $G/(N \cap R) \in \mathfrak F$ для любой группы G с $G/N \in \mathfrak F$ и $G/R \in \mathfrak F$. Формация $\mathfrak F$ называется насыщенной или локальной, если $G \in \mathfrak F$ для любой группы G с условием $G/\Phi(G) \in \mathfrak F$.

Мы называем функцию f вида

$$f: \sigma \to \{$$
формации групп $\}$

 ϕ ормационной σ - ϕ ункцией [19] и полагаем

$$LF_{\sigma}(f) = \Big(G \mid G = 1$$
 или $G \neq 1$ и $G/O_{\sigma'_i,\sigma_i}(G) \in f(\sigma_i)$ для всех $\sigma_i \in \sigma(G)\Big)$.

Определение 1.2. Если для некоторой формационной σ -функции f мы имеем $\mathfrak{F} = LF_{\sigma}(f)$, то говорим, следуя [19], что класс \mathfrak{F} является σ -локальным, а $f - \sigma$ -локальным определением \mathfrak{F} .

Рассмотрим несколько примеров.

- **Пример 1.1.** (i) В силу результатов [20] (IV, 3.2) в случае, когда $\sigma = \sigma^1$, формационная σ -функция и σ -локальная формация это соответственно формационная функция и локальная формация в обычном смысле [20] (IV, определение 3.1) (см. также [8], гл. 2). В этом случае вместо $LF_{\sigma}(f)$ мы используем, как обычно, символ LF(f) [20] (IV, определение 3.1).
 - (ii) Для формации всех единичных групп $\mathfrak I$ имеем $\mathfrak I = LF_{\sigma}(f)$, где $f(\sigma_i) = \varnothing$ для всех i.
- (ііі) Пусть \mathfrak{N}_{σ} класс всех σ -нильпотентных групп. Тогда \mathfrak{N}_{σ} формация [2] и, очевидно, $\mathfrak{N}_{\sigma}=LF_{\sigma}(f)$, где $f(\sigma_i)=\mathfrak{I}$ для всех i.
- (iv) Пусть теперь \mathfrak{N}_{σ}^2 класс всех мета- σ -нильпотентных групп. Тогда $\mathfrak{N}_{\sigma}^2 = LF_{\sigma}(f)$, где $f(\sigma_i) = \mathfrak{N}_{\sigma}$ для всех i.
- (v) Формация всех сверхразрешимых групп $\mathfrak U$ не является σ -локальной для всех σ с $\sigma \neq \sigma^1$. Действительно, предположим, что $\mathfrak U = LF_\sigma(f)$ является σ -локальной и $|\sigma_i| > 1$ для некоторого i. Пусть $p,q \in \sigma_i$, где p > q. Наконец, пусть $G = C_q \wr C_p = K \rtimes C_p$ регулярное сплетение групп C_q и C_p с $|C_q| = q$ и $|C_p| = p$, где K базовая группа сплетения G. Тогда $C_G(K) = K$, а также $O_{\sigma'_i,\sigma_i}(G) = G$ и $\sigma(G) = \{\sigma_i\}$. Поскольку $C_p \in \mathfrak U$, то $f(\sigma_i) \neq \varnothing$. Следовательно, $G \in LF_\sigma(f) = \mathfrak U$, и поэтому $G = C_q \times C_p$, так как p > q. Противоречие. Следовательно, мы имеем (v).

Теория Σ_t -замкнутых классов разрешимых групп и ее приложения были рассмотрены в работе [21] (см. также [1] (гл. 1) и [22] (гл. 2)).

Основным результатом настоящей статьи является следующая теорема.

Теорема 1.1. Каждая σ -локальная формация мета- σ -нильпотентных групп является Σ_4^{σ} -замкнутой.

В случае, когда $\sigma = \sigma^1$, из теоремы 1.1 получаем следующие известные факты.

Следствие 1.1 [23]. Если G имеет четыре сверхразрешимые подгруппы A_1 , A_2 , A_3 , A_4 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ попарно взаимно просты, то G сверхразрешима.

Следствие 1.2. Если G имеет четыре метанильпотентные подгруппы A_1 , A_2 , A_3 , A_4 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ попарно взаимно просты, то G метанильпотентна.

Следствие 1.3. Предположим, что G имеет четыре подгруппы A_1 , A_2 , A_3 , A_4 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ попарно взаимно просты. Если A_i' является нильпотентной для всех i=1,2,3,4, то G' нильпотентна.

Наконец, из теоремы 1.1 получаем следующий результат.

Следствие 1.4 [21]. Каждая локальная формация метанильпотентных групп является Σ_4 -замкнутой.

В теории π -разрешимых групп ($\pi=\{p_1,\ldots,p_n\}$) рассматривается разбиение $\sigma=\sigma^{1\pi}=\{\{p_1\},\ldots,\{p_n\},\pi'\}$ множества $\mathbb P$ [9]. Заметим, что G является $\sigma^{1\pi}$ -разрешимой в том и только в том случае, когда G π -разрешима; $\sigma^{1\pi}$ -нильпотентной в том и только в том случае, когда G является π -специальной [24], т. е. $G=O_{p_1}(G)\times\ldots\times O_{p_n}(G)\times O_{\pi'}(G)$.

Таким образом, мы получаем в этом случае из теоремы 1.1 следующие утверждения.

Спедствие 1.5. Предположим, что G имеет четыре мета- π -специальные подгруппы A_1 , A_2 , A_3 , A_4 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ попарно взаимно просты и каждый из них является либо π -числом, либо π' -числом. Предположим также, что только одно из чисел $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ является π' -числом. Тогда G является мета- π -специальной.

Спедствие 1.6. Предположим, что G имеет четыре подгруппы A_1 , A_2 , A_3 , A_4 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ попарно взаимно просты и каждый из них является либо π -числом, либо π' -числом. Предположим также, что только одно из чисел $|G:A_1|$, $|G:A_2|$, $|G:A_3|$, $|G:A_4|$ является π' -числом. Если A_i' является π -специальной для всех i=1,2,3,4, то G' является π -специальной.

Если для подгруппы A группы G имеет место $\sigma(|A|) \subseteq \Pi$ и $\sigma(|G:A|) \subseteq \Pi'$, то A называется холловой Π -подгруппой [4] группы G. Мы говорим, что G является Π -замкнутой, если G имеет нормальную холлову Π -подгруппу.

Доказательству теоремы 1.1 предшествует много вспомогательных результатов. Следующая теорема является одним из них.

Теорема 1.2. (i) Класс всех σ -разрешимых Π -замкнутых групп \mathfrak{F} является Σ_3^{σ} -замкнутым. (ii) Каждая формация σ -нильпотентных групп \mathfrak{M} является Σ_3^{σ} -замкнутой.

Следствие 1.7. Классы всех σ -разрешимых групп и всех σ -нильпотентных групп являются Σ_3^{σ} -замкнутыми.

В случае, когда $\sigma = \sigma^1$, из следствия 1.7 получаем следующие известные результаты.

Следствие 1.8 ([20], гл. I, теорема 3.4). Если G имеет три разрешимые подгруппы A_1 , A_2 и A_3 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ попарно взаимно просты, то G разрешима.

1710 ЧЖАН ЧИ, А. H. СКИБА

Следствие 1.9 [25]. Если G имеет три нильпотентные подгруппы A_1 , A_2 и A_3 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ попарно взаимно просты, то G нильпотентна.

Следствие 1.10 [23]. Если G имеет три абелевы подгруппы A_1 , A_2 и A_3 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ попарно взаимно просты, то G абелева.

В случае, когда $\sigma = \sigma^{1\pi}$, из теоремы 1.2 получаем следующие результаты.

Следствие 1.11. Предположим, что G имеет три π -разрешимые подгруппы A_1 , A_2 , A_3 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ попарно взаимно просты и каждый из них является либо π -числом, либо π' -числом. Предположим также, что только одно из чисел $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ является π' -числом. Тогда G является π -разрешимой.

Следствие 1.12. Предположим, что G имеет три π -специальные подгруппы A_1 , A_2 , A_3 , индексы которых $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ попарно взаимно просты и каждый из них является либо π -числом, либо π' -числом. Предположим также, что только одно из чисел $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ является π' -числом. Тогда G является π -специальной.

2. Общие свойства σ -локальных формаций. Если \mathfrak{M} и \mathfrak{H} — классы групп, то \mathfrak{MH} — класс всех групп G таких, что для некоторой нормальной подгруппы N группы G имеет место $G/N \in \mathfrak{H}$ и $N \in \mathfrak{M}$. Гашютцево произведение $\mathfrak{M} \circ \mathfrak{H}$ классов \mathfrak{M} и \mathfrak{H} определяется условием: $G \in \mathfrak{M} \circ \mathfrak{H}$ в том и только в том случае, когда $G^{\mathfrak{H}} \in \mathfrak{M}$. Класс \mathfrak{F} называется наследственным (в смысле Мальцева [26]), если $G \in \mathfrak{F}$ в случае, когда $G \leq A \in \mathfrak{F}$.

Все утверждения следующей леммы известны (см., например, [27] (гл. II) или [20] (гл. IV)), и, фактически, каждое из них может быть доказано непосредственной проверкой.

Лемма 2.1. Пусть \mathfrak{M} , \mathfrak{H} и \mathfrak{F} — формации.

- (1) $\mathfrak{M} \circ \mathfrak{H} формация.$
- (2) Если \mathfrak{M} является наследственной, то $\mathfrak{M}\mathfrak{H}=\mathfrak{M}\circ\mathfrak{H}$.
- (3) $(\mathfrak{M} \circ \mathfrak{H}) \circ \mathfrak{F} = \mathfrak{M} \circ (\mathfrak{H} \circ \mathfrak{F}).$
- (4) Если Ж и Ҕ являются наследственными, то ЖҔ также наследственная.
- (5) Если \mathfrak{M} является насыщенной и $\pi(\mathfrak{H}) \subseteq \pi(\mathfrak{M})$, то $\mathfrak{M} \circ \mathfrak{H}$ также насыщенная.

Класс всех Π -групп мы обозначим через \mathfrak{G}_{Π} , а класс всех σ -разрешимых Π -групп — через \mathfrak{G}_{Π} . В частности, $\mathfrak{G}_{\sigma'_i}$ — класс всех σ'_i -групп, \mathfrak{G}_{σ_i} — класс всех σ -разрешимых σ'_i -групп.

Через $F_{\Pi}(G)$ обозначим произведение всех нормальных Π' -замкнутых подгрупп группы G. Мы пишем также $F_{\sigma_i}(G)$ вместо символа $F_{\{\sigma_i\}}(G)$.

Лемма 2.2. (1) Класс всех (σ -разрешимых) Π -замкнутых групп $\mathfrak F$ является наследственной формацией. Более того,

- (2) если E нормальная подгруппа в G и $E/E \cap \Phi(G) \in \mathfrak{F}$, то $E \in \mathfrak{F}$; следовательно, формация \mathfrak{F} является насыщенной;
 - (3) если $A, B \in \mathfrak{F}$ нормальные подгруппы в G и G = AB, то $G \in \mathfrak{F}$;
 - (4) если E субнормальная подгруппа в G, то $F_{\Pi}(G) \cap E = F_{\Pi}(E)$.

Доказательство. (1) Понятно, что $\mathfrak{F} = \mathfrak{G}_{\Pi}\mathfrak{G}_{\Pi'}$. Следовательно, \mathfrak{F} — наследственная формация по лемме 2.1 (пп. 1, 2, 4).

(2) Пусть $H/E\cap\Phi(G)$ — нормальная холлова Π -подгруппа в $E/E\cap\Phi(G)$. Тогда $H/E\cap\Phi(G)$ является характеристической в $E/E\cap\Phi(G) \le G/E\cap\Phi(G)$, и поэтому H нормальна в G. Пусть $D=O_{\Pi'}(E\cap\Phi(G))$. Тогда, поскольку $E\cap\Phi(G)$ является нильпотентной, D — холлова Π' -подгруппа в H. Следовательно, согласно теореме Шура — Цассенхауза, H имеет холлову

П-подгруппу V и любые две холловы П-подгруппы группы H сопряжены в H. Следовательно, $G = HN_G(V) = (VD))N_G(V) = N_G(V)$ согласно обобщенной лемме Фраттини. Таким образом, V нормальна в G. Наконец, заметим, что V является холловой П-подгруппой в E, так как $\sigma(|E/E \cap \Phi(G): H/E \cap \Phi(G)|) \cap \Pi = \emptyset$, и поэтому $E \in \mathfrak{F}$.

(3) Если V — холлова Π -подгруппа в A, то V является характеристической в A, и поэтому V нормальна в G. Аналогично, холлова Π -подгруппа W группы B нормальна в G. Более того,

$$G/VW = AB/VW = (AVW/VW)(BVW/VW),$$

где

$$AVW/VW \simeq A/A \cap VW = A/V(A \cap W) \simeq (A/V)/(V(A \cap W)/V$$

и $BVW/VW-\Pi'$ -группы. Следовательно, VW-холлова Π -подгруппа в G, и поэтому $G\in\mathfrak{F}$.

(4) Так как группа A является Π' -замкнутой в том и только в том случае, когда $A \in \mathfrak{G}_{\Pi'}\mathfrak{G}_{\Pi}$, утверждение (4) справедливо согласно предложению [20] (гл. VIII).

Лемма 2.2 доказана.

Если f — формационная σ -функция, то символ $\mathrm{Supp}\,(f)$ обозначает $\mathit{cynnopm}$ функции f, т. е. множество всех σ_i таких, что $f(\sigma_i) \neq \varnothing$.

Лемма 2.3. Пусть $\mathfrak{F} = LF_{\sigma}(f)$ и $\Pi = \text{Supp}(f)$. Тогда:

- (1) $\Pi = \sigma(\mathfrak{F})$;
- (2) $G \in \mathfrak{F}$ в том и только в том случае, когда $G \in \mathfrak{G}_{\sigma'_i}\mathfrak{G}_{\sigma_i}f(\sigma_i)$ для всех $\sigma_i \in \sigma(G)$;
- (3) $\mathfrak{F} = (\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'} \mathfrak{G}_{\sigma_i} f(\sigma_i)) \cap \mathfrak{G}_{\Pi}$; следовательно, \mathfrak{F} насыщенная формация;
- (4) если каждая группа класса $\mathfrak F$ является σ -разрешимой, то $\mathfrak F=\left(\bigcap_{\sigma_i\in\Pi}\mathfrak G_{\sigma_i'}\mathfrak G_{\sigma_i}f(\sigma_i)\right)\cap\mathfrak G_\Pi$.

Доказательство. (1) Пусть $\sigma_i \in \Pi$, тогда $1 \in f(\sigma_i)$ и для всех σ_i -групп $G \neq 1$ имеет место $\sigma(G) = \{\sigma_i\}$ и $O_{\sigma_i',\sigma_i}(G) = G$. Следовательно, $G \in LF_{\sigma}(f) = \mathfrak{F}$, и поэтому $\sigma_i \in \sigma(\mathfrak{F})$. Значит, $\Pi \subseteq \sigma(\mathfrak{F})$. С другой стороны, если $\sigma_i \in \sigma(\mathfrak{F})$, то для некоторой группы $G \in \mathfrak{F}$ имеет место $\sigma_i \in \sigma(G)$ и $G/F_{\sigma_i}(G) \in f(\sigma_i)$. Таким образом, $\sigma_i \in \Pi$, и поэтому $\Pi = \sigma(\mathfrak{F})$.

- (2) Если $G \in \mathfrak{F}$ и $\sigma_i \in \sigma(G)$, то $G/F_{\sigma_i}(G) \in f(\sigma_i)$, где $F_{\sigma_i}(G)$ является σ_i' -замкнутой по лемме 2.2(3). Значит, $G \in \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i)$ по лемме 2.2(1). Аналогично, если для всех $\sigma_i \in \sigma(G)$ имеет место $G \in \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i)$, то $G/F_{\sigma_i}(G) \in f(\sigma_i)$, и поэтому $G \in \mathfrak{F}$.
- (3) Если $G \in \mathfrak{F}$, то $\sigma(G) \subseteq \Pi$, и поэтому $G \in \mathfrak{G}_{\Pi}$. Более того, в этом случае для всех $\sigma_i \in \sigma(G)$ имеет место $G \in \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i)$ по утверждению (2) леммы. Наконец, если $\sigma_i \in \Pi \setminus \sigma(G)$, то $G \in \mathfrak{G}_{\sigma_i'} \subseteq \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i)$, так как класс $\mathfrak{G}_{\sigma_i'}$ является наследственным. Следовательно, $\mathfrak{F} \subseteq (\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i)) \cap \mathfrak{G}_{\Pi}$. Значит, $\mathfrak{F} = (\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i)) \cap \mathfrak{G}_{\Pi}$ является наследственной формацией в силу лемм 2.1(5) и 2.2(1), (2). Следовательно, мы имеем (3).
 - (4) См. доказательство утверждения (3).

Лемма 2.3 доказана.

Лемма 2.4. Если $\mathfrak{F} = LF_{\sigma}(f)$, то $\mathfrak{F} = LF_{\sigma}(t)$, где $t(\sigma_i) = f(\sigma_i) \cap \mathfrak{F}$ для всех $\sigma_i \in \sigma$.

Доказательство. Прежде всего заметим, что в силу леммы 2.3(3) t — формационная σ -функция и $LF_{\sigma}(t) \subseteq \mathfrak{F}$. С другой стороны, если $G \in \mathfrak{F}$, то $G/F_{\sigma_i}(G) \in f(\sigma_i) \cap \mathfrak{F} = t(\sigma_i)$ для всех $\sigma_i \in \sigma(G)$, и поэтому $G \in LF_{\sigma}(t)$. Следовательно, $\mathfrak{F} = LF_{\sigma}(t)$.

Лемма 2.4 доказана.

Предложение 2.1. Пусть f и h — формационные σ -функции и $\Pi = \mathrm{Supp}\,(f)$. Предположим, что $\mathfrak{F} = LF_{\sigma}(f) = LF_{\sigma}(h)$.

1712 ЧЖАН ЧИ, A. H. СКИБА

- (1) Если $\sigma_i \in \Pi$, то $\mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F}) = \mathfrak{G}_{\sigma_i}(h(\sigma_i) \cap \mathfrak{F}) \subseteq \mathfrak{F}$.
- (2) $\mathfrak{F}=LF_{\sigma}(F)$, где F- такая формационная σ -функция, что

$$F(\sigma_i) = \mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F}) = \mathfrak{G}_{\sigma_i}F(\sigma_i)$$

для всех $\sigma_i \in \Pi$.

Доказательство. (1) Предположим, что $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})\not\subseteq\mathfrak{F}$ и G — группа минимального порядка в $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})\setminus\mathfrak{F}$. Заметим, что $f(\sigma_i)\cap\mathfrak{F}$ — формация по лемме 2.3(3), поэтому $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})$ — формация по лемме 2.1(1), (2). Следовательно, $R=G^{\mathfrak{F}}\leq G^{f(\sigma_i)\cap\mathfrak{F}}$ — единственная минимальная нормальная подгруппа в G, и поэтому $R-\sigma_i$ -группа.

Более того, $F_{\sigma_i}(G) = O_{\sigma_i}(G)$ и $F_{\sigma_j}(G/R) = F_{\sigma_j}(G)/R$ для всех $j \neq i$. Следовательно, поскольку $G/R \in \mathfrak{F}$, имеет место

$$(G/R)/F_{\sigma_i}(G/R) \simeq G/F_{\sigma_i}(G) \in f(\sigma_i)$$

для всех $\sigma_i \in \sigma(G) \setminus \{\sigma_i\}$. Наконец, справедливо

$$G/F_{\sigma_i}(G) = G/O_{\sigma_i}(G) \in f(\sigma_i),$$

так как $G \in \mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F})$ и класс \mathfrak{G}_{σ_i} является наследственным. Но тогда $G \in \mathfrak{F}$. Противоречие. Следовательно, $\mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F}) \subseteq \mathfrak{F}$.

Теперь предположим, что $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})\not\subseteq\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{F})$ и G — группа минимального порядка в $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})\backslash\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{F})$. Тогда в G имеется лишь одна минимальная нормальная подгруппа $R,\ R=G^{\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{F})}$ и $R\not\leq O_{\sigma_i}(G)$. Следовательно, $O_{\sigma_i}(G)=1$.

Пусть A — неединичная σ_i -группа и $E=A\wr G=K\rtimes G$ — регулярное сплетение A и G, где K — базовая группа сплетения E. Тогда $O_{\sigma'_i}(E)=1$, поэтому $F_{\sigma_i}(E)=O_{\sigma_i}(E)=E(O_{\sigma_i}(E)\cap G)=K$, так как $O_{\sigma_i}(G)=1$. Более того, поскольку $G\in\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})\subseteq\mathfrak{F}$, имеет место $E\in\mathfrak{F}$, и поэтому $E/F_{\sigma_i}(E)=E/K\simeq G\in h(\sigma_i)\cap\mathfrak{F}\subseteq\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{F})$. Следовательно, $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})\subseteq\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{F})$, что влечет $\mathfrak{G}_{\sigma_i}(f(\sigma_i)\cap\mathfrak{F})=\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{F})$.

(2) Пусть $\mathfrak{M} = LF_{\sigma}(F)$. Тогда

$$\mathfrak{M} = \left(\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'} \mathfrak{G}_{\sigma_i} (\mathfrak{G}_{\sigma_i} (f(\sigma_i) \cap \mathfrak{F}))\right) \cap \mathfrak{G}_{\Pi} =$$

$$= \left(\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'} \mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F})\right) \cap \mathfrak{G}_{\Pi} = \mathfrak{F}$$

в силу лемм 2.3(3) и 2.4. Следовательно, мы имеем (2).

Предложение доказано.

Следствие 2.1. (1) Для каждой формационной σ -функции f класс $LF_{\sigma}(f)$ является непустой насыщенной формацией.

(2) Каждая σ -локальная формация $\mathfrak F$ имеет и притом единственное σ -локальное определение F такое, что для любого σ -локального определения f формации $\mathfrak F$ и для любого $\sigma_i \in \sigma(\mathfrak F)$ имеет место

$$F(\sigma_i) = \mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F}) = \mathfrak{G}_{\sigma_i}F(\sigma_i).$$

Доказательство. (1) Прежде всего заметим, что каждая единичная группа принадлежит $LF_{\sigma}(f)$ по определению, поэтому этот класс не является пустым. С другой стороны, класс $LF_{\sigma}(f)$ является насыщенной формацией по лемме 2.3(3).

(2) Непосредственно следует из предложения 2.1(2).

Следствие доказано.

Напомним, что form (\mathfrak{X}) обозначает пересечение всех формаций, содержащих совокупность групп \mathfrak{X} .

Предложение 2.2. Пусть $\mathfrak{F} = LF_{\sigma}(f) - \sigma$ -локальная формация, $\Pi = \sigma(\mathfrak{F}), m - m$ акая формационная σ -функция, что $m(\sigma_i) = \text{form}\left(G/F_{\sigma_i}(G) \mid G \in \mathfrak{F}\right)$ для всех $\sigma_i \in \Pi$ и $m(\sigma_i) = \varnothing$ для всех $\sigma_i \in \Pi'$. Тогда:

- (i) $\mathfrak{F} = LF_{\sigma}(m)$,
- (ii) $m(\sigma_i) \subseteq h(\sigma_i) \cap \mathfrak{F}$ для каждой формационной σ -функции h формации \mathfrak{F} и для каждого $\sigma_i \in \sigma$.

Доказательство. Пусть $\mathfrak{F}(\sigma_i)=(G/F_{\sigma_i}(G)|\ G\in\mathfrak{F})$ для всех $\sigma_i\in\Pi$ и $\mathfrak{M}=LF_{\sigma}(m)$. Тогда $\mathfrak{F}\subseteq\mathfrak{M}$. С другой стороны, $\mathfrak{F}(\sigma_i)\subseteq f(\sigma_i)$, и поэтому $m(\sigma_i)\subseteq f(\sigma_i)$ для всех $\sigma_i\in\Pi$. Кроме того, имеет место $m(\sigma_i)=\varnothing\subseteq f(\sigma_i)$ для всех $\sigma_i\in\Pi'$. Следовательно, $\mathfrak{M}\subseteq\mathfrak{F}$, и поэтому $\mathfrak{M}=\mathfrak{F}$.

Утверждение доказано.

Мы называем σ -локальное определение m формации \mathfrak{F} в предложении 2.2 наименьшим σ -локальным определением формации \mathfrak{F} .

- 3. Доказательства теорем 1.1 и 1.2. Доказательство теоремы 1.2. (i) Предположим, что \mathfrak{F} не является Σ_3^σ -замкнутой и G группа минимального порядка среди групп G таких, что $G \not\in \mathfrak{F}$, но G имеет подгруппы $A_1,A_2,A_3 \in \mathfrak{F}$, индексы которых $|G:A_1|, |G:A_2|$ и $|G:A_3|$ попарно σ -взаимно просты. Тогда $G=A_iA_j$ для всех $i\neq j$. Пусть R минимальная нормальная подгруппа в G.
- (1) G/R является σ -разрешимой и Π -замкнутой. Следовательно, R не является σ -примарной Π -группой.

Если для некоторого i имеет место $A_i \leq R$, то для любого $j \neq i$ имеем $G/R = A_i A_j/R = A_j R/R \simeq A_j/(A_j \cap R) \in \mathfrak{F}$, так как \mathfrak{F} — формация по лемме 2.2. Теперь предположим, что $A_i \nleq R$ для всех i. Тогда условие теоремы выполнено для G/R, поэтому $G/R - \sigma$ -разрешимая Π -замкнутая группа в силу выбора группы G. Таким образом, R не является σ -примарной Π -группой, так как $G \notin \mathfrak{F}$. Следовательно, мы имеем (1).

(2) G является σ -разрешимой.

Пусть L — минимальная нормальная подгруппа в A_1 . Так как A_1 является σ -разрешимой, $L-\sigma_i$ -группа для некоторого i. Более того, поскольку $|G:A_2|=|A_1:A_1\cap A_2|$ и $|G:A_3|==|A_1:A_1\cap A_3|$ σ -взаимно просты по условию, имеет место $L\leq A_1\cap A_2$ или $L\leq A_1\cap A_3$. Следовательно, мы можем предполагать, не теряя общности, что $L\leq A_2$, и поэтому $L^G=L^{A_1A_2}=L^{A_2}\leq A_2$. Значит, $1< L^G$ является σ -разрешимой, и поэтому справедливо (2) в силу утверждения (1).

(3) R — единственная минимальная нормальная подгруппа в $G, R \nleq \Phi(G)$ и R является σ_i -группой для некоторого $\sigma_i \in \Pi'$. Следовательно, $C_G(R) \leq R$.

Поскольку G σ -разрешима согласно (2), R является σ_i -группой для некоторого i. Более того, из утверждения (2) и леммы 2.2 следует, что R — единственная минимальная нормальная подгруппа в G, R является Π' -группой и $R \not \leq \Phi(G)$. Следовательно, $C_G(R) \leq R$ согласно результатам [20] (гл. A, 17.2).

1714 ЧЖАН ЧИ, А. Н. СКИБА

(4) Найдутся такие $j \neq k$, что $R \leq A_j \cap A_k$.

Поскольку $|G:A_j|$ и $|G:A_k|$ являются σ -взаимно простыми по условию, это следует из утверждения (3).

Заключительное противоречие для (i). Так как $O_{\Pi}(A_j)$ нормальна в A_j и $R \leq O_{\Pi'}(A_j)$ согласно (3) и (4), получаем, что $O_{\Pi}(A_j) \leq C_G(R) \leq R \leq O_{\Pi'}(A_j)$ согласно (3). Следовательно, $O_{\Pi}(A_j)=1$. Но A_j является Π -замкнутой по условию, и поэтому $A_j-\Pi'$ -группа. Аналогично, $A_k-\Pi'$ -группа, и поэтому $G=A_jA_k-\Pi'$ -группа. Но тогда G является Π -замкнутой. Это противоречие завершает доказательство утверждения (i).

(ii) Предположим, что \mathfrak{M} не является Σ_3^{σ} -замкнутой и G — группа минимального порядка среди групп G таких, что $G \notin \mathfrak{M}$, но G имеет подгруппы $A_1, A_2, A_3 \in \mathfrak{M}$, индексы которых $|G\colon A_1|, |G\colon A_2|$ и $|G\colon A_3|$ попарно σ -взаимно просты. Тогда $G \neq A_i$ для всех i и G является σ -нильпотентной согласно утверждению (i). Более того, в силу выбора группы G для каждой минимальной нормальной подгруппы G имеет место $G/R \in \mathfrak{M}$. Следовательно, G является единственной минимальной нормальной подгруппой группы G, поскольку класс G является формацией. В частности, G является G-группой для некоторого G но тогда в силу G и G и G и G и G и G и G индексы G и G и G и не являются G-взаимно простыми. Это противоречие завершает доказательство утверждения (ii).

Теорема 1.2 доказана.

Лемма 3.1. Если G является σ -разрешимой, то $C_G(F_{\sigma}(G)) \leq F_{\sigma}(G)$.

Доказательство. Пусть $C = C_G(F_{\sigma}(G))$. Предположим, что $C \nleq F_{\sigma}(G)$ и $H/F_{\sigma}(G)$ — такой главный фактор группы G, что $H \leq F_{\sigma}(G)C$. Тогда $H = F_{\sigma}(G)(H \cap C)$. Поскольку G является σ -разрешимой,

$$H/F_{\sigma}(G) = F_{\sigma}(G)(H \cap C)/F_{\sigma}(G) \simeq (H \cap C)/((H \cap C) \cap F_{\sigma}(G))$$

— σ_i -группа для некоторого i.

Пусть теперь U — минимальное добавление к $(H\cap C)\cap F_{\sigma}(G)$ в $H\cap C$. Тогда $((H\cap C)\cap F_{\sigma}(G))\cap U\leq \Phi(U)$, поэтому U является σ_i -группой. Более того, $(H\cap C)\cap F_{\sigma}(G)\leq Z(H\cap C)$, и поэтому $H\cap C$ — нормальная σ -нильпотентная подгруппа группы G. Следовательно, $H\cap C\leq F_{\sigma}(G)$, и поэтому $H=F_{\sigma}(G)$. Это противоречие завершает доказательство леммы.

Лемма 3.2. Пусть $\mathfrak{F}=\mathfrak{S}_\Pi\mathfrak{X}$, где $\mathfrak{X}\subseteq\mathfrak{S}_\sigma$. Если формация \mathfrak{X} является Σ_t^σ -замкнутой, то \mathfrak{F} является Σ_{t+1}^σ -замкнутой.

Доказательство. Предположим, что данная лемма не является справедливой и G — группа минимального порядка среди таких групп G, что $G \notin \mathfrak{F}$, но G имеет подгруппы $A_1, \ldots, A_{t+1} \in \mathfrak{F}$, индексы которых $|G:A_1|, \ldots, |G:A_{t+1}|$ попарно σ -взаимно просты. Тогда G является σ -разрешимой по теореме 1.2.

Пусть R — минимальная нормальная подгруппа группы G, тогда R — σ_i -группа для некоторого i. Более того, условие теоремы выполняется для G/R, так как $\mathfrak F$ — формация по лемме 2.1(1), (2), и поэтому $G/R \in \mathfrak F$ согласно выбору группы G. Следовательно, R — единственная минимальная нормальная подгруппа в G. Значит, $\sigma_i \in \Pi'$ и $R \leq O_{\sigma_i}(G) = F_{\sigma}(G)$. Таким образом, $C_G(F_{\sigma}(G) = C_G(O_{\sigma_i}(G)) \leq O_{\sigma_i}(G)$ по лемме 3.1.

В силу условия найдутся такие числа i_1,\ldots,i_t , что $O_{\sigma_i}(G) \leq A_{i_1}\cap\ldots\cap A_{i_t}$. Тогда $O_{\Pi}(A_{i_j}) \leq C_G(O_{\sigma_i}(G)) \leq O_{\sigma_i}(G)$. Следовательно, $O_{\Pi}(A_{i_j}) = 1$, и поэтому $A_{i_j} \in \mathfrak{X}$ для всех $j=1,\ldots,t$. Таким образом, $G \in \mathfrak{X} \subseteq \mathfrak{F}$, поскольку \mathfrak{X} является Σ_t^{σ} -замкнутой. Это противоречие завершает доказательство леммы.

Лемма 3.3. Пусть $\mathfrak{M}-\phi$ ормация σ -разрешимых Π -замкнутых групп и $\mathfrak{F}=\mathfrak{S}_\Pi\mathfrak{M}$. Если \mathfrak{M} является Σ_3^σ -замкнутой, то \mathfrak{F} также Σ_3^σ -замкнута.

Доказательство. Предположим, что G имеет такие подгруппы $A_1,A_2,A_3\in\mathfrak{F}$, индексы которых $|G:A_1|,\ |G:A_2|,\ |G:A_3|$ попарно σ -взаимно просты. Тогда G имеет нормальную холлову П-подгруппу V по теореме 1.2. Следовательно, $V\cap A_i$ — нормальная холлова П-подгруппа V в A_i , и поэтому из изоморфизма $VA_i/V\simeq A_i/A_i\cap V$ вытекает, что $VA_i/V\in\mathfrak{M}$ и индексы $|(G/V):(A_1V/V)|,\ |(G/V):(A_2V/V)|,\ |(G/V):(A_3V/V)|$ попарно σ -взаимно просты. Но тогда $G/V\in\mathfrak{M}$, поскольку \mathfrak{M} является Σ_3^σ -замкнутой по условию. Значит, $G\in\mathfrak{F}$.

Лемма доказана.

Следующая лемма очевидна.

Лемма 3.4. Если класс групп \mathfrak{F}_j является Σ_t^{σ} -замкнутым для всех $j \in J$, то класс $\bigcap_{j \in J} \mathfrak{F}_j$ также является Σ_t^{σ} -замкнутым.

Формационная σ -функция f называется внутренней, если $f(\sigma_i) \subseteq LF_{\sigma}(f)$ для всех i, и полной, если $f(\sigma_i) = \mathfrak{G}_{\sigma_i} f(\sigma_i)$ для всех i.

В силу следствия 2.1 каждая σ -локальная формация \mathfrak{F} имеет единственное внутреннее и полное σ -локальное определение F. Мы называем такую функцию F каноническим σ -локальным определением формации \mathfrak{F} .

Теорема 3.1. Пусть $\mathfrak{F} = LF_{\sigma}(F) - \sigma$ -локальная формация σ -разрешимых групп, где F — каноническое σ -локальное определение формации \mathfrak{F} . Если формация $F(\sigma_i)$ является Σ_t^{σ} -замкнутой для всех i, то формация \mathfrak{F} также Σ_{t+1}^{σ} -замкнута.

Доказательство. Пусть $\Pi = \text{Supp}(\mathfrak{F})$. Тогда, согласно лемме 2.3(4) и следствию 2.1,

$$\mathfrak{F} = \left(\bigcap_{\sigma_i \in \Pi} \mathfrak{S}_{\sigma_i'} \mathfrak{G}_{\sigma_i} f(\sigma_i)\right) \cap \mathfrak{S}_{\Pi} = \left(\bigcap_{\sigma_i \in \Pi} \mathfrak{S}_{\sigma_i'} F(\sigma_i)\right) \cap \mathfrak{S}_{\Pi}.$$

Согласно лемме 3.2, формация $\mathfrak{S}_{\sigma'_i}F(\sigma_i)$ является Σ^{σ}_{t+1} -замкнутой. С другой стороны, класс \mathfrak{S}_{Π} является Σ^{σ}_{2} -замкнутым, и поэтому данный класс Σ^{σ}_{t+1} -замкнут. Следовательно, формация \mathfrak{F} является Σ^{σ}_{t+1} -замкнутой по лемме 3.4.

Теорема 3.1 доказана.

Доказательство теоремы 1.1. Пусть $\mathfrak{F} = LF_{\sigma}(f)$ — произвольная σ -локальная формация мета- σ -нильпотентных групп, где f — наименьшее σ -локальное определение формации \mathfrak{F} . Тогда согласно предложению 2.1 формация $f(\sigma_i)$ содержится в \mathfrak{N}_{σ} для всех σ_i . Следовательно, $f(\sigma_i)$ является Σ_3^{σ} -замкнутой по теореме 1.2.

Пусть F — каноническое σ -локальное определение формации \mathfrak{F} . Тогда $F(\sigma_i)=\mathfrak{G}_{\sigma_i}f(\sigma_i)$ для всех $\sigma_i\in\sigma$ согласно предложениям 2.1 и 2.2. Следовательно, $F(\sigma_i)$ является Σ_3^σ -замкнутой по лемме 3.3, и поэтому \mathfrak{F} является Σ_4^σ -замкнутой по теореме 3.1.

Теорема 1.1 доказана.

Литература

- 1. Шеметков Л. А. Формации конечных групп. М.: Наука, 1978.
- 2. Skiba A. N. On σ -subnormal and σ -permutable subgroups of finite groups // J. Algebra. -2015. -436. -P. 1-16.
- 3. Skiba A. N. A generalization of a Hall theorem // J. Algebra and Appl. 2015. 15, № 4. P. 21 36.
- 4. *Skiba A. N.* On some results in the theory of finite partially soluble groups // Communs Math. Statist. 2016. 4, № 3. P. 281–309.

5. *Guo W., Skiba A. N.* Finite groups with permutable complete Wielandt sets of subgroups // J. Group Theory. – 2018. – 18. – P. 191 – 200.

- 6. *Ballester-Bolinches A., Doerk K., Pèrez-Ramos M. D.* On the lattice of \mathfrak{F} -subnormal subgroups // J. Algebra. 1992. 148. P. 42 52.
- 7. *Васильев А. Ф., Каморников С. Ф., Семенчук В. Н.* О решетке подгрупп конечных групп // Бесконечные группы и их примыкающие алгебраические структуры / Под ред. Н. С. Черникова. Киев: Ин-т математики НАН Украины, 1993. С. 27–54.
- 8. Ballester-Bolinches A., Ezquerro L. M. Classes of finite groups. Dordrecht: Springer, 2006.
- 9. Skiba A. N. Some characterizations of finite σ -soluble $P\sigma T$ -groups // J. Algebra. -2018. -495. -P. 114-129.
- 10. Beidleman J. C., Skiba A. N. On τ_{σ} -quasinormal subgroups of finite groups // J. Group Theory. 2017. 20, No 5. P. 955–964.
- 11. *Guo W., Skiba A. N.* Groups with maximal subgroups of Sylow subgroups σ -permutable embedded // J. Group Theory. -2017. -20, No 1. -P. 169-183.
- 12. Guo W., Skiba A. N. On Π-quasinormal subgroups of finite groups // Monatsh. Math. 2018. 185, № 3. P. 443 453.
- 13. *Guo W., Skiba A. N.* Groups with maximal subgroups of Sylow subgroups *σ*-permutable embedded // J. Group Theory. 2017. **20,** № 1. P. 169 183.
- 14. *Huang J., Hu B., Wu X.* Finite groups all of whose subgroups are σ -subnormal or σ -abnormal // Communs Algebra. 2017. **45**, No. 1. P. 4542 4549.
- 15. *Hu B., Huang J., Skiba A. N.* On weakly σ -quasinormal subgroups of finite groups // Publ. Math. Debrecen. 2018. 92, \mathbb{N} 1 2. P. 201 216.
- 16. *Hu B., Huang J., Skiba A. N.* Groups with only σ -semipermutable and σ -abnormal subgroups // Acta Math. Hung. 2017. **153**, № 1. P. 236–248.
- 17. *Guo W., Skiba A. N.* On the lattice of Π₃-subnormal subgroups of a finite group // Bull. Austral. Math. Soc. 2017. **96.** № 2. P. 233 244.
- 18. Guo W., Skiba A. N. Finite groups whose n-maximal subgroups are σ -subnormal // Sci. China Math. 2018. 61.
- 19. Skiba A. N. On one generalization of local formations // Probl. Phys., Math. and Techn. 2018. 1, № 34. P. 76–81.
- 20. Doerk K., Hawkes T. Finite soluble groups. Berlin etc.: Walter de Gruyter, 1992.
- 21. *Kramer O.-U.* Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes // Math. Z. 1974. 139, № 1. S. 63 68.
- 22. Guo W. The theory of classes of groups. Berlin etc.: Sci. Press-Kluwer Acad. Publ., 2000.
- 23. Doerk K. Minimal nicht überauflösbare, endliche Gruppen // Math. Z. 1966. 91. S. 198–205.
- 24. Чунихин С. А. Подгруппы конечных групп. Минск: Наука и техника, 1964.
- 25. Kegel O. H. Zur Struktur mehrafach faktorisierbarer endlicher Gruppen // Math. Z. 1965. 87. S. 42 48.
- 26. Мальцев А. И. Алгебраические системы. М.: Наука, 1970.
- 27. Скиба А. Н., Шеметков Л. А. Формации алгебраических систем. М.: Наука, 1989.

Получено 12.03.18