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CONVERGENCE OF FOURIER SERIES OF FUNCTIONS Lip 1
WITH RESPECT TO GENERAL ORTHONORMAL SYSTEMS *

3BIKHICTH PSAJIIB ®YP’€ ®YHKIIIN Lip 1
BIJHOCHO 3ATAJIBHUX OPTOHOPMOBAHUX CUCTEM

We establish sufficient conditions that should be satisfied by functions of a general orthonormal system (ONS) {¢n(z)}
in order that the Fourier series in this system for any function from the class Lip 1 be convergent almost everywhere on

[0, 1]. It is shown that the obtained conditions are best possible in a certain sense.

BcTaHOBJICHO 1OCTATHI yMOBH, sIKi IOBHHHI 3a10BOJbHATH (QyHKUIT 3aransHOi oproHopMoBanoi cuctemu (30C) {¢n(z)},
Jutst Toro, mo6 psin Pyp’e BiHOCHO BkasaHOi cucTeMH s Oynb-sikoi ¢yHKumii 3 xiacy Lip 1 306iraBcst maibke CKpi3b Ha

[0, 1]. IToka3aHo, IO OTPUMaHi PO3B’SI3KH €, B ASIKOMY PO3YMiHHI, HAHKpPAIIHMH.

1. Introduction. Let {¢,(z)} be ONS on [0, 1],

1
Bulf) = / f@)pn()de, n=1.2,...,
0

are Fourier coefficients of the function f(z) € L(0,1).

Suppose
) 1l i/n
Sp(a) = " Z /@n(a,x) dx|,
=1 0
where

Pn(a,z) = Z ak ek ()
k=1

and (ay) and (\y) are some sequences of numbers.

1
L,(x) = /
0
is a Lebesgue function.
We have (see [1, p. 180 and 207]) the following theorem.

Besides,

> @k(@s@k(t)‘dt

k=1
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Theorem A (KaCmarz). Let (\,,) be a nondecreasing sequence of positive numbers, lim,, o, Ay, =
= 400 and L,(z) = O(\,). If

> A < oo, (3)
n=1
then the series
S Cugn(@) )
n=1

converges a.e. on [0, 1].
Remark 1. 1t is well known (see [2, p. 202]) that for any ONS a.e.

Lu(z) = O(3/?),

where +,, is a positive monotone increasing sequence satisfying the condition

oo
Z 77:1 < o0.
n=1
Setting 7, = n? we get L,(x) = O(n).!
Let now

N, = min(\,, n),

where (\,) is a sequence from Theorem A. Then X/, will satisfy all conditions of Theorem A. In
addition,

/
A, < n.

Thus in Theorem A it can be assumed, without loss of generality, that A\, < n.

2. Formulation of the basic problem. S. Banach [3] proved that for any function f(z) €
€ L2(0, 1) there exists ONS {yy,(z)} such that the Fourier series of the function f(x) of this system
diverges a.e. [0, 1].

Besides, A. Olevski [4] proves that if f(z) € Lo(0,1) is an arbitrary function and (a,) € /o

1
is any sequence of numbers, then there exists ONS {p,(x)} such that a,, = ¢ / f(@)on(x) dz,
0

n=1,2,..., and c is some number.
Let NNVj, be an increasing sequence of natural numbers

1
(N1 — Ng)Ap) /2’

an = N <n < Ngqq,

where
o

Z()\nfl < 0.

n=1

Let fo(x) =1, x € [0,1]. By virtue of A. Olevski’s theorem there exists ONS {¢,,(x)} such that

!'The upper estimate is true and more exact, but in future it will be sufficient to use this estimate.
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1
@n(fo)—/fo(x)cpn(x)dx—c-an, n=12,....
0

Thus

3 sl =003 ZN o Z)\nk < +o0.

n=N1
On the other hand,

n Ngp1—1

> A=Y Y gt

n=N1

Ap = +00.

Consequently, in our case condition (3) is not satisfied for the Fourier coefficients of the functions
fo(z) = 1. Thus, “good” differential properties of functions do not provide the convergence of
Fourier series of these functions with respect to general ONS.

From the above example we can conclude that if we want the Fourier coefficients of smooth
functions to satisfy condition (3), it is necessary that the functions ¢, (z) from ONS {¢, ()} satisfy
some conditions.

In the present paper we give certain conditions which are imposed on functions of ONS {¢,,(z)}
under which the Fourier coefficients of the function of class Lip 1 satisfy condition (3).

Remark 2. As it was shown on an example, there exists ONS {¢,(x)} for which the Fourier
coefficients fy(z) = 1 do not satisfy condition (3).

Thus if we want the Fourier coefficients of the function from class Lip 1 to satisfy condition (3)
with respect to the system {¢,(z)} we should require that

2
o 1

> G =3 | [enlarde | an < 4o

for otherwise the formulation of the problem with respect to the functional class Lip 1 has no meaning
since 1 € Lip 1.

3. Main results.

Theorem 1. Let {yy(z)} be ONS on [0,1] and a sequence of nondecreasing numbers (\)
satisfies the following conditions:

(@) limy oo Ay = +00; Lp(z) = O(\y) (see (2));

(b) Z </0 )dx>2 An < Fo00.

If for any sequence (ay,) € U2 the following condition:

)

n 1/2
Sn(a) = O(1) (Z ai%) (6)

k=1

holds, then the Fourier series of any function f(z) € Lip 1
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> Gu(f)en(x) (7)
n=1
converges a.e. on [0, 1].
Proof. The equality (see [5])
1 n—1 . 1 i/n
[remenie =3 (s (5) - (57)) [ meres
0 =1 0
" i/n ) 1
+ (f(w)—f<l>> v)da+ f(1) | @ ®)
%) oG The
holds, where f(z) and ®(x) are functions from L2(0,1) and f(z) is finite at every point [0, 1]
We have the equality
n 1 n
S G DN = [ 1) 3 Bl upn(e) do =
k=1 o k=1
1
= [1@)®.(G) ©
0

where ®,, (9, x) = @, (a,z) for (a,) = (¥n).
In equality (8) assume that ®,(a,z) = @,(p, x)

O/If(x)%(@x)dszgl <f (;) _f<i;1)> 0/¢’n(§5,1‘)d$+

(10)
Let now f(z) € Lip 1. Then by (6) and Remark 1 we have
1 n—1 i/n
34 =001) 3 Y- | [ @u(p.2)ds| = 0(1)5,(P) (an
n =1 0
i/n

My =0 Z/|<1> Fua)lde = 0(1) - [ 180(,)| do =

VYrp. mam. oicypn., 2017, m. 69, Ne 4
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1
[
n 1/2 n 1/2
=0(1) @7( @i(f)&) =0(1) (Z@i(fm> , (12)

n 1/2
=0(1) (Z @%(fm) . (13)
k=1

(Here condition b) of Theorem 1 is taken into account.)
Finally, in (10) taking into account (9), (11), (12) and (13), we get

n n 1/2
> G =0(1) (Z @i(f)%) ;
k=1 k=1

1.e.,

oo
> G Mk < +oo.
k=1

Taking into account now the last inequality from the statement of Theorem A, it follows that
series (7) converges a.e. on [0, 1].

Theorem 1 is proved.

It should be noted that condition (6) is an important factor for the convergence of the Fourier
series of functions from class Lip 1. We will show later what we will have if the condition is not
satisfied.

Theorem 2. Let {p,(x)} be ONS on [0,1] and X, 1 oco. If for some sequence (b,) € (s
condition (6) does not hold, i.e.,

lim Sn(b)

T

then there exists the function fo(x) € Lip 1 such that

n=1
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Proof. Let us assume from the beginning that

2

1
/gok(x) dr | A\ < +oo. (14)
0

Otherwise we will get that the Fourier coefficients of the function fy(x) = 1 do not satisfy condi-
tion (3) and thus Theorem 2 is valid.

If series (14) is convergent, then we will consider the sequence of functions

T

t
fn(x) —/sign/cbn(b,u) dudt, n=1,2,.... (15)
0

0
Assume in equality (10) f(z) = fn(z) and @, (a,x) = D, (b, z) we will have
i/n

S 7
/fn =3 (5 (5) -1 <+1>>O/¢nbxdx+
o iln | 1
+Z;4 (fn(:c)fn <n>) n(b,2) da + fa(l /@n

0

= Hy + Hy + Hs. (16)

S
Since for x € [Z , Z]
n'n

using Remark 1 we obtain

n 1/2 n 1/2

VAn

- (Zb,ﬁAk> =0(1) (ZbiAk> . (17)
k=1 k=1

Taking into account (14) we get

L n

1
Hal < 1fa(0)]| [ @(br)da| = 11,013 b [ oula)da| =
0

n 2 [ 1 ?
1) (Z bzAk> > / op@)dz | M| =
k=1 k=1 \{
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n 1/2
1) <Z bzAk> . (18)
k=1

For estimating M; we will need the following lemma.

Lemma 1. Let I, be a set of all i € {1,2,...

1—1

7
Tin € [ , ] for which the condition
n

Tin

,n} for each of which there exists the point

sign / B, (b, 1) dt # sign / B, (b, 1) di

0
holds. Then (see Remark 2)
Z /@n(b,x) dx
i€ly, 0

Yin
/ ®,,(b, ) dz = 0. Then
0

z/n Yin

0

n 1/2
DvAn (Z bzAk> .
k=1

Proof. In view of condition of the lemma there exists the point y;, € [

1—1

i
, ] such that
n

i/n

Z/@n(b,x)dx:Z/ bxdm+2/ (b, x) dz| <

i/n

ZEIn»L

’LGIn Yin

1/2
<Z/y<1> bxda;</|<I> bx|dx<<2b2/\2> =

n 1/2
DvAn (Z bﬁAk> . (19)
k=1

The lemma is proved.
Assume now that E,, = {1,2,...

500 ()0 (4

oy @D/

=% [/

,n — 1} \ I,,. Then according to the property of E,, we get

i/n
)) O/fbn(b,x)dac:

D, (b, 1) dtdm/@n(b, x)dr =

o

— nAZ /(I)n(b, )da| — > / go/@(bt)dtd /@(b )d
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Hence, in view of (19)

S
gl
7N
7N\
N———
=
Y

.
3|+
:
N———
N—
s
3
—~
=
8
N~—
QU
8
\Y

1
an/ (b, z) x——Z|<I> (b, x) dx| =
€EFE, i€l
Lo i/n 5 i/n
:HZ / (b, x) dx: —*Z &, (b, ) dz| >
=1 0 le]n 0

n 1/2 n 1/2
> S (b) — o<1>%m (Z bi&) > Sn(b) — O(1) (Z bi&) . (20)
k=1 k=1

At last, applying (17), (18) and (20) from (16) we have
1 1/2
/fn( ), (b, ) dz| > Sn( (me> .
0

From here

1

1 Sn(b)

- 72 /fn(x)fbn(b, x)dz| > ~ 77~ O(1). 21

<Zk:1 bi}"“) 0 (Zk:1 bi}"“)

According to the conditions of Theorem 2 from (21) we get
1
n@o ~ ! 7 /fn(x)<1>n(b, x)dr| = n@o nSn(b> 5 = Too (22)
(Zk:1 bi}"“) 0 (Zk:1 bi}"“)
Evidently,
[ fullips = Iulle + sup LD Tl _y
Ty |z =y

Thus, in virtue of Banach — Steinhaus’ theorem (see (22)) there exists the function fo(z) € Lip 1 such

that
1

fo(z)®@, (b, x) dz

0

lim = . 2
vl (ZZ:1 b%)\k)lm +oo (23)
Since
1 n 1
/ fo(@)®n(b,x) da| = | Y bphy / fo(@)on(z) dz| =
0 k=1 0
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> hkMBr(fo)| < (Z bi)\k> ( @i(fo)%) ;
k=1 k=1 k=1
from (23) we get
> B (fo) M = +oo.
k=1

Theorem 2 is proved.

As is was stated above, the Fourier coefficients of functions from Lip 1 do not, in general, satisfy
condition (3).

Theorem 3. From any ONS {pn(x)} one can isolate a subsystem {¢y, (x)} = {Yr(x)} with
respect to which for any sequence (a,) € {5 the condition

= i/n n 1/2
nz/ :0(1)(2@0
i=1 k=1

holds, where P,(a,z) = ZZ—l ap AUk ().
Proof. According to Parceval’s theorem

2

o i/n
Z /cpm(a:)dx <1, i=1,...,n,
m=1 0

by k(n) we denote the natural number for which

Z /gom(m) de | <272,
m=k(n) \
Thus, when m > k(n)
/gom(:c)dx <27 i=1,2,...,n. (24)
0

Assume that k(n + 1) > k(n) + 2" (k(n+1) > k(n)).
Let
7/12"+1(5E) = ka(n)—&—l(‘r)’ ¢2n+s($) = Sok(n)—&-s(z)a
where 1 < s < 2" n =1,2,.... In this way we obtain the sequence of functions (,,,(z)) and for
m=2"+1(1<1<2") (see (24))
/1/1m(33) dr| = /cpk(n)+l(x) de| <27" i=1,2,...,n. (25)
0 0
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The number j(i), i = 1,...,n, 7 = 1,...,2™, is chosen so that L ]2(77:) <27 n=2"41.
Then by using (25), we get
Z/TL 2m+1_1
Z as)\sws(x) dr| <
0 s=2m
j(i)/2m 2m+1_1 .7(7*)/27” 2m+1_1
< / D ashts(z) dz| + / D aha(x) da| <
. s=2m §=2m
i/n 0
2'm+1_1 1/2 27n+1_1
<2PLNT @A+ D) a2 (26)
§=2m s=2m
Assume now that n = 2% 4+ ny, ny < 2%, then according to (26)
Un g1 gmil g
[ Y % arvwds <
0 m=0 s=2m
d—1 2m+l_1 1/2 d—12m+l_1
=D EEC 1D VIS NS S SRR
m=0 s=2m m=0 s=2m
d—1 am+l_q 1/2 d—1 omtl_q 1/2
<Y 2 g [ Y @A 4D 2 A 272 Y alh | <
m=0 s=2m m=0 s=2m
d—1 12 (41 gm+1_yq 1/2
< (Z 2—mA2m+1> SN @]+
m=0 m=0 s=2m
d—1 2 g1 gm+14 1/2
+ (Z 2—m)\2m+1> Z Cbg)\s =
m=0 m=0 s=2m
0i 1 1/2
=0() | > apx | - 27)
k=1
Further (n < 24+1),
[ X arn(e)d| <
0 s=2m
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3(@)/2¢ j(5)/2¢
Z as s'¢s Z GsAs / s(x) dr| <
ifn 8= 24 s=24 0
12 o,
< 97d/2 (Z a2A2> + Z las| X274 <
s=2d s=2d

" 1/2 n 1/2 n 1/2
gdm@(z@s) +2d/2m(zazxs) =0(1><Za§As> e

s=2d s=2d s=2d

Finally, from (27) and (28) for any sequence (a,) € f2 we have

1 n—1 z/n n 1/2
= > / Z amAmm(2) dz| = O(1) (Z a,2n)\m> : (29)
i=1 m=1

From (29) and Theorem 1 it follows that for any function f(z) € Lip 1 condition (3) holds in the
case of the subsequence {v,(z)}.

Theorem 3 is proved.

Problems of efficiency. Condition (6) is said to be efficient if it is easily verified for classical
ONS (trigonometric system, Walsh [6] and Haar systems).

Theorem 4. Let {¢, ()} be ONS such that

x

/@n(a:) dx

|
@)
~/~
S
~

0
Then condition (6) is fulfilled.
Proof. Foranyi:=1,2,...,n we have
i/n n i/n
/Zak)\k@k(fv) dr| = Zak)\k / ok () dz| =
_ agk _ k 2 . 2
=0(1)) " M= 0(1)( k:2> (Z akAk> =0(1) (Z ak)\k> .
k=1 k=1 k=1 k=1

From here and from Theorem 1 it follows that for the trigonometric and Walsh systems condi-
tion (6) is satisfied.

Theorem 5. If (x,) is a Haar system (see [2, p. 54)), then condition (6) is fulfilled.

Proof. Using the definition of the Haar function, we get (n = 2P + 1, [ < 2P)

i/n 25+171
Z apApxk(z) de| < 275/2|ak(i)\)\k(i), where 2% < k(i) < 2571,
0 k=2
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Therefore,
i/n op_1 p—1 i/n 2k+l 1
Z arAeXk (2 / A Am X (T) dz| <
k=07  m=2k
p—1 p—1
< Z 2782 iy [ Ak < Z lak iy v/ Mgy M 272 <
k=0 k=0
o1 12 4, 1/2
< | D koM 2.2 N | <
k=0 k=0
p—12k+1_1 12 1/2 9p 1/2
YD adam Y2 Fng | =0 D d| L i=12...,n
k=0 m=2k k=0 k=1
In a similar way it can be proved that
i/n n 1/2
/ Z apdixk (@) de| = O(1) [ Y ai
k=2p k=2p
At last we can conclude that
i/n n 1/2

/ZakAka(x)dx =0(1) Zai)\k
0 k=1 k=1

Theorem 5 is proved.

References

1. Kacmarz S., Steingauz G. Theory of orthogonal series (in Russian). — Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit.,
1958.
2. Alexits G. Convergence problems of orthogonal series // Int. Ser. Monogr. in Pure and Appl. Math. — New York etc.:
Pergamon Press, 1961. — 20.
3. Banach S. Sur la divergence des séries orthogonales // Stud. Math. — 1940. - 9. — P. 139-155.
Olevskii A. M. Orthogonal series in terms of complete systems (in Russian) // Mat. Sb. (N. S.). — 1962. — 58 (100). —
P. 707-748.
5. Gogoladze L., Tsagareishvili V. Some classes of functions and Fourier coefficients with respect to general orthonormal
systems (in Russian) // Tr. Mat. Inst. Steklova. — 2013. — 280. — P. 162-174.
6. Fine N. J. On the Walsh functions // Trans. Amer. Math. Soc. — 1949. — 65. — P. 372-414.
Received 04.11.15,
after revision — 25.11.16

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 4



