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POLYNOMIAL INEQUALITIES IN QUASIDISKS
ON WEIGHTED BERGMAN SPACE *

HNOJITHOMIAJIBHI HEPIBHOCTI ¥ KBA3I/IUCKAX

HA 3BAKEHUX ITPOCTOPAX BEPITMAHA

We continue studying on the Nikol’skii and Bernstein — Walsh type estimations for complex algebraic polynomials in the
bounded and unbounded quasidisks on the weighted Bergman space.

ITponosxeHo HoCTipKeHHs oiHOK THITy Hikonbebkoro Ta bepHiuTeiina — Yoiia ajist KOMILIEKCHHX alireOpaiqHuX HOIiHOMIB
B 0OMEKEHHX Ta HEOOMEKEHHMX KBa3iMCKax Ha 3BaKeHUX mpocTtopax beprmana.

1. Introduction. Let C be a complex plane and C := CU{co}; G C C be a bounded Jordan region
with boundary L := 0G such that 0 € G, Q := C\G = ext L, A := {w: |w| > 1}. Let w = ®(2)
D(2)

— >0,

z
U= &1 For R > 1, we take Lg := {z: |®(2)| = R}, Gr :=int Lr and Qp := ext Ly . Let
¢n denotes the class of all algebraic polynomials P,(z) of degree at most n € N :={1,2,...}.

be the univalent conformal mapping of 2 onto A such that ®(c0) = oo and lim,

In this work we consider the following weight function h(z): Let {z;}72; be the fixed system of
distinct points on the curve L. For some fixed Ry, 1 < Ry < oo, consider generalized Jacobi weight
function h(z) which is defined as follows:

m
) := ho(z H|z—zj|%', 2 € GR,, (1.1)
where v; > —2, forall j = 1,2,...,m, and hg is uniformly separated from zero on L, i.e., there

exists a constant cg = ¢o(G) > 0 such that ho(z) > ¢p > 0 for all z € Gpg,.
Let 0 < p < oo. For the Jordan region G, we introduce

1/p

1Pl = 1Pl o = // Do, |, 0<p<os, (12)

1Palloe == 1Pl a1,y = max | Pu(2)|, p= 0. (13)
zeG

In this work, firstly we study the following Nikol’skii-type inequality:
[1Plloe < c1An(G hyp) || Pall, (1.4)

where ¢; = ¢1(G, h,p) > 0 is a constant independent of n and P,,, and \,,(G, h,p) — oo, n — o0,
depending on the geometrical properties of the region G and the weight function h. The estimates
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POLYNOMIAL INEQUALITIES IN QUASIDISKS ON WEIGHTED BERGMAN SPACE 583

of (1.4)-type for some 0 < p < oo and h(z) were investigated in [21, p.122-133], [14], [20]
(Sect. 5.3), [25], [2-8] (see also references therein) and others.
Secondly, we find pointwise estimations in unbounded region 2:

(G, h, p)

|PTL(Z)| S C2 d(Z L)

1Pall, 12(z)"F, 2 €, (1.5)

where c2 = (G, h,p) > 0 is a constant independent of n and P, and 7, (G, h,p) — 00, n — oo,
again depending on the region G and h. We note that, according to the maximum principle the

P,
inequality (1.4) holds also for @ni(fz)) for any points z € ). But we will try to have a more
z
P,
accurate estimate for (I)ni(lzz)z) of the (1.5)-type.

Analogous results of (1.5)-type for some norms and for different unbounded regions were ob-
tained by N. A. Lebedev, P. M. Tamrazov, V. K. Dzjadyk (see, for example, [17, p. 418 —428]),
V. V. Andrievskii [13], N. Stylianopoulos [26], F. G. Abdullayev et al. [7, 8] and others.

Finally, combining obtained estimates for |P,(z)| on bounded and unbounded regions, we get
the evaluation for |P,(z)| in whole complex plane.

2. Definitions and main results. Throughout this paper, ¢, cp, c1, c2,... are positive and
€0, €1, €92,... are sufficiently small positive constants (generally, different in different relations),
which depends on G in general and, on parameters inessential for the argument, otherwise, the
dependence will be explicitly stated. For any £ > 0 and m > k, notation ¢ = k,m means
i =k,k+1,...,m. Let the function ¢ maps G conformally and univalently onto B := {w: |w| < 1}
which is normalized by (0) = 0 and ¢'(0) > 0; let 1 := ¢~ L.

Definition 2.1 [22, p. 286-294]. A bounded Jordan region G is called a K-quasidisk, 0 <
< k < 1, if any conformal mapping 1 can be extended to a K-quasiconformal homeomorphism of

_ — k
the plane C on the C, where K = 1+7k In that case the curve L := 0G is called a K-quasicircle.

Let G be a region bounded by two arcs of circle, symmetric with respect to the OX-axis and
OY-axis, each of the arcs crosses the O X-axis at +eg, where €9 > 0 and the angle between the arcs
is m(1 — k) where 0 < k < 1. This region is a K-quasidisk.

A region G (curve L) is called a quasidisk (quasicircle), if it is a K-quasidisk (K-quasicircle) for
some 0 < k < 1. A Jordan curve L is called a quasicircle or quasiconformal curve, if it is the image
of the unit circle under a quasiconformal mapping of C (see [18, p. 105; 22, p. 286]). On the other
hand, it is given some geometric criteria of quasiconformality of the curves (see also [10, p. 81; 23,
p.107; 19, p. 341]). Now we give one of them.

Let 21, 2z be an arbitrary points on L and L(z1, z2) denotes the subarc of L of shorter diameter
with endpoints z; and zo. Lesley [19, p. 341] defined the curve L as “c-quasiconformal”, if for all
21,22 € L and z € L(z1, 2z2) there exists a constant ¢, independent from points 21, z2 and z, such
that

‘Zl —Z‘ + ’Z—Z2’
|21 — 2o

<e 2.1)

A simple example of c-quasiconformal curves can be given a polygon whose smallest interior or
exterior opening angle 2 arcsin(1/c). It is well known that quasicircles can be nonrectifiable (see, for
example, [15; 18, p. 104]).
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In this work, we study similar problems to (1.4) and (1.5) for quasidisks. Now, we start to
formulate the new results.

Theorem 2.1. Let p > 0, G be a K-quasidisk for some 0 < k < 1 and h(z) be defined by (1.1).
Then, for any P,, € pn, n € N,

‘Pn(zjﬂ < Cln(2+7j)(1+k)/p HP’HHpv J=1m, (2.2)
and, consequently,

1Pl < con@NER/P 1P| (2.3)

where v := max {0;7]', J= 1,m} .
m . .
For any p > 1 we divide Q, as Q, := |J Q), where ), defined below in (4.6). For given

7j=1
¥ > 0, we define
1, if ;<9 forall j=1,m,
Vp =X Inn, if exists jo, 7, =0 and ~; <¥ for j# jo, (2.4)

nYo/P=1 if exists jo, Vo >V and v; <9 for j # jo.

Theorem 2.2. Let p > 0, L be a K-quasicircle for some 0 < k < 1 and h(z) be defined by
(1.1). Then there exists a constant c3 = c3(G,p,~y;) > 0 such that for any P, € p,, n € N, and for
7 = 1,m the inequality

2/p
Nfhn n »
’Pn(Z)’ < C3<M> HPan \@(z)\ +1 R z e Qg%, (2.5)

1
holds, where R =1 + e and [, = vy, defined in (2.4) with § = ——.
n 1+k

According to the Bernstein lemma [30], the estimation (2.3) is again true for the z € G, with a
different constant. Therefore, combining estimation (2.3) (for the z € Gg,) with (2.5), we obtain an
estimation for the growth of | P,,(z)| in the whole complex plane:

Corollary 2.1. Under the assumptions of Theorems 2.1 and 2.2, the following is true:

n2tNA+K)/p, 2 € Gp,
P, < P, 2.6
NS elfaly g ¢y N e .
d(Z, LR)
where cq = c4(G,p, h) > 0.
Corollary 2.2. For any compact subset F' € Q) and P, € p,, n € N, we have
Npn 2/p n+1
PG <es( G205 ) IR, IR, e R )

where c5 = c5(G, F) > 0.
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From the conditions of the theorems, we see that they hold for K-quasidisks with 0 < k& < 1.
But calculating the coefficient of quasiconformality for some curves is not an easy task. Therefore,
we define more general class of curves with another characteristics. One of them is the following:

Definition 2.2. We say that L = 0G € Q,, 0 < o < 1, if L is a quasicircle and ® € Lip «
on Q.

We note that the classes (), are sufficiently large. A detailed information on it and the related
topics are contained in [?, ?, 19] (see also the references cited therein). We consider only some cases:

Remark 2.1. (a) If L is a Dini-smooth curve [?, p. 48], then L € Q1.

(b) If L is a piecewise Dini-smooth curve and largest exterior angle on L has opening am,
0<a<1][?p. 52],then L € Q,.

(c) If L is a smooth curve having continuous tangent, then L € ), for all 0 < o < 1.

2 1
(d) If G is “L-shaped” region, then ® € Lip 3’ ¥ € Lip 3
(e) If L is quasismooth (in the sense of Lavrentiev), that is, for every pair 21,20 € L, there
s

exists a constant ¢ > 1 such that s(z1, 22) < ¢|z1 — 23|, then ® € Lip « for o = -
2(m — arcsin(1/c))

2
and ¥ € Lip g for 8 = m, where s(z1, z2) represents the smallest of the lengths of the arcs

joining 27 to z2 on L [?, 29].
T

(f) If L is a c-quasiconformal, then ® € Lip« for a = -
2(m — arcsin(1/c))
5= 2(arcsin(1/c))?
~ 7(m — arcsin(1/c))’
For 0G € @), we have the following results:
1
Theorem 2.3. Let p > 0, L € Q) for some B < «a <1 and h(z) be defined by (1.1). Then, for

any P, € p,, n € N,

and ¥ € Lip 3 for

|Pa(z))] < cn® P, j=Tom, 28)
and, consequently,
1Pal| o < ernF0P| Py, (2.9)
where ~ :=max {0;7;, j =1,m}.
Theorem 2.4. Let p > 0, L € Q,, for some % < a <1 and h(z) be defined by (1.1). Then,

there exists cg = cg(G,p,7;) > 0 such that for any P, € pp, n € N,

/n(sn 2/17 " ) .
[Pn(2)| < cs <d(zLR) 1Pl ()", 2€ Q) j=Tm, (2.10)

where R =1+ 1 and On = Uy, defined in (2.4) with ¥ = «.
n
Corollary 2.3. Under the conditions Theorems 2.3 and 2.4, we have

n(2+7)/ap, = GR’
[P (2)] < co[|Pall, e \ Y7 . } (2.11)
(M) |D(2)|", 2 € Qyp,

where cy = co(G, p,v;) > 0.
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Corollary 2.4. Let p > 0, L be a c-quasiconformal for some ¢ > 1 and h(z) be defined by
(1.1). Then, for any P, € pn, n € N, the estimations (2.8), (2.9) and (2.10) hold with a =
T

~ 2(m — arcsin(1/c))’

Note that, the estimations, analogous to Theorems 2.1 and 2.3 for p > 1 and to Theorems 2.2
and 2.4 for h(z) = 1 were investigated in [6] ([Theorems 5.1 and 5.2) and [?], respectively.

Sharpness of the inequalities. The sharpness of the estimations (2.2)—(2.7) can be discussed by
comparing them with the following result.

Remark 2.2. (a) For any n € N there exists a polynomial @)}, € g, such that the inequality

1Q5 o = c1om Q5 Lay ) - (2.12)

is true for the unit disk B and the weight function h(z) = 1.
(b) Fg*any n € N there exists a polynomial P, € p,, a region G] C C and a compact subset
F* € Q\G, such that

* n * n
|Pr(2)] > Clld(\z/;}) 1P 4y 19(2)] 1 forall z € F. (2.13)

(c) For any n € N there exists a polynomial 7, € g, such that the inequality
2 *
1T lloe = cr2n” T3 4y e,y (2.14)

is true for the unit disk B and the weight function h*(z) = |z — z1|2.

3. Some auxiliary results. Throughout this paper, for a > 0 and b > 0, we use the expression
“a < b” (order inequality), if a < cb. The expression “a =< b” means that “a < b” and “b < a”.

Let L be a K-quasiconformal curve, then there exists a quasiconformal reflection y(-) across L
such that y(G) = Q,y(Q) = G and y(-) is fixed the points of L. There exists a quasiconformal
reflection y(+) satisfying the following conditions [10; 12, p. 26]:

1
ly(¢) — 2| < |¢ — 2| forall z€L and €<|C|<g»

1

=| =< =1, < |C| < -, 3.1
[yel = luc] e <l¢l < - 3.1

vl <WOP, I <e v <17, k> 2,

¢ ¢ e
and for the Jacobian J, = |yz|2 - |3/2|2 of y(-), the relation ‘yz}Q /-cQJ holds, where

K?*-1
k = il Such quasiconformal reflection y(-) is called a regular quasiconformal reflection
across L.

Let L be a quasicircle and y(-) be a regular quasiconformal reflection across L. For any R > 1,

we put L* := y(Lg), G* :=int L*, Q* := ext L*, and denote by ¢ the conformal mapping of Q*
o

onto A with the normalization ®(00) = 0o, lim, r(2) > 0, and let ¥ := ®,". Moreover,

forany ¢ > 1, we set L} := {z: |Pgr(2)| =t}, G} :=int L;‘, Q) :=ext L;. According to [11], for
all z € L* and ¢t € L such that |z — t| = d(z, L), we have
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d(za L) = d(t7LR) = d(Z, L}(%)v (3.2)
[Pr(2)| < [Pr(H)] < 1+ c(R—1).

Lemma 3.1 [1]. Let L be a quasicircle, z1 € L, zo,23 € QN{z: |z — z1| < d(z1, Ly,)}, where
Ly :={C: |¢({)| =10, 0 <19 <1} and 1o := ro(Q) is a constant, depending on G, wj = ®(z;),
7 =1,2,3. Then

(a) The statements |z1 — z3| = |21 — 23| and |w1 — wa| =X |wi — ws| are equivalent. So are
|21 — 29| < |21 — 23| and |w1 — we| < |wy — ws].

(b) If |21 — 22| = |21 — 23], then

)

=

c

Z1 — 23 W] — W3

‘wl—wg

j ‘

w1 — w2 21 — 22 wp — w2

where € < 1 and ¢ > 1.
Lemma 3.2. Let G be a K-quasidisk for some 0 < k < 1. Then

[T (wi) — T(ws)| = |wy — wo| T*

Sor all wy,ws € A.

This fact is derived to appropriate the results for the estimation |U’(7)| (see [22, p. 287]
(Lemma 9.9) and [12] (Theorem 2.8)).

Lemma 3.3 ([?], Lemma 2.3). Let L be a quasicircle. For arbitrary R > 1, there exist numbers
P1, P2, p3 and py such that p1 < pa and p3 < py and the following conditions are satisfied:

(1) G,, CGCG,,and G, CGrCG,,,

(2) p1—1Xp2—1Xp3—1Xp4—1XR—1.

Lemma 3.4 ([4], Lemma 3.3). Let L be a quasicircle; h(z) is defined as in (1.1). Then, for
arbitrary P, (z) € @n, any R > 1 and n € N, we have

1Pl o) nigy = L+ c(R= D" 2B, p>0.

4. Proofs of the main results. 4.1. Proofs of Theorems 2.1 and 2.3. We begin with the proof
1 1
of the Theorem 2.3. Let L € @, for some B <a<1l,R=1+4—and Ry :=1+¢(R-1).
n
Denote by {¢;}, 1 < j < m < n, the zeros of P,(z) lying on © (if such zeros exist) and let

=TI B = ] 2E2G)
B (z) = jl;[lBJ( )= ]1;[1 1- (I)(Cj)(I)(JZ) -

denote a Blaschke function with respect of the zeros of P,(z). For any p > 0 and z € (2, let us set

Pn = p/2
H,p(z) = (M) . (4.2)

The function H,, (2), Hyp(c0) = 0, is analytic in €2, continuous on {2 and does not have zeros in
). We take an arbitrary continuous branch of the H,, ,(z) and for this branch we maintain the same
designation. Cauchy integral representation for the region € is given as:
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1 d
Hopl®) = =5z | Husl0) 75,

Lpg,

A QRl'

Since | B, (¢)| = 1 for ¢ € L, then for arbitrary £, 0 < ¢ < ¢1, there exists a circle |w| = 1+ E,
n

such that for any j = 1, m the following is satisfied:
1Bj(Q)| >1—¢, (€L

Then |B,,(¢)] > (1 — &)™ = 1 for ( € Lg, and |Bp(z)| < 1 for z € Qg,. On the other hand,
|®(¢)| = R1 > 1 for ¢ € Lp,. Therefore for any z € Qp, from the inequality

d
‘ 710 |_27T/{ ’p ‘|<|

Lp,
we have
n 2
B (P2 < 1B @*1\” /‘ Rl
@Mlo C—2 =
‘(I)n—&-l ‘p/2/’P ‘p/2 |d(| ' 4.3)
— 2]
LR,

Multiplying the numerator and the denominator of the last integrand by h'/2((), replacing the variable
w = ®(z) and applying the Holder inequality, we obtain

2 2
P ,,/2 |d< . neey e p? — 1)
5/‘ i v L/ OO e == | <

< /)MW@HBAWOWHWWHﬁ‘/ Mmm”;g_@@m2=

[t|=R1 [t|=R1

- |dt] B
_|t_/R Ifn,p(t)\Pdt||t_/R ) [0 T An By (w), (4.4)

where fip(t) 1= hYP(U (1) P (P (1) (W'())*7, [t| = Ru.
For the estimate integral A,,, we separate the circle |t| = R; to n equal parts J,, with mesd,, =

2R
= M and by applying the mean value theorem, we get
n

Aﬁ /mmWw—Z/anw—Zmp%nm%tm%

lt|=Ri k=15,
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On the other hand, by applying mean value estimation, we have

@< e ] i O
‘_ je—til<lel-
and therefore
n
A, = ”1‘355’“ / / | Fap(©)P doe,  ty € b
:1”(‘75 ‘_1 =t <|t0 |

By taking into account the fact that at most two of the discs with center ¢)_ are intersecting, we obtain

mes 0
An ‘t/ | _i // | frp(§ )P dog = n // | frp(§ )P doe.

1<|g|<R 1<|¢|<R
According to Lemma 3.4, we get
Ap 2 n// OF doc < n|P, ||p (4.5)
Gr\G

To estimate the integral B, (w), we introduce for w; := ®(2;), ¢; := argw;, j = 1,m, and for any
p>1

(Pm;‘SOl §9<

)

: +
Al(p) = {t = 7“619: rT>p, 7801 B 802}

Aj(p)::{t:rewzr>p,w<9<W}, j=2m 1,

2 = 2
Bn(p) = {t=rei > p EuEER < g St
Let Q7 := W(A;), Q) := U(A;(p)), Aj := A,(1) and
L=Lnq, L :=L,NQ. (4.6)
Then we get
B, (w) / || <
h(V(t)) [¥(t) — ¥ (w)]

[t|=R1

- |dt|
< — =
2 / szl () — W (wy)[7 [T (t) — T(w)[?

(LY, )
-\ dt| N
B ;M[ | W(t) — (w7 [O(t) — T(w)]* ;B’w (w), (4.7)
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since the points {zj}?"”zl € L are distinct. It remains to estimate the integrals B, j(w) for each
j=1m.
Firstly, we assume that z € L. For simplicity of our next calculations, we assume that m = 1.

3
We put ®(Lj, ) = | Ki(Ry), where
=1

C
Ki(Ry) == {t ed(Lh): t—w|< gl}
C
Ks(Ry) = {t € B(Lh,): = < |t —wi| < cz},

K3(Ry) = {t e (I)(Llllh): ¢ <[t —wi| < c3 < diam G}

3
and ®(LY) = | K;(R), where
i=1

2
Ki(R) = {T € B(LY): |1 —wi| < ;1}

2
KQ(R) = {T € @(L%{): % < ‘T—wﬂ < CQ},

K3(R):={r € B(LL) o < |t —wi| <3< diam G } .

Let w € @(L}z) an arbitrary fixed point. We will estimate the following integral for each cases
with w € Kz(R) and t € Ki(Rl), 1=1,2,3:

w) e |dt| _
Buatw) = [ () — ) [ |9 () — U(w)
a(ik,)
3
]
- Z 71 2~
& 10— e 0 ¥w)
3 .
=Y Bl (w). (4.8)
=1

Case 1. Let w € Ki(R). We put Kj(Ry) := {t € ®(Ly ): [t —wi| < [t —w|}, Ki(Ry1) =
= Kj(R)\K;(Rl), j =1,2. Since ® € Lipa on Q, according to Lemma 3.1 we have

Bl (w) == / | . /
71( ) |\Ij(t)_\11(w1)‘2+’}/1 ‘\I’(t)—\]:/(w)‘2+71 -
i) K} (Ry)
@ il (2+7)/a1
= / |t _ w1|(2+’y1)/a + W <n . v >0,
K KE(Ry)
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v — v !
| (W (t) — ¥ (w)| It — wl /o
K1(Ry) Ky l)
dt|
B?z (w) = | <
7 ; S () = T (w) | () — T (w)
K5(R1)
@ 241 (2471)/a-1
= / ’t — w1’(2+’}/1)/a + / m <n .Y > 0’
Ha(R) K3(R)
_ —71
B2 (w) = / W (t) — W (wn)| 2|dt| ) / |d7t]2 e o
, |W(t) — ¥ (w)] It — w| Jox
K2(R1) Ka(Ry)
2c

Since |t —wy| > ¢ and |t —w| > ||t —wyi| — |w—wr|| > 2 — == = 1, for t € K3(R;) and
n
w € Kj(R), then we obtain

B3, (w) < / de] < [K5(R)| <1, 7 >0,

Ks(R1)
B?z,l(w) = / —|dt| 5 = / |dt| =1, 7 <0.
((t) — ¥(w)]
K3(Ry1) K3(Ry1)
Case 2. Let w € Ka(R). Then
dt|
Bl (w) < / | <
»1( ) |t_w1”yl/a ’t_,w|2/a
Ki(R1

1

A

(Ry — 1)1/ (z) K1(R1)
t
B% 1(’11)) j / |d7|2 j 77’2/&717 71 S O)
’ [t —w|*/
Ki(R1)

2
|dt|
B2 (w) =
n,l( ) Z: / |\If(t) o \Il(w1)|71 |\If(t) — \Il(w)‘Q =

K4(R1)
|dt| |dt| i) fat
= / |t — w1|(2+’y1)/a + W <n .Y > 0’
K K3(Ry)
Bna(w) = / T 2‘ | = / ’7’2 <n¥eml g <.
) |\IJ(t) — \I/(w)] |t _ w| Ja
Ka(B1) K2(R1)
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Since |t —w1| > ¢ and |t —w| > 1 for t € K3(Ry) and w € Kao(R), then

B = [ d =
[W(t) — W(w)[™ [¥(t) — V(w)
K3(R1)
71/
- l 1 / L = n2/a—1 o] > O
- Co ’t _ w|2/a - ) )
K3(R1)
W(t) — U(wy)|~ " |dt
[U(t) — ¥(w)
Ks(R1)
< / Lz < / ﬂ =< nQ/Oé—l’ 1 < 0.
W(t) — ¥(w)| |t —w] ¥
K3(Ry1) K3(R1)
Case 3. Let w € K3(R). Then
Bl 1(’UJ) j ¢ j n’n/oc—l’ 71 > 07
" |t — w1|'“/a
Ki(R1)
2 -2/«
By (w) = / ﬁﬁ 02—£ / |dt| <1, v <0,
Ki(R1) Ki(R1)
dt
2wz [ =
[U(t) — W(w1)]
K2(R1)
|dt| (241) a1
: / PR » m=>0

K>(R1)

B727,,1(w) j / |dt’ j 17 71 S 07

K>(Ry)

dt
Bgl(w) j / | |2/ j 77’2/0[717 Y1 > 07
) t o «
K3(Ra1) ‘

|dt| o
B,?;’l(w) = / m = n?/ 17 7 <0.
K3(R1)

By combining the estimates obtained in the Cases 1-3 with (4.3)-(4.5), (4.7) and (4.8), for any
p > 0 and for all z € Ly, we obtain

[Pa(2)| 2 T [[Pall,, (4.9)
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where
G Th
Zn ro - if at least forone j, v; >0, j=1,m,
Fn = le
n2/pe it v; <0, forall j=1m.

The estimation (4.9) satisfied for all z € L. We show that it occurs on L. For R > 1, let w = ¢pR(2)
denotes the univalent conformal mapping of G onto B normalized by ¢r(0) = 0, ¢’,(0) > 0, and
let {¢;}, 1 <j <m <n, zeros of P,(z), lying on G (if such zeros exist). Let

(2) — r(&))

Bnr(2) =[] Bir(2) =[] fR o) (4.10)
j=1"+" SOR(

§i)er(2)

j=1
denotes a Blaschke function with respect to zeros {{;}, 1 < j < m < n, of P,(z). Clearly,
|Bm,r(2)| =1, =z € Lg; |Bm.r(2)| <1, ze€Gpg.
For any z € G, let us set
P,.(2)
H,(z) = ————.
(%) Bu,r(2)

The function H,,(z) is analytic in G, continuous on Gz and does not have zeros in G. Then,

applying maximal modulus principle to H,,(z), we have

P (2) P(Q) ’
————| < max < max | P, <I, |~ Vz e L,
’Bm,R(Z) ¢eGr | Bm,r(C) cELR‘ n(OF = TnlIPall,
and, therefore, we find
max | P, (2)| < nOF2/eP||B,|| ¥p >0,
zeL p
where v := max {O; i, 7 =1, m} , and the proof (2.9) is completed.
1
Now, we will begin to proof (2.8). For the arbitrary fixed R = 1+ —, let us set L* := y(LRg).
n —k
According to Lemma 3.3, the number p; := 1 + ¢;(R — 1) can be chosen as Gp1 C G. Let
-1
p=1+ p12 . Let {¢;}, 1 <j <m <n, zeros of P,(2) lying in Q* and let
— Pr((
()=Pr&) g

* () = 1 *a(z) = i Oz
By, (2) =[] Bjs(2) ]H1 1 — ®R(¢)Pr(2)

j=1
denotes a Blaschke function with respect of the zeros {(;} of P,(z) in Q*. For any p > 0 and

z € 0%, we define
2
Po(2) p/
(2)

S* =
ol (%(z)%“
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The function S;; ,(z) is analytic in Q*, continuous on Q*, S (cc) = 0 and does not have zeros in
()*. We take an arbitrary continuous branch of the S}, ,(z) and for this branch we maintain the same
designation. Then, by the Cauchy integral formula for the region Q7 , we have

dg
(-2

1
Sn,p(z) - _Tm S?ip(C)

Ly

2 ey, (4.11)

. . . . €
Since | B}, (¢)| = 1, for ¢ € L, then, for arbitrary €, 0 < £ < &1, there exists a circle |w| = 1+ —,
n

such that for any j = 1, m the following is satisfied:

‘B;:R(C)‘ >1—5, <€L1+E/n

Then |B;,(¢)] > (1 —¢)™ = 1 for ¢ € L} and [B},(2)| < 1 for z € Q7. On the other hand,
|®r(C)] = R > 1 for ¢ € L}. Therefore, for any 2 = z;, j = 1,m, from (4.11) we get

r) [

B (¢) @5HH(Q)

a6l
I — 2] —

By, () ()"
NP2 < ‘ m R_\~j
P ()P < w |

L*

d
< (o5 )P [ 1R OP FEL @)
Ly

According to Lemma 3.3, there exists a number py > p; such that G C 522 and po—1 < R—1.
Using (3.2) we have |Pr(2;)| < p2 <14 c¢(R—1), and so, <I>’é+1(zj)’ = 1. Therefore, from (4.12)

we have
d
Pa ()" < L/ PP 2L @.13)
Let
T T Pr(2) — Pr(%)
b (2) == b*(z) =
= j=1 52) 3131 1 — ®p(z)Pr(2)

denote a Blaschke function for the weight function h(z) with respect to they singular points {z;} € L,

Yi/2
j = 1, m. Multiplying the numerator and the denominator of the last integrand by Hm . %QCZ)J 7
]: .
J
replacing the variable w = ®(z) and applying the Holder inequality, from (4.13) we obtain
1/2
m é
\I/R(t — Ur(w; 2
P = | [ TIPS waop [l |
LU b (w(n)
ltl=p 7=
1/2
m i
LG - ;
itz j=1 bj(\IIR(t)) ‘\I/R(t) - \IIR(wj”
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Since ’b}“(()! =1, 5 = 1,m, for ( € L*, then, for arbitrary ¢ > 0 there exists a circle

lw| =1+ E, such that for any j = 1,2,...,m the following is satisfied: ‘b;‘(()‘ > 1 — €. Then
n

}bj({)‘ >(1—-¢)=1for (e Ljand ‘b;‘(z)

»- According this reason, from (4.14)

we get
1/2 1/2
P ()P / gnp0)P / ﬁ ) =g @
W g ()P
where .
gnp(t) = [T [Wa(t) = Walw;)] " Py (Ta(t) [WR®)]*”, |t =p.
j=1

The integral .J,, 1 we will estimate analogously to estimation of the integral A,, from (4.4). For this,

2
we separate the circle [t| = p to n equal parts 7, with mesn, = TP and by applying the mean
n

value theorem to the integral .J,, 1, we have

n

/ ’.gnp ’p ’dt‘ = Z ‘gnp (tk)‘ mes 7jg, tk € Nk-
1 k=1

(s / gnp (DI |dt] =
k=

lt|=p Mk
On the other hand, by applying mean value estimation

1
‘gn,p (t;) |p <

m(|t] - 1)*

‘gn,p(g)’p dO’g,

ety |<|t, |1
we obtain
- mesn)
2 k
(Jop)? 2> ——— (-1 // |9n,p ) dog,  ty € .
&=ty |<|ti|-
By taking into account, at most two of the discs with center ¢, are intersecting, we have
2 _mesm
2 i [ es@Fdoe<n [ o doc
1<[¢]<p 1<[¢]<p1

By replacing the variable w = ®r(z) and according to inclusion @:1 C G, for J, 1 we get

Jon)? < // (O dog < n||Pul. (4.16)
Gy, \G*
Let’s estimate
4 |dt|
(Jn,2)2 =
ltl=p 31;[1 U R(t) = Ur(w;) "
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Since the points {z;}7"; € L are distinct, we obtain

/ Idt! _
UR(t) — Wrw) [

[t|=p

Now, since ® € Lip a, we have

2 ’dt‘ (247;)/a—1
(n2) </|t o S (4.17)

[t|=p

Combining estimations (4.13)—(4.17), we get
| (25)] < nET0eP || Py

and the proof (2.8) is completed.

The proof of the Theorem 2.1 (estimations (2.2) and (2.3)) obtained analogously to the proof of
Theorem 2.3. In this case, we change estimation under the condition ® € Lip o with estimation from
the Lemma 3.2.

4.2. Proofs of Theorems 2.2 and 2.4. Let us begin to proof of Theorem 2.4. Let z € Qg be an
arbitrary fixed point. Then z € QJ, for some j = 1,m. From (4.3) we have

‘q)n+1 ‘p/Z

|Pa(2)[P? < / |P(0)|P1d¢). (4.18)

ZLR

Analogously to the estimations (4.4)—(4.9), for each j = 1, m we obtain
2

d
[ imori | <nimg | \\p<t>_$‘<wj>|%"
Lr

tI=R

Further

) [
< — <5, .
| e I P (19

[tI=R [t|=R

Therefore, from (4.18) we get

nan 2/p 1 )
P, = —— d(2)|" P, , O,
P = (G00) R IR, s e

and we obtain the proof of (2.5).
The proof of the Theorem 2.2 will be obtained from (4.19), according to Lemma 3.2

/ | </ @
W) = Wluw))[7 = ] et =

[t|=R [tI=R
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4.3. Proof of Remark 2.2. The estimations (2.12) and (2.13) are shown in [?] (Theorem 17).
Let us prove (2.14). Denote by {K,,(z)}, deg K,, =n, n=10,1,2,..., the system of orthonormal
polynomials with the weight function h(z) for the region G, i.e., K,(z) := a2 + ap12" L
...+ ag, a, >0 and

[ ne) R do = b
G

where 6, ., is the Kronecker’s symbol.

Let g, := ¢}, ,, = @, , ¢ be the space p,, with the norm (1.2) for p > 1. Similarly, pp° := @
be the space g,, with the norm (1.3).

Consider a sequence of lineer operators I, , : @%,h — p;’:’é, I, h(Pp) = Py, with the norms

0o
n,G

12all =50 {IPalloc = Po € oo [ Pall gy < 1}

In [3] (Theorem 1), it was proved the following theorem.

Theorem A. Suppose that there exists £ € L such that | K| =< |Kn(§)| and, for a certain
number >0, || Ky|loo < n%. Then ||I,, || < nf1/2.

Let G = B and h(z) = |z — 1|*. Then [27, p. 76]

n
D GHDF (A +z+...+2").
=0

2

S e P e

Therefore,

n

2 . o
it D(nt 2)(n 1 3) ]Z;(] T =g =

HKnHAw(LE) = Kn(1) =

1
On the other hand, according to [3] (Lemma 1), we obtain
1/2 1/2
n 1 n
sl = | Do IGMP ) = NG > G+DE+2)G+3) | =
. T\ 4

j=0 7=0
VO D0 2 B+ )
=—/(n n n n .

6/7
Therefore, we can choose 177 € o, such that [ nl| = T3 41 5) -
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