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EXISTENCE AND UNIQUENESS THEOREM
TO A MODEL OF BIMOLECULAR SURFACE REACTIONS

TEOPEMA ICHYBAHHSA TA €JMHOCTI
JIJISI MOJIEJI BIMOJIEKYJISPHUX MTOBEPXHEBUX PEAKIIH

We prove the existence and uniqueness of classical solutions to a coupled system of parabolic and ordinary differential
equations in which the latter are determined on the boundary. This system describes the model of bimolecular surface
reaction between carbon monoxide and nitrous oxide occurring on supported rhodium in the case of slow desorption of the
products.

JloBeieHO iCHYBaHHS Ta €AWHICTh KIACHYHUX PO3B’S3KIiB 3B’ A3aHUX CHCTEM [apaboNivHMX Ta 3BHYAHHUX JuepeHIiaTbHuX
PIBHSHB, OCTaHHI 3 SKHUX BH3HauCHI Ha Mexi. CucTeMa omucye Moelb GiMOJIEKYIIIpHOI OBEPXHEBOI peakiii Mik MOHO-
OKCHJIOM BYIVIEIIO Ta 3aKHCOM a30TY, L0 Bi0yBaeThCsl HA HAHECEHOMY POAii y BHIAJKY IOBUIBHOI AecopOwii MPOMyKTiB.

1. Introduction. Heterogeneous catalytic reactions are modeled by a coupled system of parabolic
and ordinary differential equations. Some of these equations are considered in the domain, while
the other equations have to be solved on a part of the boundary. The unimolecular reaction model
taking into account the reactant adsorption and desorption and both fast and slow product desorption
is considered in [1] and [2] and the existence and uniqueness of a classical solution are proved. In
[9] and [10] the same problems are solved numerically. A model of unimolecular surface reactions
involving adsorbate diffusion and rapid product desorption is studied in [3], where the existence
and uniqueness of classical solutions are proved. The model is described by a system of parabolic
differential equations, with one of them defined on a part of the boundary. In [11], the same problem
is solved numerically. A bimolecular surface reaction model, where the concentration of the reactant
on the surface is given and the product desorption is fast, is studied in [7] and [12] by using Monte
Carlo simulations.

In [4] we proved the existence and uniqueness theorem of the classical solution to the model
of bimolecular surface reactions between the carbon monoxide and nitrous oxide, CO + N,O =
= Ny 4+ COq, occurring on supported rhodium, Rh in the case of the rapid products desorption. In
the present paper we consider the same reaction but with a slow products desorption and prove the
existence and uniqueness theorem of the classical solution. This reaction proceeds via the following
elementary steps:

CO+K & COK, NyO+K = NOK, NyOK "% N, + OK,
K11 K22
(1)
COK +OK "™ COy + 2K, Na™ Ny,  COy 22 COs,

where K is a free adsorption site of the catalyst surface S, CO and NoO are reactants, COK and
NsOK are adsorbates of C'O and N-O, OK is the intermediate product, Ny and C/'bz are reaction
products before the desorption, Ny and C'O5 are reaction products after desorption from the catalyst
surface, x; and k;;, ¢ = 1,2, are the adsorption and desorption rate constants, 13 and k3, are the
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forward reaction rate constants, x4 and k5 are the products NQ and c’@ desorption rate constants.
Two first steps in this reaction are reversible, while the other four ones are irreversible.

The paper is organized as follows. In Section 2 we describe the model. In Section 3, we formulate
main results. A priori estimates are given in Section 4. Sections 5 and 6 are devoted to the uniqueness
and existence of the classical solution to problems (2)—(4).

2. The slow product desorption model. Set A; = CO, Ay = N2O, By = Na, By = CO»,
B = NQ, By = 652, A1K = COK, A;K = NoOK, QK = OK. Then we have a mathematical
model of a bimolecular heterogeneous catalytic reaction of type A + Ao = B + Bs, which proceeds
via scheme (1). In what follows we consider the case where the desorption of reaction products Bj
and B is slow.

Suppose that the reactants A;, Ay and reactions products B, B2 occupy a bounded domain
QCR" n>3; a1 =ai(x,t), ag = az(x,t) and by = bi(x,t), ba = ba(x,t) are their concentration
at point = € () at time ¢, respectively. Let S := 92 C C'T, «a € (0,1), be a surface of dimension
n—1, and let Sy be not empty closed part of S of the same dimension, and S; = S\ S3. We suppose
that p = p(&) is the concentration of the adsorption sites of surface S at point £ € S, p € C(S5),
p(&) > 0for& € Sand p(§) =0 for & € St; pb; = p(£)0;(&, t) is the concentration of A, K, i = 1,2,
at point £ € Sy at time ¢; pfs = p(£)03(&,t) is the concentration of the intermediate product QK at
point £ € Sy at time ¢; pfy = p(£)04(€,t) and pbs = p(£)05(&, t) are the concentrations of products
Bl, Bg at point £ € Sy at time ¢ before their desorption; p(1 — ) is the concentration of the free

5
adsorption sites of So; 6 = g - 0;.
1=

Applying the mass action law and assumption that the desorption of reaction products B; and
Bs is slow we get the Cauchy problem for 6; = 6;(¢,t), i =1,2,...,5, £ € Sy,

1 =k1a1(1 — 0) — k1161 — kigpB163,  BO1]i=0 = 610,
05 = Koas(1 — 0) — Kaably — K3502, O2]t=0 = 620,
05 = Kol2 — k1300103, O3]t=0 = O30, ()
0y = Koo — K4by, 04]t=0 = Oa0,
05 = Kk13pb103 — K505, O5]i—0 = O50.

System (2) involves the unknown values of a; and ay on the boundary S;. To close this system
we add equations for diffusion of reactants A; and A,

da; .

861 —kiAa; =0 in Qx(0,7),

k2% g on Six (0,T),
on 3)
8ai

kz% + Hipai(l — 9) = K;iipb; on Sy X (O,T),

aili=0 = aio in Q

for:=1,2.
The diffusion of products B; and By can be described by the equations
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0b;

&~ kildb =0 in Qx(0,7),
% g on 51 x (0,T),
On “)
]%% = K : 0 ; on S X (0 T)
Zan - 3+lp 3+ 2 ’ ’

bilt=0 = bio in Q

for i = 1,2. Here 0, = 00;/0t, 0;0 = 0;0(§), £ € Sa, is the initial value of 0;, i =1,2,...,5; Ais
the n-dimensional Laplace operator; 0/0n is the outward normal derivative to S; a0 = aip(x) and
bio = bio(x) are the initial concentrations of A; and B; at point = € Q; k; and k; are the diffusivities
of the reactant A; and product B;, i = 1,2. All constants k1, k11, K13, k2, K22, Kag, K4, K5, Ki, 12:,
are assumed to be positive.

Model (2)—(4) possesses the following three mass conservation laws:

/(al(x,s) + by(z, s)) dx :; + /p(f)(@l(f, s) + 05(&, s)) dSe :Z =0,
Q Sa
/(ag(as7 s) +bi(z,s)) dx Z:Z + /p(f) (62(&, s) + 64(&, 5)) dSe :t =0,
Q Sa

/(al(ac, s) + 2by(z, s) + az(, s))dx :;4—

Q

+ [ ol€) (20506, + 026, + (6.9 )ase| ) =0
Sa

To prove these laws, it is sufficient to integrate egs. (3), (4) over the cylinder Q x (0,t), apply the
formula of integration-by-parts, and use eqs. (2) with the boundary and initial conditions.

Thus, the bimolecular catalytic reactions can be described by system (2)—(4). Our aim is to
prove, for this system, the existence and uniqueness theorem. For every collection of continuous
functions 64, 65, problem (4) has a unique classic solution. Therefore, it is sufficient to prove the
solvability of problem (2), (3).

3. Main results.

Assumption 3.1. The initial functions 0,5, i = 1,2,...,5, a0, bjo, 1 = 1,2, and given function
p satisfy the following conditions:
1. The functions 6;y, i = 1,2,...,5, are continuous and nonnegative on Sa, and 0y(§) =

_ Zjﬂ 0i0(€) < 1 forall € € Ss.

2. The functions a;y, b, i = 1,2, are continuous and nonnegative in a closed domain ).

3. peC(S), p(&) >0 forall £ € S, and p(§) =0 for all € € 5.

Assumption 3.2. The functions a;y, by, © = 1,2, are continuously differentiable on a neigh-
bourhood of the surface S.

Definition 3.1. Functions 0;, i = 1,2,...,5, and a;, b;, i = 1,2, form a classical solution to
problem (2)—(4) if 6; € C(S2 x [0,T]), 0, € C(S2 x (0,T)), the derivatives Da;/On and Ob;/On
are continuous on S x [0,T), and a;,b; € C**(Q x (0,T]) N C(Q x [0,T]), i = 1,2, and they
satisfy system (2)—(4).
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The main result is the following theorem.
Theorem 3.1. Let Q be a bounded domain in R™ and S = 02 be a surface of class C1*,
€ (0,1). Let the known functions 0,0, a0, bio, and p satisfy Assumptions 3.1, 3.2, and koa > K35,.
Then problems (2)—(4) has a unique classical solution.

The proof of this theorem is based on the a priori estimates formulated in the following proposi-
tions.

Lemma 3.1. Let a;, i = 1,2, be a given continuous and nonnegative on Ss X [0, T| functions,
0i0, i =1,...,5, and p satisfy Assumption 3.1, and kaa > K3,. Let 0;, i = 1,...,5, be a solution'
of Cauchy problem (2). Then 0;({,t) > 0, i =1,...,5, and 0(&,t) = Zj_l 0;(&,t) < 1 for all
£e€ Sy, tel0,T).

Lemma 3.2. Let 0; = 0;(¢,t), i = 1,2,...,5, be given continuous and nonnegative on S X

x [0, T'] functions such that 6(x,t) = ZB 0;(&,t) <1 forall £ € Sy, t €[0,T]. Let ao, i = 1,2,
and p satisfy Assumption 3.1, and a;, i i 1,2, be a classical solution to problem (3). Then for all
z € Q, t €[0,T] we have the inequalities

0< ai(x,t) < ﬁia 1= 1727 (5)

where the constants 3; do not depend on concrete functions 01, . . . , 05 satisfying the above conditions.
4. Proof of a priori estimates. Proof of Lemma 3.1. Let

= {(91,92,93,94,95) S Rsi 0; = Hi(f,t), 1=1,2,...,5, t € [O,T]}

be a trajectory of system (2), which begins at the point (619(£), 020(€), 030(&), 0a0(§), 050(8)), € €
5
€ S2. We prove that ~ does not leave domain D, which is bounded by planes Z . 0; =1 and
]:
0;=0,i=1,2,...,5.
Integrating equations (2) with respect to variable ¢, we get the integral equations

01€f0 (k11++K13p03) dT _ o+

/flal 1 _ fo (k11+K13p03) ds dr,

o —

t

FREE _ R
(926(“22 K32)t — -l-/ligag 1 - (H” K32)T dr,
0
ft K13p01dT J k13pb1ds *
f3e’lo =030 + :‘<&22926 0 dr, 2
0

t
946N4t = (940 =+ /K§202€H4T d’i‘,
0

t
956”575 = 050 + /%13p91936'{57 dr.
0

'For given continuous on Sz x [0, T] functions a;, ¢ = 1,2, we say that functions 6;, ¢ = 1,2,...,5, form a classical
solution to Cauchy problem (2), if 6; € C*(S2 x (0,T7))NC(S2 x [0,T]) and they satisfy system (2).

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 7



EXISTENCE AND UNIQUENESS THEOREM TO A MODEL OF BIMOLECULAR SURFACE REACTIONS 881

Suppose that the trajectory ~ leaves the domain D by crossing (or by touching) the plane 6; = 0
for any ¢ = 1,2,...,5 at the moment ¢*, and does not cross the other planes, that is 6;(£,t*) = 0,
6;(&,t*) > 0 for j # 4, and 6(§,t*) < 1. Then there exists ¢ > 0 such that 6;(£,t) < 0 for
te (t*,t"+¢]and 0;(¢,t*) >0, j # i, 6(&,t) <1 fort € [t*,t* + . But for these ¢ from the
ith equation of system (2*) we get 0;(£,t) > 0. The contradiction shows that v does not leaves this
domain D through the plane §; = 0. Similarly it can be shown that the trajectory v does not leave the
domain D through the intersection of several planes §; = 0. For example, if the trajectory  leaves
the domain D through the intersection of planes §; = 0 and A3 = 0 at the moment ¢*, then there
exists € > 0 such that 6;(£,t) < 0 or 02(&,t) < 0 and 0;(§,t) > 0, j # 1,2, for t € (t*,t* + ¢,
0(¢,t) <1 for t € [t*,t* 4 ]|. But from the first two equations of the system (2*) for these ¢ we
get 61(£,t) > 0 and 02(&,t) > 0. The contradiction shows that v does not leaves this domain D
through the intersection of planes §; = 0 and 6 = 0. Thus 0;(¢,t) >0, i =1,2,...,5, for { € Sy,
t € [0,T7.

Suppose that v leaves the domain D by crosses or touching of the plane 8 = 1. By assumption,
0o(¢) < 1. Then there exists the moment ¢* > 0 such that 0;(¢,¢) >0, i =1,2,...,5, 0(§,t) <1
for t € [0,¢*]. Summing all equations of system (2) we get

—(1 — 9)/ = (mal + /€2a2)(1—9)—ﬁ71191—ﬁ72292 + /41;292 — K404 — K505 — H13p9193. (6)
Multiplying both sides of this equation by eJo (m1a1+rzaz) ds
the equation

and integrating with respect to t we get

t
(1 — §)elo(miatreands _q _ g, +/ (k1161 + (K22 — K32)02 +
0

+ K4y + K55 + K13pBif3)elo (Frartnza2)ds g

By assumption of Lemma 3.1, 6y(£) < 1 and k92 > K3,. Then for ¢t = t* the right-hand side of this
equation is positive while the left one is equal to zero. The contradiction shows that v does not leave
domain D through the plane § = 1. Hence, 6(,t) < 1 for £ € So, t € [0,T].

Lemma 3.1 is proved.

Proof of Lemma 3.2. According to the positivity lemma (see [8, p. 19], Chapter 1, Lemma 4.1),
the functions a;, i = 1,2, in Q x [0, 7] cannot have a negative minimum. Therefore a;(z,t) > 0 for
allz € Qand t € [0,7].

Let a;, ©+ = 1, 2, be the solution to the problem

%?—mAmzo in Qx(0,7),
Zaac:: =0 on Sl X (O,T),
0a;

kl% = Kiip on SQ X (O,T),

&i|t:0 = a;0, 1= 1, 2, in ﬁ

According to the positivity lemma function a; — a;, i = 1,2, in Q x [0, T] cannot have a negative
minimum. Therefore a;(z,t) < a;(z,t) forall z € Q and ¢ € [0,7] and a;(z,t) < §; forall x € Q
and ¢ € [0, 7], where §3; = MAX, 6 1e(0,7] ai(z,t).

Lemma 3.2 is proved.
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5. Uniqueness of classical solution.
Theorem 5.1. Problem (2), (3) cannot have two different classical solutions.

Proof. Let éi, i=1,...,5,a;, 1 = 1,2, and éi, i=1,...,5, a;, 1 = 1,2, form two classical
U 5
solutions to problem (2), (3). Set0; =0;,—0;,i=1,...,5,a; =a;—a;,i=1,2,and 6 = Z ) 0;.
1=

Then for 6;, i =1,...,5, we get Cauchy problem
0] = k1a1(1 — é) — k1010 — k1101 — mgp(Glég + 5103), te (0,7),
0 = koan(1 — 0) — Kolnh — (Koo + K39)02, t € (0,T),
04 = Koy — k13p(0103 + 6163), t e (0,T),
0) = K390 — k4by, t€(0,T),
0L = k13p(0103 + 6103) — k505, t e (0,T),

Oili=0 =0, i=1,2,...,5, for £ € Sy. Integrating these equations with respect to variable ¢, we get
the integral equations

t
01 = /nlal(l — é) — K110 — k11601 — Iilgp(elég + 9103) ds, te (O,T),
0
t
0y = /Rgag(l — é) — Kolol — (RQQ + H§2)92 ds, te€ (O, T),
0
t
03 = /H§292 — Iilgp(elé;; + 5193) ds, te€ (O,T),
0
t
94 = /HZQQQ — /<.1404 dS, te (O,T),
0

t
05 = /ngp(elég + 9~193) — ksb5ds, t€ (O,T).
0

5
Let |0] = Zi:l |0;|. Then

t t

6] < / (k1laa| + malas]) ds + C / 16] ds,
0

0

where

2
C= § kim; + max{k11 + 3K13D, Koo + 3K39, K4, K5},
i—1
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= max m; =  1max a;(&,t), =12
p=maxp(¢), i geswe[m\ i(&:1)]

Using the Gronwall lemma we get

t
16&.01 < ¢ [ (malan(€.9)] + malas(€.5)]) s ™)
0
Using that 6 <1 from (3) for each ¢ = 1,2, we have

1
2/@ dac—l—//k:|Va1] dx dt = // Kip( a19+(¢9—1)az)+f€up9)ald5dt<

0 Sy

<o / / (lan(€,5)] + as(€, £)) 10(€, £)] dS dt.

0 So

Ci=p max {Kimi + Kii }.

Adding these equalities and using the inequalities

T

/ /rcu £ 0)[10(¢,1)1dSdt < 7 / / lan (€. )\t / plan(€,0)] + ralas (&, 1) dtdS <

0S5 0

< 7eT | Ky [ a2(€,t)dS dt + 2 ai(é,t) +a3(¢,t)) dSdt
J[eomarz ][

and
/T a2 (&, 1)16(¢, 1)|dSdt < eCT/ / !az(&t)!dt](ﬂﬂal(&t)! + kzlaz(§,1)[)dt dS <
05 50 5
< 7eCT /12//a2§td5dt+,i// a2(&,t) + a2(&, 1)) dS dt
we obtain

T

2 . 2
2/Za?da:+//2kiwai\2dxdt§Cg//Za?det.
Q 0 Q¢ , =1

i=1 i=1 0 S

—_

For every € > 0, we have the estimate

/anx§€/|Va]2da:+CE/a2da:,
Q Q

S
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where the constant C. is independent of the function a, and C; — oo as € — (. Therefore,

2 T 2 T 2
/Za?dﬁer//Zkilvai\dedtSCg//Za?dwdt.
o =1 0 o =1 0 o =1

From here by the Gronwall lemma we get

T 2
//Za dx dt < 0.
0 =1

Hence, a; = 0 for ¢ = 1, 2. Now estimate (7) shows that 8, = 0 for i = 1, 2, 3,4, 5.

Theorem 5.1 is proved.

6. Existence of classical solution. In this section, we prove that problem (2), (3) has a classical
solution. Let Qy = Q if a1g = 0 and agy = 0 in some neighborhood of the surface S, and Qy D Q
if a9 or agg is continuously differentiable on some neighbourhood of the surface S. In the last case,
we extend the functions a1g and agg to Qg \ﬁ preserving the same smoothness. Let

1 _l=?

Fk(x7t)_(4ﬂ_kt)n/2€ Akt fL'ERn, t>0,

be the fundamental solution to the equation a; — kAa = 0, k > 0. Then, for any continuous on
Sy x [0, T functions 601,62, ..., 05 and continuous on S function p, problem (3) has a unique solution
a; € C21(Q x (0,T))NC(Q x [0,T)), i = 1,2, which can be presented by the formula (see [5])

t
:3//fmm—f¢—7wwaﬂd&dr+/rhu—%wmawd% ®)
0o S

Qo

where ;, i = 1,2, is a continuous and bounded solution on S x [0,7] to the Volterra integral
equation

or — 1
7901 777 + // < k f ! T) + Egi(na t, H)sz (77 - 67 t— T)) 901(£a 7-) ds§d7— =

i

0
Ol (n —
Qo

0 it (6.1) € 5 x [0,7],
(&t,0) .

Rip(€)(1—0(,1)) if (&,1) € Sy x [0,T),

0 if (£t) €S x[0,7],

Vi (&,t,0) =

szp(£)92(57t) if (§7t) € S2 X [O7T]7
i€, t)] <M, €€8, telo,T].
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Here constant M; is independent of functions 61, 6o, ..., 05 such that 6;(¢,t) > 0, i = 1,2,...,5,
5
and 0(¢,t) =) i€, 1) < 1forall (&,1) € Sy x [0,T].
1=
Let a;1, © = 1,2, defined by formulas (8), and ¢;1, ¢ = 1,2, be solutions to problem (3) and
the integral equation (9) with functions 6; = 6,9, i = 1,2,...,5. Then by Lemma 3.2 functions a;1,
i = 1,2, are nonnegative, a; (x,t) < 3; for x € Q and ¢ € [0, T], and

lpa(e, )| <M;  for €€ S,telo,T).

Assume that 0,1, i = 1,2,...,5, form a solution to Cauchy problem (2) with a; = a;1, i = 1, 2.
Then by Lemma 3.1 functions 6;1, i = 1,2,...,5, are nonnegative and Zil 0i1(&,t) < 1, for all
£e€ Sy, tel0,T).

Let a2, © = 1,2, defined by formulas (8), and ¢;2, ¢ = 1,2, be solutions to problem (3) and
the integral equation (9) with functions 6; = 6;1, ¢ = 1,2,...,5. Then by Lemma 3.2 functions a;o,
i = 1,2, are nonnegative, a;(x,t) < 3; for x € Q and t € [0, T], and

lpin(&.t)| <My for €€8, te[0,T], i=1,2.

Assume that 0,5, ¢ = 1,2,...,5, form a solution to Cauchy problem (2) with a; = a;2, i = 1, 2.
Then by Lemma 3.1 functions 6,5, ¢ = 1,2,...,5, are nonnegative and Zle 0i2(&,t) < 1 for all
e s, telo,T).

Proceeding with this argument, we get the sequences

{az-j};?‘;l, 1= 1,2, {Soij}]o'ila 1= 1,2, {92-]-}}?‘;1, 1= 1,2,...,5,
which are uniformly bounded:

aij(z,t) >0 for z€Q, tel0,T], i=12 j=12,...,

aij(z,t) < B; for x€Q, te0,7], i=12, j=12,...,

lpij (&) < M;  for €8, tel0,T], i=1,2, j=12,...,
0;;(6,) >0  for £€8y, te[0,T], i=1,2,...,5, j=12...,

5
Y 06t <1 for £€8,, te0,T], j=12,....
=1

Now we prove that they are equicontinuous. Functions a;; are defined by the formula

t

a;j(z,t) = //I’ki(x—ﬁ,t—T)goij(ﬁ,T) dSe dT—i—/Fki(x—y, t)aio(y) dy.

0 S Qo

The potential of a simple layer (see [5] or [6])
¢
//Fki(x — &t —7)pij(§,7) dSe dr
0 s
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belongs to the Holder space C*(Q x [0,T]) with A € (0,1). Hence, the sequences {a;;}52,,
1 = 1,2, are equicontinuous.
Functions 60;;, i = 1,2,...,5, are solutions to the system of integral equations

t
015(€,t) = bho(& +/ rk1a15(€; s) (1—2% £ s >—H1191j(§75)—
0

— k13p(§)01;(&, 8)03; (&, 8)] ds

t
02j(§a t) = 020(6) +/ K2a2j 67 <1 - ZH’U 57 ) 522 + ﬁ22)02j (57 )] S,
0

t

03;(§,t) = 030(&) +/ :@292;'(5,8) - H13P(f)91j(€78)93j(§,8)} ds

04;(&,t) = 010() +

:5’529%(5, 5) — Kab4; (&, 8)] ds,

055(&,t) = O50() +

:/@13P(§)91j(5, 5)035(&,5) — k5055 (&, 5)} ds.

/
/

Therefore,
1015(€,1) = 015(&,7)] < |t = 7|(k1B1 + K11 + K13D), p= ?é%xﬂ(f)
2
|02 (&, 1) — 025(&,7)| < [t — 7|(K2f2 + Koz + K3g)
|035(§:t) — 035(&, 7)| < [t — T[(K32 + K13P)
1045(€, 1) — 045(&, 7)| < [t — 7[(K30 + Ka),
1055 (&, 1) — O55(&,7)| < [t — 7|(K13p + Ks5)
Moreover,
5
D 1055(&.t) — 035(n. 1)] < Z 16:0(&) — Bio(n)| + k13T p(€) — p(n)| +
t s 2
+ C/ZWM(E,S) — 035(n, 5)|d5+/2m|aij(§,5) —ag;(n, )| ds
0 =1 0 =1
and

5 5
> 165(&, ) = bi5(n, )] < T <Z 10i0(€) — Oio(n)| + 3k13T|p(&) — p(n)\) +
=1

=1
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CT—l 2

max Y #iaij(§,s) — aij(n, s)]

+ C s€[0,T] i1

for all {,n € S, t,7 € [0,T]. Here C = m + max{mu + 3pK13, Koo + 3552,54,55}. These
estimates show that the sequence {6;; }?ip i=1,2,...,5, is equicontinuous.

Functions ¢;;, ¢ = 1,2, are solutions to integral equation (9) with ¢; = 6;;_1. The potential of a
double-layer (see [5] or [6]),

t
15)
// P 77 §t )%j(faT)dsédT
0

belongs to the Holder space C*(S x [0,7]) with A < 2a/3. Therefore, the sequences {pii}321s
1 = 1,2, are equicontinuous. According to the Arzela— Ascoli theorem we can select uniformly
converging subsequences from sequences {aij}?‘;l, 1= 1,2, {gpij};-";l, 1 = 1,2, and {Hij};?‘;l,
1 =1,2,...,5. Since problem (2), (3) cannot possess two classical solutions, we claim that the

sequences {a;;}52, i = 1,2, {¢;;}52;, i =1,2, and {0;;}32,, i = 1,2,...,5, converge uniformly.
Set
ai(z,t) = lim a;;(z,t), reQ, tel0,T], i=1,2,
]A)OO

@Z(§7t) = hm 901](€7t)7 5 € S7 te [OaT]v 1= 1727
j—o0

gz(gat):}i)rgoel](éat)? 56527 le [OaT]7 1=1,2,...,5.

Formula (8) holds for the limit functions a;, s = 1,2. Therefore, the limit functions a; € C%1(Q x
x (0,T]) N C(Q x [0,T7]) are solutions to problem (3). The limit functions 6;, i = 1,2,...,5, are
solutions to the system of integral equations

t
(ft —910 —|-
-

(f t —920 —|-

k1a1(€, 5) (1 —~ Ze (& s ) — k1101(€, 8) — r13p(€)01(E, 5)03(E, s)] ds,

o

M 5
R2a2 57 <1 - ZH’L 67 > "122 + K/22)02](£7 )] dS,

03(€,t) = 030(&) +

_@‘202(&, $) = R13pl€)01 (&, 9)05(6, 5)| ds.

o\

0a(61) = 020() + [ |rhaba(€. 5) — raba(E: )| ds,

o —

05(6.8) = 050(€) + [ [k12p(6(6, )00(6.5) ~ stie,)] ds
0
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Therefore, 6;, i = 1,2,...,5, are uniformly differentiable with respect to variable ¢t and form a
solution to Cauchy problem (2). Hence, problem (2), (3) has a classical solution. According to
Theorem 5.1, this solution is unique.

Acknowledgment. The author thanks Prof. V. Skakauskas for the formulation of the problem
(system (2)—(4)) and fruitful discussions.
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