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DECAY ESTIMATES FOR A KIND OF LINEAR WAVE EQUATIONS *
OIIHKU 3ATYXAHHSA JJI OJHOI'Y THUITY XBUJIbOBUX PIBHAHD

We consider one kind of dissipative wave equations with exponential speed of propagation. An arbitrary power decay rate
for the L?-norm and energy is obtained by using the multiplier method.

PO3mIsSIHYTO OMH THIT JUCHIIATHBHUX XBUJILOBHX PIBHSHB 3 €KCIIOHEHI[IATBHOIO MIBUJIKICTIO NOIIMpeHHs. JloBIIbHUIM cTe-
TIeHeBMI 3aKOH 3aTyXaHHS OTPMMAHO Ul L -HOpMHM Ta eHeprii 32 JOIMOMOrOI0 METOy MHOXHHKIB.

1. Introduction. Consider the following damped wave equation:

uy — div(b(z)Vu) + a(z)u, =0, (z,t) € R™ x (0, 00),
(1.1)
u(z,0) = up(x), u(z,0) =ui(z), =e€R",
where a(z) € CO(R"), b(x) € C'(R™) are positive functions, and (ug(z),u1(z)) € HY(R") x
x L?(R™) have compact support

uo(x) = 0 and uy(z) = 0 for |z| > R.

Such a system appears in models for traveling waves in a nonhomogeneous gas with damping that
changes with the position (see [1] and the references therein). It is well known that (1.1) admits a
unique weak solution u satisfying u € C((0,00), H(R")) and u; € C((0,00), L2(R")) (see [2]).

The main quantities of interest are the L?-norm and energy associated with u. In fact, the energy
arises after multiplying equation (1.1) by u; and applying the divergence theorem on R":

%% (uf + b(z)|Vul?) dz + /a(x)u?dw =0.

R R”
Hence the energy is a nonincreasing function of ¢. The important question is whether the energy
decays as t — oo and if so, how fast it decays. This problem has been studied intensively when b
is constant (see [3—15] and the references therein). When b is space dependent, the problem (1.1)
does not have constant speed of propagation anymore (see Radu et al. [1]). In [1], they considered

the case
bo(1+|z)’ <b(z) <bi(1+[z])?,  ao(l+|z)"* <a(z) <ar(1+]z))™  (1.2)

with ag, a1, bg, b > 0 and a < 1, 0 < 8 < 2, 2a + B < 2. Using the multiplier method, they
obtained the following decay estimates of L?-norm and energy:

5— n—2a
728, a>0
2 2 2 7 ’
u“dr < Cy ([|[Vug(x +llua(z noa
/ (IVuo(@fe + [1@I2) § 5 e, 7
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[ (w4 b(a) TuP) do < O (IFu0o(@)]32 + s () B2) #7757
R

Note that the above decay rates go to infinity when 3 — 2~ and o — 0. But one can not propose
limit to go to the case § = 2 and o = 0. This is because for the case § = 2 and a = 0, the
problem has exponential speed of propagation, while power speed of propagation for the case (1.2),
see Lemma 2.1. In this paper, we consider the case § = 2 and o = 0. By modifying the method
in [1], we prove arbitrary power decay rate of the L?-norm and energy. For simplicity, we only
consider the radial case

b(z) =bo(1+ |z)?,  a(z)=1. (1.3)
And the results in this paper can be generalized to the general case

bo(1 + ]x\)Q <b(x) <bi(1+ ]a:|)2, ap < a(z) < ay.

This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we
prove our main results.

2. Preliminaries. First, we state a result about the support of solutions for a wave equation with
variable coefficients (see [1]).

Lemma 2.1. Assume that b(x) = bo(1 + |z|)® and that u(x,t) satisfies (1.1) with ug(z) =
=uy(z) =0 for |x| > R. Then u(x,t) = 0 whenever |x| > Ry, where

Ri=(1+R)eV?" -1 for g=2, 2D
2/(2-6)
R, = ((1 + R)@A/2 4 t\/g) for § < 2. 22)

Proof. (2.2) is a direct result of Proposition 2.1 in [1] for the radial case b(z). (2.1) can be
obtained in a similar way. We only point out the differences of the proof. Following the proof of
Proposition 2.1 in [1], for § = 2, we obtain

In(1+7p) —In(1 +1r)).

oo 1
q(r) = - / ds = —=(
( N T
70
Hence ¢ (y) = (14 ro)e ¥V — 1 and
Ri=q *qR)—t)=(1+ R)et‘/% — 1.
Lemma 2.2. Under assumptions (1.3) there exists a solution A(x) which satisfies

div(b(x)VA(z)) = a(x) =1, =z €R", (2.3)

with the following properties:
(ag) A(z) = O(In(1 + |z|)) for large |x|;
A(x)

(a3) limjg| oo W) VA = +o0.
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Proof. As in [1], we obtain a radial solution for (2.3). In this case (2.3) becomes

n—1

b(r) <AM + Ar> +b0, A, =1, r=|x|
T

1

Multiplying the above equation by "~ ", we have

(r”_lb(r)A,«) =L

r

After integration, we obtain

1-n "
Ar = CO +/pn_1dp
0

Integrate again, and then we find a solution in the form

r s
1-n

_ S n—I1
A(r)=C +/ o) Co + /p dp | ds.
0 0

By letting Cy = C = 0, we obtain the solution which satisfies A(0) = A,(0) = 0. By condition
(1.3), we get

A(r)—1<1n(1+r)+1 ! d

= nbo T — 1) s A,(T> = W (24)

It is easy to see that (a;) — (a3) are satisfied by such choice of A(z) = A(|z]).
Lemma 2.3. Under assumptions of Lemmas 2.1 and 2.2. Define

G(t) = sup{A(x)|z € suppu(-,t)}.

Then G(t) < Got, where Gy > 0 is a constant.
Proof. By (2.1), the support of v is contained in the set

|z < (1+ R)etV™ —1.

Therefore A(z) defined in (2.4) satisfies A(x) < Got.

3. Main results. In this section, we use the multiplier method to obtain weighted L? and energy
estimates for the solution to (1.1) under conditions (1.3).

As in [1], let u = (4, then we obtain the equation for u:

Gy — b1 AG — by - Vi 4 a1y + gt = 0, (3.1)
where by = b, by = Vb+2bp 'V, a1 = 1+ 20 s and Gy = o~ (05t — div(bVe) + ).
Multiply equation (3.1) by u + fu; and integrate on R™ using the divergence theorem. The

boundary terms vanish since wu(x,t) has compact support with respect to x. Then one has the
following lemma [1].
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Lemma 3.1. Let u be a solution of (1.1). Assume that ¢ and 6 > 0 are C*-functions. Then 0
satisfies

d
7B, Vi, @) + F(, Vi) + G(@) = 0,

where

E (g, Vi, @) = % / (0 (4 + b|Val®) + 2000 + (420 + ¢ + ) 0%) da,
F (i, Vi) = % / (=0 +2 (1 + 207 1pr) 0 — 2¢0) G7dz+

+ / b (V0 — 200" "'Vy) - 4, Vidz+

1
+2/b(—9t+2¢)\va12dx,
. 1 . . .9
G(a) = 5 (G2 — (a20),) U"dx.

In the following, we choose appropriate functions ¢ and 6 to estimate £, F' and G. Given any
large m > 0, define

o(x) =2mA(z) + oo, (3.2)

where A(z) is defined in (2.4), and g = oo(m) > 0 is chosen such that o(z) — b(x)|Vo(z)* >
>0, z € R". Then we have div(b(z)Vo(x)) > 2m. Set

e 12 -
ooty =P =3 (2458 o, (3.3)
By direct calculation, we have
—-m  o(x) m  20(x) -m  o(x)\?
o=\t )eeu=\g-—p ¢t 7T T2 ) %

b(z)|Vol?
2 ¥

Vo(z)

Vo =—
1.4 ¢

@, div(b(x)Vy) = —%div(b(z)VU)(p +

1 2 o(x)
ln9:ln§—ln <t+t?> +In ¢,

i () (@) ().
ve (2 a(a:)>_1 Vo(z) Vo(x)
0 2 t

t 2

Lemma 3.2. Let ¢ and 0 be defined in (3.3), then there exists T = T (m) > 0 such that F > 0
and G >0 fort > T.
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Proof. First, we use (3.3) and Lemma 2.3 to calculate the coefficient ao,

div(b(z)Vo) —m  o(z) —bx)|Vo]> m 20(x) —m  o(z)\’
as = ; + 2 + ﬁ - 3 + ; + 2 >
>@_20(x) >@_C(m)t>0
-t B3 Tt 3~

for sufficiently large ¢, where C'(m) > 0 is a constant depending on m. In a similar way, we can
show that (a2), < 0 for sufficiently large ¢.
Next, we calculate —6; + ¢. By (3.3), we obtain

a3t (2 )-

m+2 o(x)
—g T2 L )
(%)
By the above arguments, and considering the definition of G, we have G > 0 for sufficiently large
t. In order to show F' > 0, we argue as follows. By (3.3) and Lemma 2.3, we get

3m—1
—9t+2(1+2§0_190t)9—2g029< Bmt O—Jif>+2>z

S0 (3m 10 C(m)t

; 2 +2>29

for sufficiently large ¢. On the other hand,

_ bVol2 | /2 o(z)\ 1
b|VO — 2007 V| = 02 2 1l <
v ¢TIVl - ‘(t + =3 R
2
S 92b|v0'| )

$2
Since o(z) > b(x)|Vo|?, we obtain
(=0 +2 (14207 1) 0 — 20) (=6, +2¢) > b| VO — 200" 'V 2,

which implies that /' > 0 for sufficiently large .
By Lemmas 3.1 and 3.2, we have

By, Va, 4) < E(ay, Vi, 0)|er & Ep,  t>T. (3.4)

Considering the definition of F, we get

1d 1
5 ot’dr + 3 / ptdr < Er.
The above inequality implies
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[witde < Hn 2, e,
1
where Hyp = /sOfLQde‘h—T- Using 20,1 < 50@% + 20710242, we obtain from (3.4)
/9 (47 + b|Va|?) dz < 4E7 + 4/ (—a20 — ¢r — @ + 2071 ¢%) WPda.

By the choices of 6, ¢, o(x) and Lemma 2.3, we have

—a20 —pr —p+ 20710 < —pp —p+ 20717 =

(i )

t t2
8 C(m)t
gso( tm+ (t?) —1)§0

for sufficiently large ¢. Therefore, we obtain the following lemma.
Lemma 3.3. Let ¢ and 0 be defined in (3.3), then we have

/0 (a7 +b|Val*) de < 4Br,  t>T,

where Ty = T1(m) > T(m) is a constant.
Note that

—_

-2, 2 —4 2 2
U — @ QU

@ = (—p 2o+ o ) > 3%
Va? = |—p~2Veu + 7'Vl > %cp’Q\Vu!Q — o Vpfu,
Combined with the estimate in Lemma 3.3, these inequalities imply
;/Hcp2 (uf +b|Vul?) dx < 4B, + /0(;74 (97 + b|V|?) u’daz.
By the choices of ¢, 6 and Lemma 2.3, we get

0o~ (o7 +b|Ve|*) =

b (2o ) (et )

<!

for sufficiently large ¢t. And in terms of u, (3.5) can be stated as

/go_lqux < Hp +2E7, t>1Ti.

Therefore, we obtain the estimates of « as follows.

(3.5)
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Lemma 3.4. Let ¢ and 0 be defined in (3.3), then for t > Ty > T we have

/go_lu2dx < C(Hrp, + Er,),
/ngz (uf + b|Vu|?) dz < C(Hr, + Ery),

where C and Ty = Ty(m) are positive constants, Hy, = /goﬁgd:):\t;ro and Eg, = E(ty, VU, 0)|=, -

From Lemma 3.4, we have for any ¢ > Ty(m),

/ e ulde < O(Hy, + Eny), (3.6)
2 -1 o(x)
/ <t + Ut(f)> t"e v (uf + b\Vu|2) dr < C(HTO + ETO)- 3.7
Note that
2 o(z)\ " t2
z A\ = > t t > T
<t T > 2t o(z) = LMt =10
and

Hr, + Eg, < Co(m) (| Vuoll72 + lurll72)

where C(m) and Ca(m) > 0 depends also on R, b(x) and n. Note also that the estimates (3.6)
and (3.7) are trivial for small ¢ > 1, thus we have our main results.

Theorem 3.1. Assume that a(x) and b(x) satisfy condition (1.3). Then for any large m > 0 the
solution of (1.1) satisfies

o(x) _
/e uldr < Co(m) (HVUOH%Q + Hu1||%g) tm,

o) e
/ 7 (u? + b|Vuf?) dz < Co(m) (| VuolZa + Jur]Z2) ™1

for all t > 1. Here o(x) > 0 is defined in (3.2). The constant Cy(m) depends also on R, b(x) and
n.
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