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GLOBALLY ROBUST STABILITY ANALYSIS
FOR STOCHASTIC COHEN - GROSSBERG NEURAL NETWORKS
WITH IMPULSE CONTROL AND TIME-VARYING DELAYS*

INIOBAJIBHO POBACTHUI AHAJII3 CTABLIBHOCTI CTOXACTUHYHHUX
HEWMPOHHUX CITOK KOEHA -TPOCCBEPTA 3 IMITYJIbCHUM
YIIPABJITHHAM TA 3ATPUMKAMM, 110 3AJIEKATD BIJ{ YACY

By constructing suitable Lyapunov functionals, in combination with the matrix-inequality technique, a new simple sufficient
linear matrix inequality condition is established for the globally robustly asymptotic stability of the stochastic Cohen—
Grossberg neural networks with impulsive control and time-varying delays. This condition contains and improves some
previous results from the earlier references.

3a momoMororo moOyI0BH BiIOBIAHUX (yHKIiIOHATIB JIAmyHOBa, B KOMOiHALIT 3 TEXHIKOIO MATPHYHOT HEPIBHOCTI, BCTAHOB-
JICHO HOBY IPOCTY JOCTATHIO JIIHIHY YMOBY MaTpUYHOI HEPIBHOCTI /1S I100aIbHO POOACTHO ACHMIITOTHYHOI CTaOIIBHOCTI
CTOXaCTHYHHX HeipoHHUX citok Koena—I'poccOepra 3 iMITyIbCHEM YIPABIiHHIM Ta 3aTPUMKaMH, IO 3aJ€XKaTh BiJ dacy.
Lls ymMoBa MICTUTH Ta MOKpAILy€ JEAKi BiIOMi pe3ybTaTH, IO OTPHMaHi paHille.

1. Introduction. Notations. Let R denotes the set of real numbers, R, the set of nonnegative
real numbers, Z, the set of positive integers and R™ the n-dimensional Euclidean space, | - | the
Euclidean norm. For any ¢ C R, let PC'(¢, R") = {gp: ¢ — R™ is continuous everywhere except at
a finite number of points ¢, at which o(t}), (t;) exist and (t) = ¢(ty) }.

In this paper, we are concerned with the model of continuous-time neural networks described by
the following systems of the form:

zi(t) =
= ¢i(z;(t)) [—di(ﬁfi(t)) + ) ai fi(xi () + Y bifi (it —7i(1) + Ji|, t>0, t#t,
p j=1
Axili=y, = zi(te) — zi(ty,) = L(zi(ty)), k€ Zy, (D

zi(s) = dils),  s€lto—Tito), i=1,2....n,
or equivalently
2 (1) = C(a(t) [~ D(a(t) + Af(@(®) + Bf (a(t = 7(0) + ], £20, t#1,
Axlimy, = Iu(z(ty)), k€ Zy, (1
2(s) = d(s), s € [to— 7o),

where n denotes the number of the neurons in the network, x;(¢) is the state of the ith neuron at time
T
t, x(t) = (21(t), 22(t), ..., 2n()" € R*, f(x(1)) = (fu(@1(D)), f2(22(1)),- - ful2n(t))” € R
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1050 Y. GUO

denote the activation functions of the jth neuron at time ¢, D(x(t)) = (di(z1(t)), d2(x2(t)),. ..
conydp(m,(ONT, A = (@ij)nxn, B = (bij)nxn are the feedback matrix and the delayed feedback
matrix, respectively, C(z(t)) = diag(ci(z1(t)), c2(x2(t)), ..., cnl(zn(t))) > 0, J = (J1,Ja,...

.., Jn)T € R" be a constant external input vector, the time delay 7(¢) is any nonnegative continuous
function with 0 < 75(¢) < 7, and 0 < T]/-(t) < 4 < 1, where 7, § is a constant. 0 < ¢y < ¢ <
<ty <<t <l < ..o limgeo ty = 00, With supgey, {1 — tx} < oo and 2’ denotes
the right-hand derivative of z. The functions I;(t) represents the abrupt change of the state z;(¢) at
the impulsive moment ¢, ¢;(s), i = 1,2,...,n, are bounded and continuous for s € [—7,0].

The past few decades have witnessed tremendous developments in the research field of neural net-
works [1 —7]. Various neural networks, such as Hopfield neural networks [1], cellular neural networks
[2, 3], bidirectional associative neural networks [4] and Cohen — Grossberg neural networks [5], have
been widely investigated and successfully applied in many areas. Among them, system (1) is one of
the most popular and generic neural network models. The Cohen —Grossberg neural network models
were firstly proposed and studied by Cohen and Grossberg [5], which have been widely applied in
various engineering and scientific fields such as neural biology, population biology, and computing
technology. In such applications, it is important to know the convergence properties of the designed
neural networks. Usually, this kind of neural networks can be described by the system (1).

On the other hand, a real system is usually affected by external perturbations which in many cases
are of great uncertainty and hence may be treated as random, as pointed out by Haykin [8] that in
real nervous systems, the synaptic transmission is a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabilistic causes. Friedman [9] issues stochastic
differential equations and their applications. It has also been known that a neural network could
be stabilized or destabilized by certain stochastic inputs. Hence, the stability analysis problem for
stochastic neural network becomes increasingly significant, and some results on stability have been
derived (see, for example, [10-17]).

However, taking more factors into account leads to the development of the theory of impulsive
differential equations [18], where the wide range of topics of the impulse systems theory, in particular
stability theory, are considered. The authors [19, 20] investigate the impulsive stabilization of delay
differential systems. Samoilenko and Stanzhytskyi [21] consider the stability of stochastic systems
with impulse acting. According to Arbib [22] and Haykin [23], when a stimulus from the body or the
external environment is received by receptors the electrical impulses will be conveyed to the neural
net and impulsive effects arise naturally in the net. Therefore, neural network model with stochastic
and impulsive effects should be more accurate to describe the evolutionary process of the systems.
Since randomness and impulses can affect the dynamical behaviors of the system [24-26], it is
necessary to investigate both randomness and impulsive effects on the stability of neural networks.

In this paper, we will consider the global asymptotic stability of the Cohen— Grossberg neural
networks with distributed delays described by (1). The organization of this paper is as follows. In
Section 2, problem formulation and preliminaries are given. In Section 3, some new results are given
to the Cohen — Grossberg neural networks with distributed delays described by (1) based on Lyapunov
method. Section 4 gives an example to illustrate the effectiveness of our results.

2. Preliminaries. In our analysis, we assume that the following conditions are satisfied:

(H;) there exist constant scalers [; > 0 such that
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OSMSQ Vnu,m2 € R, m 7 n;
m—1n2

(Hy) 0 < a; <ci(zi(t)) <@, ¢ and ¢; are constant scalers, ¢ = 1,2,...,n;
(H;) for all ny,m2 € R, n1 # n2, there exist constant scalers p; > 0 such that

di(m) — di(n2)
n — N2

> i > 0.

In the following, we will use the notation A > 0 (or A < 0) to denote the matrix A is a symmetric
and positive definite (or negative definite) matrix. The notation A7 and A~! means the transpose
of and the inverse of a square matrix A. If A, B are symmetric matrices, A > B (A < B) means
that A — B is positive definite (positive semidefinite). Next we give the results about existence and
uniqueness of equilibriums of system (1).

Assume z* = (z},25,...,25)T is an equilibrium of equation (1), one can derive from (1) that
the transformation y;(t) = z;(t) — =} transforms system (1) into the following system:

yg(t) = a;(yi(t)) | —Bi(y:i(t)) + Zang y] ) + szjgj y] ( ))) ) t>0, t#ty,

2
Ayili=t, = Ji (wi(ty)), ke Zy,
or
y'(t) = aly(t) [-By(®) + Ag(y(t)) + Bg(y(t — 7(t)))], >0, t#t,
AyYli=t, = Je(y(ty,)), k€ Zy,
where

= ci(yi( a(y(t)) = diag (a1 (y1(t)), a2(y2(t)), - ., an(yn(t))),
Bz(yz(t)) = ( i(t) + ) ( 1), Bly(t)) = diag (Bu(y1(t)), Ba(ya(t)), - -, Balyn(t))),
9i(y;(1) = £i (ui (1) + 25) = f5(25), 9(y(t)) = diag (91 (11(+)), 92(v2(t)), -, gn(¥n (1)),
T (t)) = L (yi (8) + 25), Je(y(ty,)) = diag (Que(yr(t); - - - ok (Un ()

Note that since each function f;(-) satisfies the hypothesis (H;), hence, each g;(-) satisfies

(
(

95(y;)
Yj

0< <l; VYy;€R, y;#0, and gi(0)=0, j=12,...,n

and since each function d;(-) satisfies the hypothesis (Hs), hence, each (3;(-) satisfies

Bi(y;)

i Z,U,j>0 VijR, yj;«éO, and 6j(0)=0, j=12,...,n
J

To prove the stability of =* of equation (1), it is sufficient to prove the stability of the trivial solution
of equation (2).
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As discussed in Section 1, in the real world, the neural network is often disturbed by environmental
noises that affect the stability of the equilibrium. In this paper, impulsive Cohen— Grossberg neural
network with stochastic perturbations is introduced as follows:

dy(t) = a(y(t)) [-B(y(t) + Ag(y(t)) + By (y(t — 7(t)))] dt-+
+o(t,y(t), y(t — 7(t))) dw(t), t>0, t#t,

Ay =, = Ji(y(ty))s ke Zy, 3)
y(t) = o(t), —7<t<0, ¢€Lx([-70,R"),
where w(t) = (w1 (t), wa(?),. .., wn(t))T is an m-dimensional Brownian motion defined on a com-

plete probability space (€2, F, P) with a natural filtration {J;};>0 generated by {w(s): 0 < s < t}.
Lgrt (¢; R™) is the family of all bounded F;-measurable, PC(¢; R"™)-valued stochastic variables sa-
tisfying ||¢|| := sup,e, Elp(s)|?> < oo. E denotes the mathematical expectation operator. o(t,z,y):
R*Y x R™ x R™ — R™™ is locally Lipschitz continuous and satisfies the linear growth condition as
well, o(¢,0,0) = 0. Furthermore, o satisfies:

(Hy) trace[o” (t, y(8), y(t — 7(1)))o (t, 5(2), y(t — 7(£)))] < [O1y(t)]? + |Oay(t — m(£)) %,
where ©1 and ©- are known constant matrices with appropriate dimensions. In addition, we always
assume that Ji(y(t)) = 0 if and only if y = 0,¢t > to,k € Z. Let y(t; ¢) denote the solution of
the neural network (3) from the initial data y(s) = ¢(s) on —7 < s <0 in L%O ([-7,0]; R™), then
system (3) admits a trivial solution y(¢;0) = 0 corresponding to the initial data ¢ = 0.

Remark 1. If n =2, o1 = 0.5y1(t) +0.5y1(t — 71(t)), o2 = 0.4ya(t) + 0.4y2(t — 72(¢)), where
71(t) = 0.3 4+ 0.5sint, 72(t) = 0.3 4+ 0.5cost. Then o = [01, 09]" satisfies the condition (Hy) for

0.5 0
0 0.25

0, =

I

0 0.16

0.25 0 ]

Definition 1. The function V : [0, 00) x PC([0,00), R™) — R belongs to class V if
(1) V is continuous on each of the sets [ty_1,tr) x PC([0,00), R™) and

lim V(t, 1) =V(t,,p2)
(tp1) =ty 2p2)

exists;

(2) V(t,y) is locally Lipschitzian in y and V (t,0) = 0.

Definition 2. Suppose V' € V; for any (t,y) € [tk—1,tr) x PC(]0,00), R"™), the upper right-
hand Dini derivative of V (t,y(t)) along the solution of (3) is defined by

DYV (t,y(t)) = lim suécir %{V(t + s,y(t) + sh(t,y(t), y(t — T(t)))) - Vi(t, y(t))},

where
h(t,y(t), y(t —7(t)) = ay(t))[-B(y(t) + Ag(y(t)) + By (y(t — 7(1)))].

Definition 3. For the system (3) and every & € L?;O([—T, 0]; R"), the trivial solution (equilibrium
point) is robustly, globally, asymptotically stable in the mean square if , the following holds:

lim E[y(t;€)[* = 0.
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Lemma 1. For any vectors a,b € R", the inequality
2070 < eata+ T

holds for any scalar € > 0.

Lemma 2 [28]. Given constant matrices Y1, Y2, X3, where 1 = %1 and 0 < X9 = X1, then

DINEED 5 e VAR

y  xF Y
<0 or < 0.
23 —22 Eg Z1
3. Existence and uniqueness theorem. By [31, 32], we have the following definition.

Definition 4. A function y(-) € L?th([—T, 00), R™) is said to be a solution of (3) if y(s) = ¢(s),
for s € [—7,0], and the following integral equation is satisfied:

if and only if

t t
y(t) = $(0) + / h(s,y(s)) ds + / o (t,y(t). y(t — () du(s)+
0 0

+ > J(y(ty), t=0.

0<ti <t

Theorem 1. Suppose that both h and o satisfy the local Lipschitz condition and the linear growth
condition. That is, for each k = 1,2, ..., there is a constant py, > 0 such that for t € [tp_1,tx),
(Hs) |h(t,u,v) = h(t,w,0)| V |o(t, u,v) — o(t,u,)| < pp(lu— 1| + v —|)
and there is a constant qi > 0 such that

(He) |h(t,u,0)| V |o(t,u,v)] < gr(1+ [ul + Jv]),
then system (3) has a unique global solution.

Proof. Without loss of generality, we assume that ¢y > 0. For ¢ € [0,t,], it is well-known [33]
that for any initial condition ¢(0), system (3) has a unique global continuous solution y(t) =
= y(t; ¢(0)) that is defined on segment ¢ € [0,¢,]. At t = ¢y, there exists an impulse which transfers
solution y(t) = y(t; ¢(0)) into Jo(y(ty )). By induction one get a unique global continuous solution
y(t) = y(t;t, ) of system (3) that is defined on segment t € [to, ] ] and so on. Thus we infer that
system (3) has a unique global solution.

Theorem 1 is proved.
4. Impulsive stability analysis. In the section, we present and prove our main results.
Theorem 2. Assume that (H))—(Hg) are satisfied and there exist real scalars p > 0, €1 >

> 0,e9 > 0, matric X, positive define matrices P = PT > 0, Q = QT > 0 such that the three
LMIs
P < pl, 4)

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 8



1054 Y. GUO

—Pap — apP + %Q 0 aPA aPB pof 0 0 el
% ! ; 5@ 0 0 0 pOf eyl 0
* * —e1l 0 0 0 0 0
* * * —eol 0 0 0 0 <0, (5
* * * * —pl 0 0 0
* * * * * —pl 0 0
* * * * * * —eol 0
i * * * * * * * —51I_
X+xT X7
. b <0 (6)

hold, where o = diag(a;)nxn, @ = diag(@)nxn, | = diag(li)nxn, 1 = diag(wi)nxn. Then
system (3) can be robustly, globally, asymptotically stable in the mean square via an impulsive
controller:

Iyu= P ' Xu. (7

1 t
Proof. Let V(t) = yT(t)Py(t) + 7_/ ()yT(s)Qy(s) ds. By it’s differential formula (see
t—T(t

[29]), the stochastic derivative of V' (¢) along (3) can be obtained as follows:
(1) for t € [tk)tk-l-l)a

DYV (t) = LV (t)dt + 2y" (t)Po(t,y(t),y(t — 7(t))) dw(?),

where
LV (t) = —2y" (t)Pa(y(t) [B(y(t) — Ag(y(t) — Bg(y(t — 7(t)))]+
+trace [UT(t, y(t),y(t —7(t)) Po(t,y(t),y(t — 7(t)))]+
Lyt mQue) - Ty rw)Qu - ).
Since

LV (t) < =2y" (t) Papy(t)+

+2y" (1) Pa(y(t)) Ag(y(t)) + 2y" () Pa(y(t)) By (y(t — 7(t)))]+
+trace[o (t,y(t), y(t — 7(t)) Po(t,y(t),y(t — 7(t)))]+
P OQu(D) ~ Ty~ (1)Qu(t — (1),
Recall that the inequality 2ab < éaQ + eb? holds for any a,b € R and for any € > 0. Then

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 8
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2y" (1) Pa(y(t)) Ag(y(t)) <

< 811yT(t)Pa(y(t))AATa(y(t))Py(t) +e1g” (y()g(y (1)) <

< gllyT(t) (PAATP&?)y(t) + ery” (1) 2),

29" (1) Pa(y(t)) By (y(t — 7(t))) < 512yT(t)Pa(y(t))BBTa(y(t))y(t)+

+eag” (y(t —7(1))) g(y(t — 7(1))) <

< LyT) (PBBTPa?)y(t) + ey’ (t —7(t))Py(t — 7(t)),

€2

and

trace [UT (t, y(t),y(t — T(t))) Pa(t, y(t),y(t — T(t)))] <

< )\maX(P)trace [UT(ta y@)) y(t - T(t)))a(t7 y(t)7 y(t - T(t)))] <

< ply" ($)(O7O1)y(t) +y" (t — 7(£))O3 Oay(t — 7(1))],

thus
T
v < [ y(t) Q 0 y(t) ] |
yt—7(t)] [0 Qo [y(t—7(1))

1 1 1
O = —Pap—apP + -Q + E—PAATP62 + el + ?PBBTP@Z +p0To,,
T 1 2

1055

1—90
Qs = —TQ + e91? + pOTO,.
i . Q 0 .
By Lemma 2, it is obvious from (5) that 0 Q < 0. There must exist a scalar n > 0 such that
2
Ql 0 77] 0
<0

0 Qo 0 0

Define
€(t) = y(t) _ |0
y(t — ()] 0 Q
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So
DYV (t) < T(H)ZEt) dt + 2y" (t)Po(t,y(t), y(t — 7(t))) dw(?).
Then, we have

dEV (t)
dt

< BT (t)ZE(1) < —nEly(t)|*. (8)
(2) For t = t;, using the condition (6) we get

Vte) = V() =y  (te) Py(te) — y" (t;) Py(t; )+

tr tl;
+ / yT(5)Qy(s) ds — yT (5)Qu(s) ds =
t—T(tk) ty —7(ty)

=y () [T+ P ' X)'P(I+P'X) - Ply(ty) =

=y () (X + X+ XTPTIX) y(t;) <0,
which gives
Vity) < V(t,;).

This and (1) imply that (8) holds for ¢ = t;. Then, by (1) and (2), the system (3) can be robustly,
globally, asymptotically stable in the mean square.

Remark 2. In this paper, we do not need any restriction on the time interval of impulsive,
however, for the impulsive delay differential systems containing model (3) discussed in [24 26,

. . . . . n
30], the time interval of impulsive is necessary. Such as supyecz, {tk — tk—1} < 4 (see, for
c

example, [30]), where ¢, c are constants. Therefore, the results of this paper are new and they
complement previously known results.

Remark 3. In Theorem 1, we do not need the assumptions of boundedness, monotonicity, and
differentiability for the activation functions, moreover, the model discussed is with time-varying
delays. Clearly, the proposed results are different from those in [1-5, 13-15, 27, 28] and the
references cited therein. Therefore, the results of this paper are new and they complement previously
known results.

Remark 4. In this paper, we need the assumptions of differentiability for the time-varying delay
functions 7(t¢), but the assumptions of differentiability for 7(¢) is not necessary. This can be seen

1 t
from that when we choose V' (t) = y (¢)Py(t) + / y? (5)Qy(s)ds.
T —T

t
When the time-varying delay functions 7(¢) is not differentiable, we can choose V(t) =
t

1
=yl (t)Py(t) + ~ / yT (s)Qy(s)ds. Then we have the following theorem.
T

Theorem 3. Assume that (H))—(Hg) are satisfied and there exist real scalars p > 0, €1 > 0,
g9 > 0, matric X, positive define matrices P = PT > 0, Q = Q" > 0 such that the three LMIs (4),
(6) and
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[ Pay — apP + %Q 0 aPA aPB pof 0 0 el |
* —% 0 0 0 pO7 eal 0
* * —e1l 0 0 0 0 0
* * * —eqol 0 0 0 0 <0
* * * * —pl 0 0 0
* * * * * —pl 0 0
* * * * * * —eol 0
| * * * * * * * —e11 |

hold. Then system (3) can be robustly, globally, asymptotically stable in the mean square via an
impulsive controller (7).

In the following, we first consider the Cohen— Grossberg neural network without stochastic
perturbations (2). By the Theorem 1, we obtain the following results.

Corollary 1. Assume that (H))—(Hs), (Hs) and (Hg) are satisfied and there exist real scalars
g1 > 0, g2 > 0, matric X, positive define matrices P = PT > 0, Q = QT > 0 such that the two
LMIs (6) and

—Pap — apP + %Q 0 aPA &aPB 0 e1l
% 1 ; 5@ 0 0 €al 0
* * —e11 0 0 <0
* * * —eol 0 0
* * * * —eol 0
I * * * * * —61]_

hold. Then system (2) can be robustly, globally, asymptotically stable in the mean square via an
impulsive controller (7).

Second, if there appears only stochastic cellular neural networks, i.e., a(y(t)) = I in system (3),
the model (3) can now be simplified to
dy(t) = [=By(t)) + Ag(y(t)) + Bg(y(t — 7(t)))] dt+
+o(t,y(t), y(t — 7(t))) dw(t), t>0, t#t, 9)
Ayli=y, = J(y(ty)), ke Zy.

In this case, « = @ = I in Theorem 1, then we have the following corollary.

Corollary 2. Assume that (H))—(Hg) are satisfied and there exist real scalars p > 0, €1 > 0,
g9 > 0, matric X, positive define matrices P = PT > 0, Q = QT > 0 such that the three LMIs (4),
(6) and
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—Pu — pP + %Q 0 PA  PB pof 0 0 1l
. l ; 5@ 0 0 0 pef eyl 0
* * —ed 0 0 0 0 0
* * * —eq9l 0 0 0 0 <0,
* * * * —pl 0 0 0
* * * * * —pl 0 0
* * * * * * —eol 0

i * * * * * * * —511_

hold. Then system (9) can be robustly, globally, asymptotically stable in the mean square via an
impulsive controller (7).
Third, we consider the following system:

dy(t) = [-B(y(t)) + Ag(y(t)) + Bg(y(t — 7(¥)))] dt, ~ t>0, t#ty,
Ayle=t, = Ji(y(ty)), k€ Zy. (10)
Corollary 3. Assume that (Hy)—(Hs3) are satisfied and there exist real scalars p > 0, €1 > 0,

g9 > 0, matric X, positive define matrices P = PT > 0, Q = QT > 0 such that the two LMIs (6)
and

1 -
—Pu — puP + ;Q 0 PA PB 0 1l
1-6
* — Q 0 0 eal 0
T

* * —e11 0 0 0 <0

* * * —eol 0 0

* * * * —eol 0

* * * * * —e1l

hold. Then system (10) can be robustly, globally, asymptotically stable in the mean square via an
impulsive controller (7).

5. Numerical example. In this section, an example is used to demonstrate that the method
presented in this paper is effective.

Example. Consider the following three state neural networks (3) with

05 02 03] 0.6 02 04
A=103 02 —02], B=103 02 —06!
01 02 02 05 02 -03
05 0 0] 0.7 0 0
a=10 06 0| a=/[0 08 0
0 0  0.6] 0 0 09
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GLOBALLY ROBUST STABILITY ANALYSIS FOR STOCHASTIC COHEN-GROSSBERG NEURAL ... 1059

1=03I, =09, 6=05  7=2  ©;=0.08], ©y=0.091.

By solving the LMIs (4), (5) and (6) for p > 0,¢; >0, i = 1,2, P> 0, @ > 0 we obtain

[ 1.4201  —0.1001 —0.1629] 0.2734  —0.0198 —0.0705
P=|-0.1001 1.4362 —0.2535], Q= |—-0.0198 04202  —0.1834],
|—0.1629  —0.2535  1.4319 | —0.0705 —0.1834  0.4591
[—0.5364  0.0125 0.0189 | —0.3834  —0.0242 —0.0348
X =10.0125 —0.5375  0.0289 |, K =]-00242 —0.3849 —0.0507],
| 0.0189 0.0289  —0.5367 —0.0347  —0.0507  —0.3878

p = 2.2035, €1 = 1.5345, gg = 1.7937,

which implies from Theorem 1 that the above delayed stochastic Cohen — Grossberg neural network is
robustly, globally, asymptotically stable in the mean square via an impulsive controller I (u) = Ku.

6. Conclusion. In this paper, we have dealt with the problem of global asymptotic stability

analysis for stochastic Cohen— Grossberg neural networks with impulsive. We have removed the
monotonicity and smoothness assumptions on the activation function. A LMI approach has been
developed to solve the problem addressed. The stability criteria have been derived in terms of
the positive definite solution to three LMIs involving several scalar parameters, which can be easily
solved by using the Matlab toolbox. A simple example has been used to demonstrate the effectiveness
of the main results.
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