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ON AN OPERATOR PRESERVING INEQUALITIES BETWEEN POLYNOMIALS
ITPO OITIEPATOP, 11O 3BEPITA€ HEPIBHOCTI MI’K IIOJITHOMAMMU

Let P(z) be a polynomial of degree n. We consider an operator D, that maps P(z) into Do P(2) := nP(2)+(a—z)P’'(2)
and establish some results concerning the estimates of | Do P(z)| on the disk |z] = R > 1, and thereby obtain extensions
and generalizations of a number of well-known polynomial inequalities.

Hexait P(z) — muorowieH creneHs n. Y poboti posmisiHyTo oneparop Do, mo Binobpaxae P(z) B Do P(z) :=
:= nP(2) + (o — 2) P'(2), Ta BcTaHOBNEHO J€sKi pe3ynbraty mono ouiHok | Do P(2)| Ha kpysi |z| = R > 1 i, takum
YMHOM, OTPUMAHO PO3LIMPEHHS Ta y3arajbHEHHs 0araTbOX BiJOMHX HEpiBHOCTEH IS MOMIHOMIB.

1. Introduction. Let IP,, denote the class of all complex polynomials of degree at most n. Let Dy,
denote the region inside the disk Ty = {z € C/|z| = k > 0} and Dj the region outside Ty. For
PeP,, set

M(P, k) = P d P, k) = min |P(z)|.
(P =max|P(z)|  and  m(P,k) = min |P(:)

If P € P,, then concerning the estimate of M (P’,1) on Ty, we have
M(P',1) < nM(P,1). (1.1)

The above inequality is an immediate consequence of Bernstein’s inequality [3] on the derivative of a
trigonometric polynomial, and is best possible with equality holding for the polynomial P(z) = Az",
A being a complex number.

If we restrict ourselves to the class of polynomials having no zeros in in the open unit disk, then
the above inequality can be sharpened. In fact, Erdos conjectured, and later Lax [8] proved, that if
P € P, and P(z) has all its zeros in Ty U D14, then

M(P',1) < gM(P, 1). (1.2)

The above inequality is best possible, and holds with equality for all polynomials having their zeros
on Tj.

As a refinement of (1.2), Aziz and Dawood [1] proved that if P € P, and P(z) has all its zeros
in Ty U Dy, then

M(P',1) < %{M(P, 1) —m(P,1)}. (1.3)

Further, as an extension of (1.3), Jain [7] (see also Dewan and Hans [5]) proved that if P € P,
and P(z) has all its zeros in Ty U Dy, then, for any § with |5| <1 and z € Ty,

] s3{( 3 2 (32

For P € PP, the polar derivative D, P(z) of P(z) with respect to the point « is defined as

2P'(2) +

DoP(z) =nP(z) + (a — 2)P'(2).
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1062 A. MIR

It is easy to see that D, P(z) is a polynomial of degree at most n — 1, and D, P(z) generalizes
the ordinary derivative in the sense that

lim {W} = P'(2).

a—00 o

Corresponding to a given nth degree polynomial P(z), we construct a sequence of polar deriva-
tives as follows:

and
Dy, Dy, ,...Do,P(z) =(n—k+1)Dy, ,Da, ,...Da, P(2)+
+(ay — z)(DoékilDakf2 .. .Dalp(z)),, k=23,...,n.

The points a1, a9,...ap € C, k = 1,2,3,...,n, may or may not be distinct. Like the kth
ordinary derivative P(¥)(z) of P(z), the k th polar derivative D, D ...Do, P(z) of P(z) is a
polynomial of degree at most n — k.

Qp—1

As an extension of inequality (1.3) to the polar derivative of a polynomial, Aziz and Shah [2]
(see also Mir and Baba [11]) showed that if P € P,, and P(z) has all its zeros in Ty U D;, then,
for every a with |a| > 1,

M(DoP,1) < g{(\a| +1)M(P,1) = (o] — 1)m(P, 1)}. (1.5)

In the literature, there exist various refinements and generalization of (1.2)—(1.5) and here, we
mention a few of them.

Theorem 1.1 ([9], Theorem 3). If P € P,, and P(z) has all its zeros in T1 U D1, then, for a,
B € Cwith |a| > 1, |8| <1 and z € Ty,

0,p(:) 408121 ) P <

(e AR
—<a+ﬂ<|a|21)'—‘z+ﬁ<|a|21) )m(P,l)}. (1.6)

Theorem 1.2 ([6], Theorem 2). If P € P, and P(z) has all its zeros in T1 U D14, then, for
every complex number  with || < 1,1 <s<nand z € Ty,

Pz 4 2 =D “2;(” s 1)P(z)‘ <
Sn(n—l)..é(n—s—&—l){(’l_i_fs N i)M(P,l)—
‘(‘“i . i)m(p,m}. (1.7)
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ON AN OPERATOR PRESERVING INEQUALITIES BETWEEN POLYNOMIALS 1063

Theorem 1.3 ([13], Theorem 1.5). If P € P,, and P(z) has all its zeros in Ty U Dy, k < 1,
then, for every complex number [ with || <1, 1 < s <n and z € Ty, we have

x| 25 PO (5 pn(n—1)...(n—s+1) s
max |2°P)(2) + e CE
nn—1)...(n—s+1) 1 64 64
= 2 {<M1+(1+k)s +‘(1+k)s>M(P’k)_
1 B B
_<k” 1+ (1—|—]€)5 —'(1+k>5 )m(P,k‘)} (1.8)

2. Statements of results. In this section we state our main results. Their proofs are given in the
next section. From now on, we shall always assume that every P € P, is a polynomial of degree
n > 2. Our main aim is to extend (1.8) to the polar derivative of a polynomial and thereby obtain a
compact generalization of (1.7) as well. We start by proving the following result.

Theorem 2.1. Let P € P, and P(z) has all its zeros in Ty UDy_, k < 1. Lett € N, t <n—1,
and (o;)i_, be complex numbers satisfying |a;| > k for 1 < i < t. Then, for every B € C with
|B] <1 and for every z € T1 U D14,

pn(n—1)...(n—t+1)

2'Day Dy - Doy P(2) + (lea] = k) ... (Jou| — k)P (2)| >

(1+ k)t
nn—1)...(n—t+1), , B(lax] = k) ... (law| — k)
> o |z["arag ..oy + a1k m(P, k). (2.1)
Remark 2.1. If we take a1 = as = ... = ay = «, divide both sides of (2.1) by |a|* and let

|a] — oo, we obtain the following result.
Corollary 2.1. Let P € P, and P(z) has all its zeros in Ty U Dy_, k < 1. Then, for every (3
with |B] <1, 1 <t <n—1 and for every z € T; U Dy,

P pn(n—1)...(n—t+1)
> n(n — 1)..k.n(n—t+ 1>|z!" 14 ufl)t m(P, k). (2.2)

Remark 2.2. For k = 1, Corollary 2.1 in particular reduces to a result of Hans and Lal ([6],
Lemma 7) and for |z| = 1, Corollary 2.1 is exactly Theorem 2.1 recently proved by Zireh [13].
Further, for £ = 1, Theorem 2.1 reduces to a result of Bidkham and Mezerji ([4], Corollary 3).

Next, we present the following extension of (1.8) to the polar derivative.

Theorem 2.2. Let P € P,, and P(z) has all its zeros in Ty UDyy, k < 1. Lett e N, t <n—1,
and (o;)!_, be complex numbers satisfying |c;| > k for 1 < i < t. Then, for every 3 € C with
|B] <1 and for every z € T1 U D14,

pnn—1)...(n —t+1)

2'DoyDay_y - Doy P(2) + (la1] = k) ... (lae| = K)P(2)| <

(1+k)
nn—1)...(n—t+1) [ [|z|" B(lea| — k) ... (Jow| — k)
= 2 {(MO‘IO‘Q"'O“JF : (1+ k)t ‘JF
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1064 A. MIR

i, Bloal —k)... (Jou| — k)
M(P,k)—
+t + (EwL (P, k)
2" Bllar| — k) ... (Jau| — k)
<k" 109 ... 0 + (1+k)t
¢, Bllai] —k)... (Jou| — k)
— P k) ;. 2.3
Remark 2.3. 1f we take a1 = as = ... = a; = «, then divide both sides of (2.3) by |a|® and

let |a| — oo, we recover (1.8). For ¢t = 1, Theorem 2.2 gives the following result.
Corollary 2.2. Let P € P, and P(z) has all its zeros in Ty, U Dy, k < 1, then, for a, 3 € C
with |o| > k, |B| <1 and z € T1 U D4,

pn(lal — k)

o P
< Z{('Zf a+ﬁ(‘10‘|+_kk)’+ ‘z+5(’10“+_kk)‘>M(P, k)—
(5 | b)) o

Remark 2.4. For k = 1, the above Corollary 2.2 simplifies to inequality (1.6). For g = 0,
Theorem 2.2 reduces to the following result which gives a generalization of inequality (1.5).

Corollary 2.3. Let P € P, and P(z) has all its zeros in Ty UDy,, k < 1. Lett e N, t <n—1,
and («;)i_, be complex numbers satisfying |o;| > k for 1 <i < t. Then, for z € Ty, we have

Da,Da,_, - Do, P(2)| <

nn—1)...(n —t+1)

< ; {(];Jalag...at}nLl)M(P,k)

_<k1n|a1a2...at\ - 1>m(P, k:)}. 2.5)

Remark 2.5. For k =t =1, (2.5) reduces to (1.5) and for k£ = 1, Corollary 2.3 reduces to a
result of Bidkham and Mezerji ([4], Corollary 7). Dividing the two sides of (2.4) by |«| and let
|a] — oo, we have the following generalization of the inequality (1.4).

Corollary 2.4. If P € P, and P(z) has all its zeros in Ty, U Dy, k < 1, then, for a, € C
with |a| > k, |8] <1 and z € Ty U D14,

np
1+k

P(2)| <

2P'(2) +
P ‘Jr‘ B

n (="
< M (P, k)—
—2{<k" 1+k 1+k’> (P k)

|2[" B 8
_(/wHHk’_‘HkDm(P’k)}' (2.6)
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ON AN OPERATOR PRESERVING INEQUALITIES BETWEEN POLYNOMIALS 1065

3. Proofs. We need the following lemmas for the proof of theorems.
Lemma 3.1 ([12], Lemma 2.3). Let P € P, and P(z) has all its zeros in Ty, UDy_, k < 1. Let
(ai)le, t < n —1, are complex numbers satisfying |c;| > k, 1 <1i < t. Then, for z € Ty, we have

|#*DayDay_, - - Doy P(2)| >
nn—1)...(n—t+1)

> A5k (loaf = k) ... (loe| = B)[P(2)]. 3.1

Lemma 3.2. Let P, F € P,, and F(z) has all its zeros in T, U Dy_, k < 1, such that |P(z)| <

< |F(2)| for z € Tg. Let t € N, t <n — 1, and («;):_,, are complex numbers satisfying |c;| > k,

for 1 < i <t. Then, for any € C with || < 1 and z € Ty U D14,
pn(n—1)...(n—t+1)
2'DoyDay_y - - Doy P(2) + e (loa] = k) ... (Jou| — k)P (2)| <

nn—-1)...(n—t+1

<|2'Dp,Da, , - Do, F(2) + fnl ()1 +l<(:)t )(|a1| — k). (Jau| = R)F(2)|.  (3.2)

Proof of Lemma 3.2. By hypothesis |P(z)| < |F(z)| on |z| = k. Hence, for any o € C with
la] < 1, we have |aP(z)| < |F(z)| on the circle |z| = k. Further, all the zeros of F(z) lie in
|z| < k, it follows by Rouche’s theorem that all the zeros of G(z) = F(z) + aP(z) with |a| < 1,
also lie in |z| < k, k < 1. By applying Lemma 3.1 to G(z), we get, for |o;| >k, 1 <i <t |o| < 1
and |z| =1,

2! Doy Dy, - - Doy G(2)| >

nn—1)...(n—t+1)

> e o = k) (ol ~ MGG

Equivalently, for |z| = 1,

‘ztDatDat_l ..Do F(2) +az' Dy, Dy, .. .DalP(z)| >

nn—1)...(n—t+1)
- (1+ k)t

(laaf = k) .. (Jeu| = B)|F(2) + aP(2)]. (33)

Therefore, for any § with |3| < 1, we have by Rouche’s theorem, the polynomial

T(2) = (2'Da,Da;_, ... Do, F(2) + az' Do, Da,_, ... Do, P(2))+
pnn—1)...(n—t+1)

(laa| = k) .. (Jou| = B)(F(2) + aP(2)) =

(1+ k)t
_ (thatDa“ o DaF(z) 4+ 2 1()1+]§7;_ LD an| = B) - (Jou] k)F(z)>+
. Bn(n—1)...(n—t+1)
+a(z Dy, Dy, ,...Du, P(z) + (15 k) (lar| = k) ... (Jou] —k:)P(z)) #
#0 for [z[=F. (3.4)
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1066 A. MIR

Since k¥ < 1, we have T'(z) # 0 for |z| > 1 as well. Now choosing the argument of « in (3.4)
suitably and letting || — 1, we get, for |z| > 1 and |5] < 1,

fn(n—1)...(n—t+1)

2Dy Dey . - Do, P(2) + T (a1l = k) ... (Jau| — B)P(2)] <
<[00, Day s Dy (o) P B o =) (] = P ()|

For § with || = 1, the above inequality holds by continuity.

Lemma 3.2 is proved.

Lemma33. Let P € P, t € N, t < n—1, and (o;)!_, are complex numbers satisfying
|aii| > k, for 1 < i <t. Then, for any complex [ with |5| < 1 and |z| > 1,

pnn—1)...(n—t+1)

2D, Dy - Doy P(2) + A1k (lar| = k) ... (Jou| — k) P(2)|+
k"' Da, Doy -+ Doy Q5 ) + fnin = 1()1+]§;_ D) (o — ). (o] — D) ‘ <
2| Blaa| = k). .. (las| — k)
gn(n—l)...(n—t—i-l){knozlozg...ozt—l— ! 0+ k) ’-i—
o A= o=y s

where Q(z) = z"P (1

Proof. Since M (P, k) = max,|—, |P(2)|. It follows by Rouche’s theorem, that for any ~ with

M(P,k)z"
|| > 1, the polynomial T'(z) = P(z) + w has all zeros in |z| < k. If we set
1 FM (P, k
S(z) = 2"T <Z> = Q(z) + 7;”’)

then

k”S(%)‘ = |T'(z)| for |z| = k. Hence, for every complex n with || > 1, the polynomial

z
W(z) = k”S(ﬁ
we obtain for |o;| >k, 1 <1<t t<n-—1,

N—

+nT'(z) has all its zeros in |z| < k. Therefore, by applying Lemma 3.1 to W (z),

2" Doy Doy - - Doy W (z)| =

nn—1)...(n—t+1)
- (14 k)t

(loa] = k) ... (Jou| — K)|W (z)| for |z] =1.

This implies, for any 8 with |3| < 1 and |z| = 1,

|2' Do, Doy, - - Doy W (z)| >

n—=1)...(n—t+1)
(1+ k)

> 15" (laal = k). (Jeu| = B)W(2)| for |z = 1. (3.6)
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ON AN OPERATOR PRESERVING INEQUALITIES BETWEEN POLYNOMIALS 1067

Since by Laguerre’s theorem [10, p. 52], the polynomial Dy, Dy, , ...Da, W (z) has all its zeros in
|z| < k, k <1, for every «; with |a;| >k, 1 <1i <t, t <n— 1. Rouche’s theorem together with

(3.6) implies that the polynomial
G(2) = 2'DayDay_y - - - Doy W(2)+
—1)...(n—t+1
o2 21+(l$t M(jor] = ) .. (Jaal — YW (2) =
n z nn—1)...(n—t+1) z
= 14D Dy D575 + D D - 0 () )+

(200D Doy () + 5" D ).l - DT ) £

#0 for |z| > k.

(3.7)

As k <1, we have G(z) # 0 for |z| > 1 as well. Hence on choosing the arguement of 7 suitably
in (3.7) and letting |n| — 1, we get, for |z| > 1 and |§| < 1,

k2! Do, Doy, ... DmS(%) L G 1?1‘ 4%; LD aa| = ) . (lae] - k:)S(%) ‘ <
< |2 Do, Day ... D T(2) + = 121‘ ‘+'(k”)t_ D (o[ = B (Joul = T(2)]. G3.8)
Replacing T() by P(z) +W and S(z) by Q(z)+ W in (3.8), we get, for |2] > 1,
k(2! Do, Da,_, - ..D@)(%) L G 121 ;(]gt_ LD lag| = k) .. (lae] k)Q(%) +
+kinn(n —1)...(n—t+ 1){% 4 B(edl —(‘;);é)ﬁ'at' —#) }M(P, k)‘ <
<D Doy - D P(2) + g™ 121' '+'(/$t_ LD laa| = k) ... (lae] — k) P()+
+kln nn—1)...(n—t+ 1){a1a2 . op ¢ Blenl _(l]“_);]%)gat' — k) }M(P, k). (3.9)

Applying Lemma 3.2 to the right-hand side of (3.9) and choosing the argument of + so that

—1)...(n—t+1
ZtDatDozt,l---Dalp(z)+ﬁn(n ) (n + )

ey (lat] = k). (Jou| — K)P()+
+%n(n (-t 1){a1a2 oy ¢ Blenl _(lf)J'r']%)(t'O‘t' =k }M(P, k)2"| =
_ ‘k”n nn—1)...(n—1t+ 1){a1a2 . op ¢ Blenl _(’f)%'é)(t’“t‘ —F) }M(P, k)2 | —
et Do, Day .. Do, P(2) + g7 121‘ ;%t_ LY Gonl = k). (jou| — K)P(2),
ISSN 1027-3190,
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1068 A. MIR

we get

nn—1)...(n —t+1)

2'Da, Doy, -+ Doy P(2) + B +

(laa| = k) ... (Jou| = B)P(z)

(1+ k)t
"2 Do, Doy - Dy @( 15 ) + PR 121' ;;(;:;t_ ) Gaal = 8) ... (] - MQ(+5) ‘ <
<nn—1)..(n—t+ 1)|fy|{2|: ... ap 4 Bl —(lf);]%)(tmtl — k) '+
ot 4 B(la] _(116)4_]{)&’%‘ — k) ‘}M(P, k). (3.10)

Making |y| — 1 and using the continuity for |5| = 1 in (3.10), we get the desired result.

Proof of Theorem 2.1. 1f P(z) has a zeros on |z| = k, then the theorem is trivial. Therefore,
assume that P(z) has all its zeros in |z| < k, k < 1, so that m(P, k) > 0 and hence for every ~y
with |y| < 1, we have

<|P(z)| for |z|=k.

ym(P, k)z"
kjn

P n
It follows by Rouche’s theorem, that the polynomial G(z) = P(z)— M

all its zeros in |z| < k, k < 1. On applying Lemma 3.1 to G(z), we have, for |a;| > k, 1 < i <,
and |z| =1,

of degree n has

nn—1)...(n—t+1)

|2*DayDa,_; - .. Do, G(z)| > (loa| = k) ... (Jou| — k)|G(2)],

- (1+k)t
ie.,
Pk
ZtDazDat,l .. .Dalp(z) — fYTn]in,)n(n _ 1) o (n —t4 1)@10(2 o >
nn—1)...(n—t+1) ym(P, k)"
— k). (Jag| — k)| P(z) — TR E ~1. @31
= (1+k)t (‘al‘ k) (‘at’ k) (2) o or ‘Z| (3.11)

Applying Laguerre’s theorem [10, p. 52] repeatedly, we deduce that for |o;| > k, 1 < i < ¢, and
|7] < 1, the polynomial Dy, D, , ...Ds, G(2) has all its zeros in |z| < k, k < 1, and therefore for
every complex 3 with || < 1, the polynomial

T(z) = (ztDmDatl .. Do, P(z) — Wn(n —1)...(n—t+Doas. ”atzn>+
fn(n—1)...(n—t+1) (PR
Sl )

pnn—1)...(n—t+1)
(14 k)

= (JDC”D%1 . Do, P(2) + (laz| — k) ... (Jag| — k)P(z)) -

P k)"
—W{n(n—1)...(n—t+1)a1a2...at+
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ON AN OPERATOR PRESERVING INEQUALITIES BETWEEN POLYNOMIALS 1069

pn(n—1)...(n—t+1)
(1+ k)t

(]ozﬂ—k)...(]at\—k)};éo for |z| > k. (3.12)

Since k£ < 1, we have T'(z) # 0 for |z] > 1 as well. Now choosing the argument of + in (3.12)
suitably and letting |y| — 1, we get, for |z| > 1 and |(| < 1,

Do, Da, 1 .. Do P(2) + 20 1()1+]i;_ P D (on = ). (jou| — k) P(2)| >
> ‘W{n(n—1)...(n—t+1)a1a2...at+
= e - ). (el |
Do, Da, 1 .. Do P(2) + 20 1()1+]i;_ P D (on = ) . (jou| — k) P(2)| >
z’ZL”n(n—1)...(n—t+1)a1a2...at+
= e S o = 1)l = B (P

For 8 with || = 1, the above inequality holds by continuity.
Proof of Theorem 2.2. Since m(P, k) = min,cT, |P(2)|. Also P(z) has all its zeros in |z| > k,
k <1, therefore
m(P, k) <|P(z)] for |z|=k.

Hence, it follows by Rouche’s theorem that for m (P, k) > 0 and for any complex A with || < 1,
the polynimial h(z) = P(z) — Am(P, k) does not vanish in |z| < k, k < 1. Let

g(z) = ="k (i) —p (i) (P R)2" = Q(2) — (P, k)",

k”g(%)‘ — |h(2)| for |2| = k. By
applying Lemma 3.2 to k”g(%), we get, for || >k, 1 <i<t, t<n-—1, || <1land|z| >1,

then the polynomial g(%) has all its zeros in |z| < k. Also

(n—1)...(n—t+1) <

D, Da, ;... Dayh(2) + B2 (laa| = k) ... (lae| — k)R(2)

1+ k)t -
< K5 Do,y D) + 8" e 1) el = g (1)

Equivalently for |z| > 1, we obtain

n—1)...(n—t+1)
(1+ k)

Doy De - Doy P(2) + 8™ (laa| = k) ... (lau| — k) P(2)—
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1070 A. MIR

“Ann—1)...(n—t+1) <zt + Bl ] _(I;)+k)<t’at‘ — k)>m(P, k)‘ <

<KD D D) 4 8™ el =) (el ~ () -
=) W(L" —t+1) (Oqozz oy 4 Bl _(lf);r'é)(t‘at’ - k>>m(P, k)z”‘. (3.13)

Since P(z) # 0 in |z| < k, k < 1, we have Q(%) has all its zeros in |z| < k and

z
k" mi ‘ Z ‘: in |P(2)| = m(P, k).
min Q(k2> |rzr|1g;€\ (2)| = m(P, k)

Hence by inequality (2.1) of Theorem 2.1 applied to Q(%), we get, for |z| > 1,

pn(n—1)...(n—t+1)

2D, Day_, - ..Dm@(%) + (Joa| = k) ... (lu| — k)Q(i) ‘ >

(1+ k) K
n(n—1)...(n—t+1) Blloa| = k) ... (lou| = K)| 2| =
> o 'alaQ”'at+ (1+k)! ﬁiﬂQ(ﬁ)‘ -
el TR L SR Rt

Now choosing the arguement of A on the right-hand side of (3.13), such that

kn

z
Dy, Da, , .. .Da1Q<ﬁ) i

nn—1)...(n—t+1)

Gl =) el = 9R(55) -
g nln-). .k.n(n —t+1) (am oy 4 Bl _(If);',;;t‘at’ - k)>m(R k2| =
= K"[2' Doy Day_y - Doy Q5 ) +
1™ D oy ). ol - 0Q(5) |-
D D) (o, g SR 2

which is possible by (3.14), we have from (3.13), for |z| > 1,
mn—=1)...(n—t+1)
(1+Fk)t

Bllea = k) ... (las| = )
(14 k)t

n
2D, Dy .- Doy P(2) + B

(laa| = k) ... (Jou| — k) P(z)

~Aln(n—1)...(n —t+ 1)z +

() <
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z
< k"2 Do, Da,_, - .Da1Q<ﬁ) n

nn—1)...(n—t+1) .
(1+ k)t (o] = k) ... (| _k)Q(ﬁ) '_

Alz"n(n—=1)...(n =t +1)

+8

Q109 ...+

kn
Bllar| = k) ... (las| = k)
+ 1+ k) 'm(P, k).

Letting |\| — 1, we obtain from (3.15), for |z| > 1,

(n—=1)...(n—t+1)
(1+ k)t

n
2'Da,Day_y -+ Doy P(2) + B

A
k"' Dy, Da, ... DalQ(ﬁ) n

nn—1)...(n —t+1)

+5 (1+ k)t

(oal =) (ol = Q)| <

<= 1) n—tp ot Herl 2B flod 20

Bllea| — k) ... (Jou| — k)
a1 ... o+ ! 1+ k) '}m(P,k:)

2+

2"

k.n

Combining (3.16) with Lemma 3.3, we get, for |z| > 1,

2(2'Dy, Doy, - - Doy P(2)+

nn—1)...(n—t+1)

+5 (1+ k)t

(laaf = k) ... (Jeu| = K)P(2)| <

Ca(n—1). (=t 1) {\k\ SR BCIER
- Bleal = k). (loul — )
T e ‘}M(P””‘

B
o109 ... 0 +

(loa] = k). . (Jou] —k)\_
1+ k)t

)

¢, Bllaa| = k). (jou| = K)
—lz"+ (1—|—k)t ‘}m(P7k)

which is equivalent to (2.3).
Theorem 2.2 is proved.
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(laa = &) ... (|eu| = k) P(2)

1071

(3.15)

(3.16)
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