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ESTIMATION OF THE GENERALIZED BESSEL -STRUVE TRANSFORM
IN A CERTAIN SPACE OF GENERALIZED FUNCTIONS

OIIHKA Y3ATAJIBHEHOI'O NIEPETBOPEHHS BECCEJISI - CTPYBE
B JIEAIKOMY ITPOCTOPI Y3ATAJIbHEHUX ®YHKIIIHA

We investigate the so-called Bessel — Struve transform on certain class of generalized functions called Boehmians. By using
different convolution products, we generate the Boehmian spaces, where the extended transform is well defined. We also
show that the Bessel — Struve transform of a Boehmian is an isomorphism which is continuous with respect to a certain
type of convergence.

BuBuaetscs Tak 3BaHe neperBopeHHs beccenst — CtpyBe Ha JeskoMy Kilaci y3arajdbHEHUX (YHKIIH, 0 Ha3UBAIOTHCS ObO-
MiaHaMH. 3 BHKOPHCTAaHHSM Pi3HHX JOOYTKIB THITy 3TOPTOK 3r€HEpPOBAHO MPOCTOpH bromiaHa, B SKUX PO3IIMpEHE Iepe-
TBOPEHHs JJ0Ope Bu3HaueHe. Takox Moka3aHo, 1o neperBopeHHs beccens— Ctpyse i 6boMiaHa € i30MOp(hi3MOM, SKHH
€ HeTIePEPBHUM BiTHOCHO JIESIKOTO BUAY 301KHOCTI.

1. Introduction. While special types of what would later be known as Bessel functions were
studied by Euler, Lagrange, and the Bernoullis, the Bessel functions were first used by F. W. Bessel
to describe three body motion, with the Bessel functions appearing in the series expansion on
planetary perturbation and series solution to a second order differential equation that arise in many
diverse situations. On the other hand, Struve functions occur in many places in physics and applied
mathematics, e.g., in optics as the normalized line spread function, in fluid dynamics, and quite
prominently in acoustics for impedance calculations as well.

The normalized Bessel and Struve functions of index « are, respectively, given by Watson [3] as

i = 0 (3)”
7a(2)2°T (@ + 1) 27 %a(z) =T (a+ 1) Y n!l (n+a+ 1)

n=0

and

ka(2) = 2°T (a+ 1) 2 *Ha(z) =T (a+ 1) Y

3 3\’
n=0F<n+2>F<n+a+2>

A kind of Fourier transforms named as Bessel — Struve transform was considered by S. Hamem et al.
as [2]

o
£ @) ) = [ f@)on (~ixe) dia (o),
—00
1 . . .
where a > 5 and o, is the Bessel — Struve kernel given by the equation
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0a(z) = 30(ix) — ik (iz).

The Bessel-Struve kernel is the solution of the initial value problem f,u(x) = A?u(z), where

Al 1
u(0) =1 and ' (0) = (a——i_;. It further satisfies the integral representation
\/ﬂ‘ (Oé + 2>
1
AT ( 1
o (Az) = (a+1 / (1 —t Tz At gy
V7l <Oz+ > 0

where x € R and A € C.
Moreover, the Bessel — Struve transform is related to the Weyl integral transform [2]

1
wa (1)) = -0 [ (2 =) Faf (sgn () 0) do
\/>F <Oé + ) ly|
and it satisfies

f5.s (f) = Ffowa (f), ()
where f € I1(R) and Ff is the Fourier transform of f,

= /OO f(z)e ™ da.

The Mellin-type convolution product of first kind was given in terms of the integral equation [10]
o0
Fxot) = [ ) ag(e) da. @
0

The space 15, (R) consists of those real valued measurable functions f defined on R such that
1/p

Jlr@Pduata)] <o 1<p<

1716 =

esssup | f(z)] < oo, p =0,
\ zeR

where
dpia(z) = A(x)dr and  A(z) = || .
By «(R) we denote the space of test functions of bounded supports over R. Then, «(R) is, indeed, a
dense subspace of IP(IR) for every choice of p. Here 11(0, 00) denotes the Lebesgue space of complex
valued integrable functions defined on (0, 00) and I5(0,00) denotes the restriction of 15 (R) to the
open interval (0, c0).

The following definition is very beneficial to our next investigation.
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1
Definition 1. Let o > ~3 and A(t) = [t|**™ and f, g in 1(0,00). Then we define the product
® between f and g by the integral

f®gly) = / f () g(t)d(2), 3)
0

where dpu(t) = A(t)dt.
An assistance of (2) and (3) leads to the following proposition.
Proposition 1. Let f, g and h be integrable functions in 1'(0,00) and y > 0. Then we have

f@gxh)(y)=(f®g) ®h(y).

Proof. Let the hypothesis of the theorem satisfy for f,g and h in 1*(0,c0). Then, appealing to
(2) and (3), we get

f®(gxh) 7f 7~’U g (ta™") h(z)dzdu(t).
0 0

By Fubini’s theorem, we obtain

oo

1/g(m‘l) f (yt) dp(t)dz.

0

f®(gxh)(y

0\8
:‘

Setting variables reveals

f®(gxh)(y 7h 7fyw2 dp(z)dp(z).
0 0

Proposition 1 is proved.

By the benefit of Proposition 2.1 of [2], it follows that w,, is a bounded operator from I} (R) into
I'(R). Hence, we have the following remark.

Remark 1. Let f € I} (R). Then we have 5 (f) € IL(R).

Proof of this remark follows from equation (1) and the injectivity of F. We therefore omit the
details.

2. Generated spaces of Boehmians. Boehmians were used for all objects defined by an algebraic
construction similar to that of field of quotients and in some cases, it just gives the field of quotients.
The advent of Boehmians has recently brought drastic changes in the concept of applied functional
analysis. The idea of construction of Boehmians was initiated by the concept of Mikusinski regular
operators.

The minimal structure necessary for the construction of Boehmians consists of the following
axioms:

A(1) A nonempty set a.

A(ii) A commutative semigroup (b, e).

A(iil) An operation x: a X b — a such that for each x € a and s1, 592, € b,

T * (51 @52) = (T *81)* S9.
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A(iv) A collection A C bY such that:
(@ Ifz,y €a, (sp) EA, zos, =yes, forall n, then x = y.
(b) If (sn), (tn) € A, then (s, ®t,) € A.

Elements of A are called delta sequences. Consider

Q:{(:xn,sn):xnea, (Sn) €A, Ty * Sy = Ty * Sy, Vm,neN}.

If (T, 8n), (Un,tn) € Q, Tp *tm = Ym * Sn, Vm,n € N, then we say (zn,sp) ~ (Yn,tn). The
relation ~ is an equivalence relation in ). The space of equivalence clases in () is denoted by b.
Elements of b are called Boechmians.

. . . TxS
Between a and b there is a canonical embedding expressed as © — -
Sn

. The operation x can

x Tp*t
be extended to b x a by = xt = =

Sn Sn
the product « is given as:

() If f - fasn — ocoin a and, ¢ € b is any fixed element, then f, x » — f * ¢ in
a(asn — 00).
(i) If f, = f asn — oo in a and (J,,) € A, then f, xd, — f in a (as n — o0).

Eiz” €band ¢ € b, then {

. The relationship between the notion of convergence and

(fn)
(sn)

The operation x is extended to b x b as follows: If [

- [e]

Sn
Convergence in b is defined as follows :

=

A sequence (hy,,) in b is said to be 6 convergent to h in b, h, LN h, if there is a sequence
(sn) € A such that (hy, *s,), (h*sy) € a Vk,n € N, and (hy, * sg) = (h*sg) as n — oo, in a,
for every k € N.

A sequence (h,) in b is said to be A convergent to h in b, hy, 3 h, if there is a sequence
(sn) € A such that (hy, —h)xs, € a Vn € N, and (h,, — h) s, — 0 as n — oo in a.

Several integral transforms were extended to various spaces of Boehmians by many authors such
as: Al-Omari and Kilicman [9, 15, 20], Al-Omari [13], Mikusinski and Zayed [16], Karunakaran and
Roopkumar [17], Karunakaran and Vembu [18], Roopkumar [19], Nemzer [21], Al-Omari, Loonker,
Banerji and Kalla [11] and many others to mention but a few. However, readers are assumed to be
acquainted with the abstract construction of Boehmian spaces. If it were otherwise we refer to [4-9,
11, 13] and [15-21]. We need the following lemma to be established.

Lemma 1. Let f € 11(0,00) and v € k(0,00). Then we have

FE(f xd(@); A) = (£5.f @ ¥(2)) (V).

Proof. Under the hypothesis of the theorem we write

I5s (f x () //f (zt™ 1 t~ ) (t)dtos (—idz) dpe(z).
00
By Fubini’s theorem, this can be written as
fﬁs(fxw /2/) /f (xt™ 1 ) 0 (—iAz) dpo(x)dt.
0
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On setting variables we get

13.(f x vla / S F(2) A1) D (E)dn(t).
0

Hence, equation (3) reveals

F5s(f x (@) A) = (fo.f @) (V).

Lemma 1 is proved.
Spaces we are generating here are the space ﬁl( J Ky X)),y X, A) and the space B2(l', (K, x),
®,A). A wherever it appears is the set of delta sequences (d,,) from (0, 00), where

[ sutwrdo =1 @
0
/ ‘6n(x)‘dx <m, m is a positive real number, (5)
0
suppd, C [—e,¢e], €¢—=0 as n— co. 6)

It is of importance that we recall here some properties of the product x which we list as [12, 10]:

fxg=gx], (7)
fx(g+h)=fxg+fxh, (8)
fx(gxh)=(fxg)xh, ©)

(af) xg=a(fxg)=[fx(ag), acC (10)

We merely generate the space (51 (l(lx, (K, %), x,A) as the space [ (ll, (K, X), ®,A) can be ge-
nerated similarly.

1
Theorem 1. Let f € 11(0,00) and ¢ € k(0,0), a > —5 Then we have f x 1 € I}(0,0).
Proof. Let f €1.(0,00) and ¥ € k(0,00) be given. Let K = [a,b], 0 < a < b, be a compact
subset of (0, 00) such that supp ) C K. Then, for o > —g5y we have

o0

/Ifxw )| dyuly =/ £ () £ () de| duy) <
0

0

b o)
< [l O/ £ (1) dpa(y)ae

By setting the variables z = yt~! we get
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b

/uxwwwmws/wwwhﬁ/uwww@.
0 0

a

That can be interpreted as

f xp)|, <m* £, (11)

b
where m* — / b (8)] 2 dt.
Theorem 1'is proved.
1
Theorem 2. Let f € 1(0,00) and 11,15 € k(0,0), a > —3 Then we have

@) fx (1 +v2)=f xah1+ fx o,

(i) f x (1 x ¥2) = (f x Y1) X (¢2),

(iii) (af) x V1 =a(f x 1) = f x (a)1), a € C.

Proof of identities (i) and (iii) follows from simple integral calculus. Identitity (ii) directly follows
from (9). This establishes the theorem.

1
Theorem 3. Let f,, — f €11(0,00) as n — oo and ¢ € k(0,0), a > ~5 Then we have

fax = f x4

as n — oo in 110, 00).
Proof of this theorem follows from simple integration. We, therefore, omit the details.

1
Theorem 4. Let f € 11(0,00) and (5,) € A, a0 > —3 Then we get

fxon— f

as n — oo in 11(0,00).
Proof. Let f €11(0,00) and (8,) € A be given. Since the space (0, 00) is dense in 1,(0, co)
we find ¢ € (0, 00) such that

If =l <e (12)

for e > 0.
Also, by (11) and the fact that (J,) € (0, 00), we obtain

1(f =) x 6|2 < m* || f — )

for some real number m*.
Hence, inserting (12) into above equation we get

[(f = ¥) x ]|} < em™. (13)

Thus, we have obtained
o 80 = ]l = [ 106 % 8 = 0) (] disty) =
0
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://wytltlé t)dt — /5n Ydt| du(y

0 0 0
<//w (ut™2) £71 = ()| 100 (1)) dtda(y). (14)
0 0

Now, let g,(t) = ¢ (yt_ )t !, then g,(t) is uniformly continuous function in #(0, 00). Therefore,
we find § > 0 such that

lgy(t) —g(1)| < e whenever |y — 1| < 4.

Thus, inventing (4) in (14) gives

00 00 d
o 8= vl < [ [ o) = sy I8n(o] deanty) < = [ auty), 15)
0 0 c

where [a, b] is an interval containing the support of g,.
Therefore, (15) implies
[ x 8, — 9|, < 4, (16)

d
where A :/ du(y).

On account of (13), (16) and (12), we reach to
175 80 = £lls < 1 =) x 0nlg + [l x 8 = wllot 17 = o < em” + Ae +e.
Hence, above equation gives
£ %80 = £, < Be,

where B=m*+ A+ 1.
Theorem 4 is proved.
The space B1 (1}, (k, x), x, A) has therefore been generated.
The sum of two Boehmians in 3 (lé, (K, X), X, A) and multiplication by a scalar can be defined

) (8- ] - - )

where o € C, C being the space of complex numbers.
The operation x and the differentiation are defined by

BRI GE A s M !

A sequence of Boehmians (8,,)inS31 (I}, (k, x), x, A) is said to be § convergent to a Boehmian 3

in 1 (lé7 (K, x), X,A), denoted by 3, N B, if there exists a delta sequence (¢,,) such that

as
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(Bn X ), (B x &) €15 VEk,n €N,
and
(Bn % 6)) = (Bx ) as n—oo, in I, forevery kecN.

The equivalent statement for ¢ convergence:
Bn LA B (n— o0)in B1 (1L, (k, x), x,A) if and only if there is (¢n.1), (¢x) € I, and (0;) € A

such that 5, = [(((pg;];)], 8= [((Sg:” and for each £ € N, ¢, , — ¢} as n — oo in 1.

A sequence of Boehmians (53,,) in 31 (I3, (k, x), x, A) is said to be A convergent to a Boehmian
Bin By (1, (K, x), x, A), denoted by 3, A (3, if there exists a (,,) € A such that (3, — 8) x &, €
cll vneN,and (B, — ) x 6, — 0as n — oo in I}.

Similarly, the following theorems generate the Boehmian space (1 (lé, (K, X), X, A).

Theorem 5. Let f € 1'(0,00) and v € k(0,00). Then we have f @1 € 11(0,0).

Theorem 6. Let f € 1'(0,00) and 11,12 € K(0,00). Then we obtain

() f@ (1 +ya) = [+ f R,

(i) (af)@r=a(f@¢1)=f® (), aeC.

Theorem 7. For f € 1'(0,00) and 11,15 € k(0,00), we get f @ (11 x U2) = (f @ 1) @ a.

Proof of Theorems 5 and 6 is, respectively, similar to that of Theorems 1 and 2. Proof of
Theorem 7 follows from Proposition 1.

Theorem 8. (i) Let f,, — f in 1}(0,00) as n — oo and v € k(0,00). Then we have f, @) —
= fRY as n — oco.

(i) Let f,, € 1'(0,00) and (6,) € A. Then we have f, ® 6, — f as n — oo.

The proof of the Part (i) of the theorem follows from simple integration whereas proof of the
second part is analogous to that of Theorem 3. Hence, we prefer we delete the details.

The sum of two Boehmians in s (ll, (K, X),®, A) and multiplication by a scalar can also be
defined as

5 ) R S e I ) U R

a € C, space of complex numbers.
The operation ® and the differentiation are respectively defined by

] e )= [etes] w2 = [T

The notion of 6 and A convergence in (37 (lé, (K, x), X,A) and s (ll, (K, x), ®,A) can be
defined in a natural way as above.
3. The Bessel-Struve transform of a Boehmian. Let 3 € B1(l}, (K, x), x,A), 8 =

1
= [(fa)(0n)], then, for every o > —5 e define the Bessel - Struve transform of 3 as

(8- [%)
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The right-hand side of (17) belongs to (5o (ll, (K, X),®, A) by the benefit of Remark 1. The above

definition is, indeed, well-defined. Let [((j"))] = [EZHH € Bi(lL, (K, x), x,A). Then, by the

notion of equivalence classes of 1 (1}, (k, x), x, A), we have

fnxgm:gman-

Employing (17) and the notion of equivalence classes of (3o (ll, (K, X),®, A) yield

fg,sfn X Em = fgl,sgm ® wn

(fé‘,sfn) (fé‘,sgn) .

Hence, it follows that ~ in Bo(1', (K, x),®, A). Therefore, we get
(wn) (en)
(5.02)]  [(£5.9:)
(wn) (en)

This proves the claim.

Theorem 9. fg‘ is an isomorphism from (31 (l , ><,A mto B (l1 (K, X),®, A).

Proof. Let us first establish that fﬁ is injective. Given fﬁ . ( (f n” ) fg, <[( ; ]) Then,

’Vl

by Lemma 1 and notion of equivalent classes of 3 (l1 K, X),®,A , it follows that

fgsfn ®5m — fg’sgm ®wn

Therefore, Lemma 1 implies f5 (fn X em) = f§ (gm X wn). Employing fg gives

fn X €&m = gm X Wn.

On the other hand, the notion of equivalent classes of 3; (l}!, (K, x), X, A) reveals that
)] _[e)]
(wn) (en)
5 sfn)

Now, we establish that fugs is a surjective mapping. Let [(f(ﬁs

o) ] € Bo(l', (K, x),®,A) be

arbitrary. Then we have
J5sIn ®wm = f5 o fm ®wn
for every choice of m,n € N. Hence f,,, fm € I1(0,0), for every m,n € N, are satisfy
£ (fo X wm) = £5s (fn % wn).

(fn)
(wn)
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Theorem 9 is proved.
In addition to above, we derive the extension formula of x to (3 (lé, (K, X), X, A) as follows:

i) <o) = 5[] oo

Justification is as follows: by aid of (17) we write

() -[ e

Lemma 1 therefore gives

(][

The definition of the product x implies

m[Gl) o) = | e

Once again, (17) yields

(18- () -

Hence, we have reached to the conclusion that

zo ([ (fn)] o ([ (fn)
.fas < X¢|= fas
B, | (wn) | B,
Theorem 10. f/g{s : B (lé, (K, X), X, A) — 9 (ll, (K, X),®, A) is continuous with respect to
0 and A — convergence.
Proof of this theorem follows from similar technique to that followed below in the citations.

I
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