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The main goal of this paper is to prove a two-weight boundedness for Riesz potential from one weighted Banach function
space to another weighted Banach function space. In particular, we obtain a two-weight boundedness for Riesz potential
and find sufficient conditions on the weights for boundedness of Riesz potential in weighted Musielak — Orlicz spaces.

OcHoBHa MeTa poOOTH — BCTAHOBUTH JIBOXBAaroBy OOMEXXEHICTh MoTeHIiany Pica 3 omHoro Barooro banaxoBoro mpocropy
B iHIMI BaroBuil baHaxiB mpocTip. 30KpeMa, BCTAaHOBICHO JIBOXBAaroBy OOMEXEHICTh MoTeHmiamy Pica Ta orpmmaHo
JIOCTaTHI yMOBH, 10 Tpeba HAKIaCTH Ha Bary 3 METOIO TapaHTyBaTH OOMEXEHICTh MOTeHIiaty Pica y BaroBux mpocropax
Mycinsika — Opiiva.

1. Introduction. The investigation of Riesz operator in weighted Banach function spaces (BFS)
have recent history. The goal of this investigations were closely connected with founding the criterion
on the geometry and on the weights of BFS for validity of boundedness of Riesz operator in BFS.
Characterization of the mapping properties such as boundedness and compactness was considered
in the papers [9, 10, 14, 33] and etc. More precisely, in [9, 10] were considered the boundedness
of certain integral operator in ideal Banach spaces. In [14] the boundedness of Hardy operator was
proved in Orlicz spaces. Also, in [33] the compactness and measure of noncompactness of Hardy
type operator in BFS was proved. But in this paper we used the boundedness of Hardy operator
in p-convex BFS. Note that the notion of BFS was introduced in [35]. In particular, the weighted
Lebesgue spaces, weighted Lorentz spaces, weighted variable Lebesgue spaces, variable Lebesgue
spaces with mixed norm, Musielak — Orlicz spaces, etc are BFS.

In this paper, we establish an integral-type sufficient condition on weights, which provides the
boundedness of the Riesz operator from one weighted BFS to another weighted BFS.

2. Preliminaries. Let (£, 1) be a complete o-finite measure space. By Lo = Lo(, 1) we
denote the collection of all real-valued p-measurable functions on 2.

Definition 2.1 [20]. Let L be a real vector space. A function p: L — [0,00] is called a
semimodular on L if the following properties hold.:

(a) p(0) =0.

(b) p(A\x) = p(z) for all x € L and \ € R with |\| = 1.

(c) p is convex.

(d) p is left-continuous.

(e) p(Ax) =0 forall X\ > 0 implies x = 0.
A semimodular p is called modular if

(0 p(x) =0 implies © = 0.
A semimodular p is called continuous if

() the mapping \ — p(A\x) is continuous on [0,00) for every x € L.
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is called a semimodular space or modular space, respectively. The limit A — 0O takes place in R.
Theorem 2.1 [20]. Let p be semimodular on L. Then L, is a normed real vector space. The
norm called the Luxemburg norm, is defined by

1
x|, := inf{)\ >0:p ()\x> < 1}.

Definition 2.2 [8, 32, 35]. We say that real normed space X is a Banach function space (BFS)
if:

(Py) the norm ||f||x is defined for every p-measurable function f, and f € X if and only if
Ifllx < o0s [Ifllx =0 if and only if f =0 a.e;

P [[fllx = lllfllx forall | e X;

(P3) f0< fut f<gae, then ||fullx 1T [|f|x (Fatou property);
(Py) if E is a measurable subset of ) such that (|(E) < oo, then |xg||x < oo, where x g is the

characteristic function of the set E;
(Ps) for every measurable set E C Q with u(E) < oo, there is a constant Cg > 0 such that

[ f@yds < cefix
Recall that condition (P3) immediately yields the following property:

if 0<f<g,  then [fllx <llgllx-

Given a BFS X we can always consider its associate space X' consisting of those g € L that
f-g € Ly for every f € X with usual order and the norm ||g||x» = sup{||f - gllz,: [l9llx» < 1}.
Note that X’ is a BFS in ({2, 1) and a closed norming subspace.

Let X be a BFS and w be a weight, that is, positive Lebesgue measurable and a.e. finite
function on Q. Let X, = {f € Lo: fw € X}. This space is a weighted BFS equipped with the
norm || f|lx, = ||fw|/x. (For more detail and proofs of results about BFS we refer the reader to
[8, 32].)

Let us recall the notion of p-convexity and p-concavity of BFS.

Definition 2.3 [42]. Let X be a BFS. Then X is called p-convex for 1 < p < oo if there exists
a constant M > 0 such that for all f1,..., f, € X

n 1/p n 1/p
(Z |fk|p) <M (Z |rfk||€<> if 1<p<oo,
k=1 X k=1
or HSUplgkgn \fk]HX < M maxi<p<n || fellx if p = oco. Similarly, X is called p-concave for 1 <
< p < o0 if there exists a constant M > 0 such that for all fi,..., fn € X
n 1/p n 1/p
(Z\ka%) <M (Zlfk\”) if 1<p<oo,
k=1 k=1 X

< ] = .
or 1?]?§n’\fk||X <M HSUplgkgn \fk|HX if p=o0
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Remark 2.1. Note that the notion of p-convexity, respectively p-concavity are closely related
to the notion of upper p-estimate (strong £,-composition property), respectively lower p-estimate
(strong /,,-decomposition property) as can be found in [32].

Now we show some examples of p-convex and respectively p-concave BFS.

Let R™ be n-dimensional Euclidean space of the points z = ($1, N xn) and let €2 be a Lebesgue

1/2
measurable subset in R” and |z| = ( Zn . 3312) . The Lebesgue measure of a set €2 will be denoted
1=

7.[.77,/2

sume that § : 2 — [1, 00). Throughout this paper, assume § = ess inf,cq §(z) and § = esssup,cq 0()

by |Q]. It is well known that |B(0,1)| = , where B(0,1) = {z: 2z € R" |z| < 1}. As-

and p’ = Ll be conjugate exponent of p > 1.
p—

Example 2.1. Let 1 < ¢ < oo and X = L,. Then the space L, is p-convex (p-concave)
modular BFS ifand only if 1 <p<¢g<o0o (1 <g<p<o0.)

The proof implies from Minkowski inequality in Lebesgue spaces.

Example 2.2. The following lemma shows that the variable Lebesgue space L) (€2) is a p-
convex modular BFS.

Lemma 2.1 [1]. Let 1 <p < q(z) <G < oo forall x € Qy CR™. Then the inequality

A zp@nl,, 0a) < Cod HHfHLq<'>(QQ) Ly(©1)

is valid, where

1 1
qw=:QwAmm+MXwa+p(q—q))umAmm+wwAmw)

Ay ={(z,y) € U xQ:qy) =p}, Ao = xQ\ Ay and f: Q1 x Qs — R is any measurable
function such that

, a(y)
11 0zs@0l,, gy = inf § > 0: / (Ilf( 7?JL||Lp(Q1)> dy<1% <o
Q2

1/p
mdwmwmmm=<é|ﬂ%mwm).

Analogously, if 1 < g(x) <p < oo, then Ly, (€2) is a p-concave BFS.

Definition 2.4 [20, 40]. Let 2 C R" be a Lebesgue measurable set. A real function ¢: Q) X
X [0, 00) — [0,00) is called a generalized p-function if it satisfies:

(@) o(z, -) is a @-function for all x € Q, i.e., p(z, ) : [0,00) — [0,00) is convex and satisfies
o(z, 0) =0, lim_40 ¢(z, t) = 0;

(b) ¢¥: x> p(x,t) is measurable for all t > 0.

If o is a generalized @-function on €2, we briefly write ¢ € ®.

Definition 2.5 [20, 40]. Let ¢ € ® and be p, defined by the expression

pold) = [ el |f@Ddz forall f e Lo(e).

Q

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 11



1446 R. A. BANDALIYEV, V. S. GULIYEYV, S. G. HASANOV

We put L, = {f € Lo(Q) : po(Aof) < oo for some N\g > 0} and

1l :inf{A>0: ” <~’;> < 1}.

The space L is called Musielak— Orlicz space.
Let w be a weight function on 2, i.e., w be a nonnegative, almost everywhere positive function
on (2. We denote
Ly w={f€Lo(Q): fwe L,}.

It is obvious that the norm in this space is given by

1|2y, = I f@liL,-

Remark 2.2. Let ¢(z,t) = t4®) in Definition 2.4, where 1 < ¢(z) < oo and = € Q. Then we
have the definition of variable exponent weighted Lebesgue spaces L, (€2). About detail information
on variable exponent Lebesgue spaces we refer to [18].

Example 2.3. The following lemma shows that the Musielak - Orlicz space L, is a p-convex
modular BFS.

Lemma 2.2 [6]. Let Q; C R™ and Qs C R™. Let (v,t) € 4 x [0,00) and ¢ (x,t1/?) € ® for
some 1 < p < oo. Suppose f: Q1 x Qo — R. Then the inequality

<27 lI£(y)

L (2, )|z 00|

L, HLA@HLP(QQ)

is valid.

We note that the Lebesgue spaces with mixed norm, weighted Lorentz spaces, etc are p-convex
(p-concave) modular BFS. Now we reduce a more general result connected with Minkowski’s integral
inequality.

Let X and Y be BFS on (Qq, 1) and (Qg,v), respectively. By X[Y] and Y [X]| we denote
the spaces with mixed norm and consisting of all functions g € Lo (1 x Q9, pu X v) such that

Hg(x, )HY € X and Hg(-, y)HX € Y. The norms in this spaces define are as follows:

lgllxryy = llgCz, Hlivlixs  lgllyixy = Mgl wllxlly -

It is known that X[Y] and Y'[X] are BFS on ; x Qy (see [32].)
Definition 2.6 [40]. We say that modular BFS X satisfies the Ao-condition if there exists K > 2
such that

p(2f) < K p(f)

forall f € X and all t > 0. The smallest such K is called the Ay-constant of p.
Lemma 2.3. Let X modular BFS, v > 1 and 1 < q(z) < q < co. Further, let

i 2 < < q(x .
min {s, 5"} p(f) < p(sf) < max {s, 57} p(f) (2.1)
Jor almost all x € Q and all f € X,. Then p (Hf” > =1 and
P

min {171, 1713} < o) < mac {171 IS0} forany @ €.
[1£1lp 1£1lp
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Proof. Let 0 < ||f]|, < oo and ,0< /
; 1/l

such that p <)\> < 1. Indeed, we put A\ = ||f||pp1/6 <

) < 1. We choose a positive number A < || f]|,

f
1/l

). Then A < || f||, and by virtue of

condition (2.1) for s > 1 we have

f>_ / —q(x)/q< f > < f )
p<A "\ (o) = 171,/ NIl =

/1o

(! / >:1
=7 (\f\\p>p<Hf!p
Lemma 2.3 is proved.

We consider the multidimensional Hardy type operator and its dual operator

H(r) = / fw)dy and  Hf(r) = / £() dy,

ly|<|z| ly[>|z|

where f > 0 and z € R™.

Now we reduce a two-weight criterion for multidimensional Hardy type operator acting from
the p-concave weighted BFS to weighted Lebesgue spaces. Suppose that M > 0 the constant in
Definition 2.3.

Theorem 2.2 [7]. Let v(x) and w(zx) be weights on R™. Suppose that X, is a p-convex weighted
BFSs for 1 < p < oo on R™. Then the inequality

IH fllx.. < Clfllz,,. 2.2)

holds for every f > 0 if and only if there is a « € (0,1) such that

a/p (1-a)/p
Ala) = sup / o) dy | [xgesn () / o(y) ™ dy < oc.
ly| <t lyl<I'| Xy
Moreover, if C > 0 is the best possible constant in (2.2), then
P A(a) . A(a)

; <C<M inf —2Y
02221 ) 4 p 1 1/p — C= o<lg<1 (1- a)l/p’
- ((1=%) *ap-1

For the dual operator, the below stated theorem is proved analogously.
Theorem 2.3 [7]. Let v(x) and w(x) be weights on R™. Suppose that X, is a p-convex weighted
BFS for 1 < p < oo on R". Then the inequality

1 fllx, < Clfllz,,. (2.3)

holds for every f >0 if and only if there is a v € (0,1)

ISSN 1027-3190.  Ykp. mam. ocypn., 2017, m. 69, Ne 11



1448 R. A. BANDALIYEV, V. S. GULIYEV, S. G. HASANOV
/v (1=)/p’

B(y) = sup /v(y)‘p/dy X{J21<t (") /v(y)""dy < oo
it > R

Moreover, if C > 0 is the best possible constant in (2.3), then

0iu1<)1 /p/ BIE’Y) 1 p —
T ((1117) +7(p—1)>

Corollary 2.1. Note that Theorems 2.2 and 2.3 in the case X, = Ly v, ¢ (z,tl/p) e @ for
some 1 < p < oo, x € R" were proved in [6]. In the case Xy, = Ly 4, 1 < p < q < o0, for

0<y<1 (1 —7)L/p

-1
x € (0,00), a = i 7 and s € (1, p) Theorems 2.2 and 2.3 were proved in [44]. For x € R" in

the case Xy = Lg(z), 0 and 1 < p < q(x) < esssup,egn q(z) < 0o Theorems 2.2 and 2.3 were
proved in [3] (see also [2]).

Remark 2.3. Inthecase n =1, Xy, = Lgw, 1 < p < g < 00, at x € (0,00), for classical
Lebesgue spaces the various variants of Theorems 2.2 and 2.3 were proved in [12, 23, 25-28, 30,
31, 34, 38, 39, 43] etc. In particular, in the Lebesgue spaces with variable exponent the boundedness
of Hardy type operator was proved in [15-17, 19, 21, 24, 29, 36, 37] etc. For Xy = L), w, 1 <
< p < q(x) < esssupgepq) () < oo and z € [0,1] the two-weighted criterion for one-dimensional
Hardy operator was proved in [29]. Also, other type two-weighted criterion for multidimensional
Hardy type operator in the case Xy = Ly(y),w, 1 <P < q(7) < esssup,egn q(7) < 0o and x € R”
was proved in [36] (see also [37] and [17]). In the case L), for 0 < ¢ <g <1 the boundedness
of classical Hardy operator was proved in [5]. In the papers [11] and [41] the inequalities of modular
type for more general operators were proved. Also, in [13] the Hardy type inequalities with special
power-type weights in Orlicz spaces were proved.

3. Main result. Now we consider the Riesz potential R®f(x) = / W)

. Wdy, where

0<s<n.

The sufficient conditions for general weights ensuring the validity of the two-weight strong type
inequalities for the Riesz potential in BFS are given in the following theorem.

Theorem 3.1. Suppose that v(x) and w(x) be weight functions on R". Let Yy, be a modular
p-convex weighted BFS for 1 < p < oo and x € R". Let 0 < s < n, R® is bounded from X into
Y and let Ly, ,(R") — X,. Let there exists r(x): 1 < p < r(x) < T < oo such that, for all C > 0
p(Cf) < Ci(r) p(f), where Cy(r) = max {CZ,C"} .

Moreover, let v(x) and w(x) satisfy the following three conditions:

/

a/p X (1—a)/p’
1) A=sup / v(y) ™ dy ez} / v(y) ™ dy < 00; (3.1)
>0 \ Jjyl<t |z lyl<a|

Y
/ B/v'
2) B=sup (/ (v()lyl" )" dy) X
ly|>t

t>0

ISSN 1027-3190.  Yxp. mam. ocypn., 2017, m. 69, Ne 11



TWO-WEIGHTED INEQUALITIES FOR RIESZ POTENTIAL IN p-CONVEX WEIGHTED MODULAR 1449

) (1-8)/p'
X || X {|2|<t} </|y|>x| (v@)lyl"*) " dy> < 00, (3.2)

Yw

where 0 < a, 8 < 1;
3) there exists M > 0 such that

sup  w(y) <M inf o (y). (3.3)
jal/2<|y|<4 Jo| jal /2<ly| <4 2]

Then there exists a positive constant C, independent of f, such that for all f € X,

Proof. Let Z = {0,+1,+2,...}. For k € Z we define By, = {z € R": 2% < |z < 2FF1}
Ep1 = {w e R": |z| < 2"‘_1}, Epo = {m € R*: 281 < |z] < 2k+2}, Eps = {x c R":
|x| > 2k_1}. Then Eyo = Ej_1 U Ej U Ej4q and the multiplicity of the covering {Ej 2}rez is
equal to 3.

Given f € L, ,(R™), we write

IR ()] =D IR f ()| xp () <
kez
< IR fra(@)] xm, () + D IR fra(@) xe, () + Y IR fra(@)] xg, (x) =
keZ keZ keZ

= Rif(x) + Raf(x) + R3f(x),

where x g, is the characteristic function of the set Ex, fr: = fxg, ., i =1,2,3.
First we shall estimate ||R]f|ly, . Note that for z € Ey, y € Ej1 we have |y| < 2k=1 < |2]/2.
Moreover, Ej, Nsupp fr1 = @ and |z —y| > |z]| — |y| > |z| — |2|/2 = |=|/2. Hence we have

‘Rf <CZ /||fk1|nsy <C / |nsdyS

keZ

|y\<|$\/2
n 1
<o [ Ao wsro [ ol
|yl <] |yl <]

for any z € E). Hence we get

Risly, <20\ [ vwlan) = | [ irla
Jyl<lal vo i<l Vi
By condition (3.1) and Theorem 2.2, we obtain
IR flly, < CillfllL, @) < Coll fllx., (3.4)

where C; > 0 is independent of f and z € R".
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Next we estimate [|R5f|y. . It is obvious that, for 2 € Ey, y € Ej3 we have |y| > 2|z| and
|z —y| > ly| — |z| > |y| — |y|/2 = |y\/2. Since Ej, Nsupp fr3 = @ for x € Ej, we have

R3S (2 \<C/ s dy<2"C / |f dy.
ly|>2|z] ly|>2]|
Hence we get
fly
Rsfly, <2c| [ T <
ly|>2|=| Y.,
crc| [ L),
ly!> || Yy,

By condition (3.2) and Theorem 2.3, we obtain

IR f]ly., < CallfllL, . < Csllfllx,, (3.5)

where Cs > 0 is independent of f and x € R"™.
Finally we estimate [|R®fi ||y, , where

=

kez Yy,

P(w > |Rsfk,2|XEk> <C,

keZ

By virtue of Lemma 2.3 it suffices to prove that from ||f||x, < 1 implies

where C > 0 is independent of k € Z.
By the boundedness of R® from X to Y and condition (3.3), we have

( ) D IR fr2®)] xm (v ) Zp( ) S 1R Foaw)| X (v )>:

keZ mezZ keZ
RS
S o wln) 1R fuati)) = o (Culo) ial ) o
keZ keZ
IR fr2l )
< C — 2 )<
S (© ) liall)™ <C\|fk,2llx <
r(y) ’Rsfkg‘ )
C T IR
<0 Y sy CO R Jl) <

IN

<0 Y sup ) = Y swp (I wlge,,)

kez YEEK kez YEEK
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W ")
<ar X sw (17 oWlygey) <X s (If0lxn) " -

keZ S Bk 2 keZ yEEL

Y (||f|rXU(Ek,2>)yi€“’5kr(y) <0 (9l (m,s)) <

keZ keZ

<Y o (IFWlo(y)xe,)"" =

keZ

=C3 Z o ([fW)v(y) (XE, 2 + XB, + XEk+1))]£/7 <
keZ

r/y
<C3 [P (‘Jl.(:lJ)w(y))F/7 <Z XE, 1 T Z XE;, T+ Z XEk+1> -

keZ keZ keZ
=C5 (3p(If (W)lv)" <37Cs < Cy.
Thus
IR flly,, < Cs, (3.6)

where C' > 0 is independent of f and z € R"™.

Combining the inequalities (3.4), (3.5) and (3.6), we obtain the proof of Theorem 3.4.

Theorem 3.2 [40]. Let vp € ® and 6 > 1. Then Ly(R™) — Ls(R™) if and only if there exists
C >0 and h € Li(R") with ||h| 1, ®n) < 1 such that

(2,)5 < (a,1) + h(z) (3.7)

Jfor almost all x € R™ and all t > 0.
Lemma 3.1. Let ¢ € @, v > 1 and 1 < q(x) <G < co. Further, let

mi {s, 7} (2, ) < (. 5t) < max {5, 870 bz, 1) (3.8)

for almost all x € Q and all t > 0. Then p¢<"fﬁ ) =1 and
Ly

in {11, 1417, } < o) < max {1 flle,. 17157}

m >
111z, £z,

From Theorem 3.1 we have the following corollary.

Corollary 3.1. Let for some 1 < p < oo, @(x,t'/?) € ® and a function 1) € ® satisfy conditions
(3.7) and (3.8), where x € R™. Suppose that v(x) and w(x) be weight functions on R™. Let R® is
bounded from Ly (R™) to L,(R™). Let there exists r(x): 1 < 0 < r(z) < T < oo such that, for all
C >0 oz, Ct) < O™ p(x,1t).

Moreover, let v(x) and w(x) satisfy the following three conditions:

L (1—a)/p
1) sup / v(y) ™ dy — / v(y) ™ dy < o
>0 \ J|y|<t - lyl<|'|

Lo ([->1)
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B/’ (1-8)/p'

Lo (|-<t)
where 0 < a, 8 < 1.

3) there exists M > 0 such that

sup  w(y) <M  inf v
|z|/2<]y| <4 x| 2] /2<y|<4|a]

Then there exists a positive constant C, independent of f, such that for all f € Ly ,(R")
IR fllLyw(®n) < CllfllLy. @)

Further, we assume that the exponent p(x) satisfies the standard conditions

My

1
- < — 0 —yl <= R" 3.9
p@) P < i O<le—yl<g myeR (3.9)
together with the following conditions at infinity:
My
- < 5 > R" 3.10
p(z) —p(y)| < (e + [2]) [ = [y, =,y €RY, (3.10)

where the positive constants M7 and M, are independent of « and y. Note that, from condition (3.10)

implies that there is some number p., such that p(x) — ps as |z| — oo, and this limit holds

1 1
uniformly in all directions. It is known that if p(z) satisfies (3.10), poo =p and — = — — ——,
- @) p p)

1
then @) satisfies (3.10), lim|,| oo 7(7) = 00 and L, ;) (R™) < L,(R™). In particular, for X, =
r(z =

= Lyp(2),»(R") and Yy, = Ly(4) ., (R") from Theorem 3.1 we have the following corollary.

1 1
Corollary 3.2. Let — — —— = i, p>1,p<n/s, q>pand p(x) satisfy conditions (3.9)
p(z) ql@) n' = -
and (3.10) with ps, = p. Moreover, let v(x) and w(x) be weight functions on R" and satisfy the

following three conditions:

| i (1-a)/p’
1) sup / v(y) 7 dy o / v(y) 7 dy < o0,
>0 \ J|y|<t - | lyl<|-]

Loy ([-1>t)

8/7 (1-8) /7
2) su v n—s) =7 d w(- v n—s _ﬁ/d
) t>g</|y|>t( (W)ly"~*) y) () </y|>.|( (W)lyl"*) y) <

Lq<4>(|'|<t)

< 00, where 0 < o, B < 1;
3) there exists a constant M > 0 such that

sup w(y) < M v(y)  forae x€R"

y) < inf
|| /A< |y|<4 || lz]/4<|y|<4 ||

Then there exists a positive constant C' independent of f such that for all f € Ly, ,(R")

HRS']LAHLq(,)yw(R”) < CHfHLp«)’v(R”)'
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Remark 3.1. Inthe case X, = L, o, Yy = Lg,w, 1 < p < g < oo for classical Lebesgue spaces
various variants of Theorem 3.1 were proved in [4, 22, 45] etc.

The research of R. A. Bandaliyev and V. S. Guliyev was partially supported by the grant of
Science Development Foundation under the President of the Republic of Azerbaijan, Grant EIF-
2013-9(15)-46/10/1 and by the grant of the Presidium of Azerbaijan National Academy of Science
2015. The authors would like to express their gratitude to the referees for his (her) very valuable
comments and suggestions.

References

1. Bandaliev R. A. On an inequality in Lebesgue space with mixed norm and with variable summability exponent //
Math. Notes. — 2008. — 84, Ne 3. — P. 303 -313; correction in Math. Notes. — 2016. — 99, Ne 2. — P. 319-320.
2. Bandaliev R. A. The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces // Czechoslo-
vak Math. J. —2010. — 60, Ne 2. — P. 327 —337; corrections in Czechoslovak Math. J. —2013. - 63, Noe 4. —P. 1149-1152.
3. Bandaliev R. A. The boundedness of multidimensional Hardy operator in the weighted variable Lebesgue spaces //
Lith. Math. J. - 2010. - 50, Ne 3. — P. 249 -259.
4. Bandaliev R. A., Omarova K. K. Two-weight norm inequalities for certain singular integrals // Taiwanese J. Math. —
2012. - 16, Ne 2. - P. 713 -732.
5. Bandaliev R. A. On Hardy-type inequalities in weighted variable Lebesgue space Ly, for 0 < p(x) < 1 //
Eurasian Math. J. — 2013. - 4. - P. 5-16.
6. Bandaliev R. A. Criteria of two-weighted inequalities for multidimensional Hardy type operator in weighted Musielak —
Orlicz spaces and some application // Math. Stat. — 2013. — 1, Ne 3. — P. 144 -156.
7. Bandaliev R. 4. On a two-weight boundedness of multidimensional Hardy operator in p-convex Banach function
spaces and some application // Ukr. Math. J. — 2015. — 67, Ne 3. — P. 357-371.
8. Bennett C., Sharpley R. Interpolation of operators / Pure and Appl. Math. — 1988. — 129.
9. Berezhnoi E. I. Sharp estimates of operators on the cones of ideal spaces // Proc. Steklov Inst. Math. — 1994. — 204.
-P.3-36.
10. Berezhnoi E. I. Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces // Proc.
Amer. Math. Soc. - 1999. — 127. - P. 79-87.
11. Bloom S., Kerman R. Weighted Lo integral inequalities for operators of Hardy type // Stud. Math. — 1994. — 110,
Ne I.-P. 35-52.
12. Bradley J. Hardy inequalities with mixed norms // Can. Math. Bull. — 1978. — 21. — P. 405-408.
13.  Cianchi A. Hardy inequalities in Orlicz spaces // Trans. Amer. Math. Soc. — 1999. — 351. — P. 2459 -2478.
14. Cochran J. A., Lee C. S. Inequalities related to Hardy’s and Heinig’s // Math. Proc. Cambridge Phil. Soc. — 1984. —
96. - P. 1-7.
15. Cruz-Uribe D., Fiorenza A., Neugebauer C. J. The maximal function on variable L? spaces / Ann. Acad. Sci. Fenn.
Math. — 2003. — 28, Ne 1. — P. 223 —238; corrections in Ann. Acad. Sci. Fenn. Math. — 2004. — 29, Ne 2. — P. 247 -249.
16. Cruz-Uribe D., Fiorenza A., Martell J. M., Perez C. The boundedness of classical operators on variable L? spaces //
Ann. Acad. Sci. Fenn. Math. — 2006. — 31. — P. 239-264.
17.  Cruz-Uribe D., Mamedov F. I. On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
// Rev. Math. Complut. — 2012. — 25, Ne 2. — P. 335-367.
18.  Cruz-Uribe D., Fiorenza A. Variable Lebesgue spaces / Found. and Harmon. Anal. Ser. Appl. and Numer. Harmon.
Anal. - 2013.
19. Diening L., Samko S. Hardy inequality in variable exponent Lebesgue spaces // Fract. Calc. and Appl. Anal. — 2007.
-10,Ne 1. - P. 1-18.
20. Diening L., Harjulehto P, Hasto P, Ruzicka M. Lebesgue and Sobolev spaces with variable exponents // Springer
Lect. Notes. — 2011. — 2017.
21. Edmunds D. E., Kokilashvili V., Meskhi A. On the boundedness and compactness of weighted Hardy operators in
spaces LP(®) // Georg. Math. J. — 2005. — 12, Ne 1. — P. 27— 44.
22. Guliev V. S. Two-weight inequalities for integral operators in L,-spaces and their applications // Proc. Steklov Inst.
Math. — 1994. - 204. — P. 97-116.

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 11



1454 R. A. BANDALIYEV, V. S. GULIYEYV, S. G. HASANOV

23. Hardy G. H., Littlewood J. E., Polya G. Inequalities. — Cambridge Univ. Press, 1988.
24. Harjulehto P, Hasto P, Koskenoja M. Hardy’s inequality in a variable exponent Sobolev space // Georg. Math. J. —
2005. - 12, Ne 1. — P. 431 -442.
25. Heinig H. P. Some extensions of inequalities / SIAM J. Math. Anal. — 1975. — 6. — P. 698 -713.
26. Jain P, Persson L. E., Wedestig A. From Hardy to Carleman and general mean-type inequalities // Funct. Spaces and
Appl. — New York etc.: CRC Press, 2000. — P. 117-130.
27. Jain P, Persson L. E., Wedestig A. Carleman—Knopp type inequalities via Hardy’s inequality // Math. Inequal. and
Appl. — 2001. — 4, Ne 3. - P. 343 -355.
28. Knopp K. Uber Reihen mit positiven Gliedern // J. London Math. Soc. — 1928. — 3. — P. 205-211.
29. Kopaliani T. S. On some structural properties of Banach function spaces and boundedness of certain integral operators
/! Czechoslovak Math. J. — 2004. — 54, Ne 129. — P. 791 -805.
30. Krbec M., Opic B., Pick L., Rakosnik J. Some recent results on Hardy type operators in weighted function spaces and
related topics // Funct. Spaces, Different. Operators and Nonlinear Anal. — Stuttgart: Teubner, 1993. — P. 158 —184.
31. Kufner A., Persson L. E. Integral inequalities with weights. — Singapore: World Sci. Publ., 2002.
32. Lindenstrauss J., Tzafriri L. Classical Banach spaces II / Ergeb. Math. und Grenzgeb. — 1979. — 97.
33. Lomakina E., Stepanov V. On the Hardy-type integral operator in Banach function spaces // Publ. Mat. — 1998. — 42.
- P. 165-194.
34. Love E. R. Inequalities related to those of Hardy and of Cochran and Lee // Math. Proc. Cambriadge Phil. Soc. —
1986. — 99. — P. 395-408.
35. Luxemburg W. A. J. Banach function spaces: Thesis. — Delfi, 1955.
36. Mamedov F. I, Harman A. On a weighted inequality of Hardy type in spaces LP() // J. Math. Anal. and Appl. —
2009. — 353, Ne 2. — P. 521-530.
37. Mashiyev R. A., Cekic B., Mamedov F. 1., Ogras S. Hardy’s inequality in power-type weighted e (0, 00) spaces //
J. Math. Anal. and Appl. — 2007. — 334, Ne 1. — P. 289-298.
38. Maz’ya V. G. Sobolev spaces. — Berlin: Springer-Verlag, 1985.
39. Muckenhoupt B. Hardy’s inequality with weights / Stud. Math. — 1972. — 44. — P. 31-38.
40. Musielak J. Orlicz spaces and modular spaces // Lect. Notes Math. — 1983. — 1034.
41. Quinsheng L. Two weight ®-inequalities for the Hardy operator, Hardy — Littlewood maximal operator and fractional
integrals // Proc. Amer. Math. Soc. — 1993. — 118, Ne 1. — P. 129-142.
42. Schep A. Minkowski’s integral inequality for function norms // Oper. Theory: Adv. and Appl. — 1995. — 75. —
P. 299-308.
43. Tomaselli G. A class of inequalities // Boll. Unione Mat. Ital. — 1969. — 2. — P. 622 -631.
44. Wedestig A. Some new Hardy type inequalities and their limiting inequalities // J. Inequal. Pure and Appl. Math. —
2003. - 61, Ne 4. — P. 1-33.
45. Zeren Y, Guliyev V. S. Two-weight norm inequalities for some anisotropic sublinear operators // Turkish Math. J. —
2006. — 30. — P. 329-355.
Received 28.02.16,
after revision — 13.06.16

ISSN 1027-3190.  Yxp. mam. ocypn., 2017, m. 69, Ne 11



