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MULTI-OBJECTIVE NONLINEAR SUM OF FRACTIONAL OPTIMIZATION
PROBLEMS WITH NON-CONVEX CONSTRAINTS USING DUALITY
BASED BRANCH AND BOUND ALGORITHM *

MYJIBTI-OB’€EKTHA HEJITHIMHA CYMA JIPOBOBUX ONTUMI3AIIMHAX
INPOBJIEM 3 HEOITYKJIMMHU OBMEXEHHAMMU 3 BUKOPUCTAHHAM
AYAJIBHOTI'O AJITOPUTMY TI'VIOK TA 'PAHULLb

The present paper investigates the solution of multiobjective nonlinear sum of fractional optimization problems. A duality
based branch and bound cut method is developed to obtain efficient solution and the methodology is validate by proving
the theoretical assertions for the solution. The present method is the extension of the work P. P. Shen, Y. P. Duan and
Y. G. Pei[19] which developed for single objective sum of ratios nonlinear optimization problem. The proposed method is
coded in matlab (version 2014b). Two numerical problems are considered for solving by using the proposed method and
global optimal solution is obtained.

B po6oTi BUBUa€ThCS PO3B 30K MYIIBTi-00’ €KTHOT HEMiHIIHOT CyMH Ipo60BHX onTHMi3aniitHuX npobiem. {1 eheKTUBHOrO
PO3B’sA3yBaHHA TaKUX MPoOIeM B poOOTi po3po0IeHO TyalbHUH aIrOpUTM TiJIOK Ta TPaHUIb. 3alPOIIOHOBAHA METOIOJIOT IS
0OTpyHTOBaHa JIOBEJCHHSIM HEOOXIHMX TEOPETHYHUX TBEP/DKEHb. MeTos, 110 3aCTOCOBAHO, € y3arajJbHEHHSIM pOOOTH
I1. I1. Ilena, I. I1. yana ta I. I. Iles (moBHe mocmiaHHS) st OQHOOO €KTHOI HeMiHIIHOI onTHMIi3aniifHOi 3amadi mpo
cymHu BimHomeHs. Llei meton peanizoBano B MatLab (Bepcis 2014b). [IBi uncioBi mpobiaeMu po3mITHYTO i pO3B’s3aHO 3a
JTOTTOMOTOFO I[HOTO METOMY Ta OTPUMAHO iX II00ajbHI ONTUMAJbHI PO3B’SI3KH.

1. Introduction. In this paper, we consider a multiobjective nonlinear sum of fractional(MONSOF)
optimization problem in the following form

p Nij(z) ~—=p Noj(x) p Nij(x)
max{zf Dij(x)’ Zi Doj(z)" 7 Zﬂ' ij(l“)}

subject to (P)
reS={zeR": Az < b,Yi(z) <0 = >0}, pk>2.
Nij(z) and Dy;j(x), i = 1,2,...,k, j = 1,2,...,p, are all real-valued nonlinear convex functions
over R", with D;; > 0 and Yj(z)'s, 1=1,2,...,m, are all non-convex functions on R?, S denotes

the set of all feasible solutions and A € R7*", b € RY.

The sum of fractional optimization problem is one of the most difficult problem in the field of
fractional optimization. The sum of fractional optimization arises naturally in decision making when
several fractional are to be optimized simultaneously and a compromise is sought which optimizes
a weight sum of these ratios. The application of sum of fractional optimization can be described in
the situation where a compromise is needed between absolute and relative terms profit and return
on investment (or return/risk). Mathis and Mathis [1] identified the application of sum of fractional
optimization problem and formulate a fee optimization model. The model is used by hospital admin-
istrators in the state of taxes to decide on relative increase of charges for different medical procedure
in various department. Since the understanding of sum of fractional multiobjective problem until now
is quite limited. This is because of the special structure of objective functions. It is very difficult and

* This work is supported financially by DST-SERB, Government of India, through sanctioned order No. SB/EMEQ-
049/2014.

© D. BHATI, P. SINGH, 2017
ISSN 1027-3190.  Yxp. mam. ocypn., 2017, m. 69, Ne 11 1455



1456 D. BHATI, P. SINGH

challenging problem corresponding to general fractional optimization. The studies of sum of fractional
optimization problem is restricted to single objective only and it not surprising that theoretical and
algorithmic development for this problem is very limited too. However, recently some single objec-
tive sum of fractional optimization problem have been made. Benson [3 —9] proposed various branch
and bound techniques for solving the different variants of sum of ratios optimization problems. The
main work of developed methods are involvement of a sequence of convex programming problems
that differ only their objective function coefficients. These developed methods are applied to solve
numerical problems and global optimal solutions are obtained in methods. The convergence studies
are discussed for the proposed methods. These method can be used to find global optimal solution for
single objective sum of ratio programming problem [10] Shen and Jin [11] proposed a global opti-
mization for maximization sum of concave-convex ration within the convex feasible region, they used
branch and bound scheme to develop algorithm. Wang and Zhang [12] presented a branch and bound
algorithm for globally solving the nonlinear sum of ratios problem on nonconvex feasible region.
They claimed that the proposed algorithm is convergent to the global minimum through the refinement
of the solution of series of linear programming problems. Shen and Wang [13] proposed a branch and
bound algorithm for solving the sum of linear ratios problem. They also proved the proposed algo-
rithm is convergent to the global optimal solution by means of subsequent solutions of a series of linear
programming problems. Jiao and Shen [14] gave short extension of the work of Wang and Zhang for
nonlinear sum of ratio problem. They proposed more general results and used different equivalent
problem. Qu, Zhang and Zhao [15] proposed a new branch and bound algorithm based on rectangle
partition and the Lagrangian relaxation for solving sum of quadratic ratios problem with non-convex
quadratic convergency of the algorithm. Shen, Chen and Yuan [16] proposed a branch reduced-bound
algorithm for solving sum of quadratic ratios with non-convex constraints. They modi?ed the problem
as monotonic optimization problem and find the globally optimal solution. Sheri. Li and Bai [17] gave
a method to solve the problem of minimization of sum of convex-convex ratios problem with a convex
feasible region and used branch and bound algorithm to propose new algorithm. They also established
the global convergence of the method. Shen and Wang [18] developed an algorithm for sum of general
fractional functions using linearization of method and branch-bound method. Shen, Duan and Pei [19]
proposed branch and bound type algorithm to solve the sum of convex-convex ratio with non convex
constraints. They used branch and bound method and Lagrange duality to develop the proposed
scheme. Jaberipour and Khorram [20] developed a harmony search algorithm to find the solution of
sum of ratios programming problems. This method is based on probability based search algorithm
which was motivated by musical perfognfance. Jin and Hou [21] proposed a branch and bound algo-
rithm to find global optimum solution for sum of ratio problem with ratio of the absolute value of affine
functions with coefficients. To develop this algorithm they used rectangular partition and used the
space of small dimension. Gao and Jin [22] proposed branch and bound algorithm by transformation
of sum ratios programming problem into bilinear programming problem. To develop this algorithm,
they used linear characteristic of convex envelope and concave envelop of double variables production
function. They also used linear relaxation programming of the bilinear programming problem. Freund
and Jarre [23] proposed an algorithm for global minimum solution for the sum of quasi convex ratio.
They used interior point method to compute global minimum solution. Shaible and Shi [24] gave the
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review published the sum-of-ratios program. They gave survey of applications, theoretical results and
various algorithmic approaches for this dif?cult fractional programming. Carlsson and Shi [25] pro-
posed a linear relaxation technique to solve sum of linear ratios problem. They concentrated on lower
dimensional problem for particular application and used transformation to developed the method.
Recently, Ashtiani and Ferreira [26] developed a new branch bound algorithm for sum of ratios
programming problem. They used decomposition approach to develop the algorithm. The literature
evident that several branch and bound techniques are developed for solving the sum of ratio optimiza-
tion problem. But most of the studies are restricted to single objective optimization problems only.

In comparison of single objective sum of fractional programming (SOFP), a solution to multi-
objective sum of fractional programming (MOSOFP) is a concept which satisfies all the objectives
simultaneously. There is no single global solution, and it is often necessary to determine a set of
points that all fit a predetermined criteria of optimality. The concept of Pareto optimal solution can
be defined as.

Definition 1 (Pareto optimal solution (maximization case)). A solution x° € S is said to be a
Pareto optimal solution for MONSOF optimization problem, if and only if there is no other solution

(x) p Nij(2®) . p Ngj(z p Nj(2°)
t > =1,2,. —
x € S such that E ; Dw 2) = E j Dij () Vi )2, and E j Dy E :j Dy; (29)

for at least one s.
Definition 2 (Pareto optimal Solution (minimization case)). A solution x° € S is said to be a
Pareto optimal solution for MONSOF optimization problem, if and only if there is no other solution

P
:UGSsuchthatZ (z) <ZN () Vi=1,2,. deNs] Zpist(xo)
J

J DU ) Dij(x°) i Dsj(x i Dsj(2°)
for at least one s.

In this paper, we proposed a method for solving multiobjective nonlinear sum of fractional
(MONSOF) optimization problems. The organization of the remaining part of the paper is as follows.
In Section 2, an equivalent problem is discussed. Next in Section 3, the proposed methodology
and theoretical results are developed for the problem. The branch and bound cut method and its
convergence is presented in Section 4. In Section 5, numerical experiment are given to demonstrate
the proposed method. Finally conclusion are drawn in Section 6.

2. Equivalent and transformation. In order to solve non-convex problem, we can take N;; < 0
for all x € S and therefore the problem (P) takes the form

i p —Nij(z) ~p —Noj(z) p —Nij(2)
{Zj Dyj(z) Zj Doj(z) 77 Zﬂ' Dyj() }
subject to

zreS={zeR": Az < b,Yi(z) <0 = >0}, pk>2.

(M)

Since D;; are all convex functions on R", then D;; are continuous on a compact set S C R" for
all i = 1,2,...,k and j = 1,2,...,p which means that there exists /;; and Lij such that [;; =

= min D;;(z) > 0, L;; = max D;;j(x) > 0. Thus a set D = {Zl-j € Rk

i=1,2,...,kand j = 1,2,...,p} C RiXp can be constructed.
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Now by introducing an additional variable vector Z = (21, Z2j,. .., Zkj) € RFXP_ we use the
1 —~
transformation Z;; = Do to convert the problem (M) into the following equivalent problem (M)

ij
and the equivalence may be established by Theorem 1:

p

win { 7 - 0) 2. T (V@25 0). o 7 (V0 25(0) |

subject to

Yi(z) <0 (M)

—ZZ]($)D”(1‘) +1 S O,

Ax — b <0.

Theorem 1. [f x* is a Pareto efficient solution for problem (P), then (x*,Z*) is a Pareto
efficient solution for the problem M. If (z*, Z*) be a Pareto optimal solution of the problem (M),

then x* is a Pareto efficient solution of the problem (P), where Z;"j = ,7=12...,pand

1=1,2,...,k.
Proof. Assume that z* is a Pareto efficient solution of the problem (P). It follows that

Dij(x*)

and

P P
Naj(x) Ngj (")
E 7Dsj(ff) < E 7Dsj($*) for at least one s, Vx € S.

where S denote the feasible space of the problem (M).
Let us suppose that (z*, Z*) is not Pareto efficient solution of the problem (A/). Then there
exists some another solution (z’, Z’) € S of the problem (M) such that

p D
SNz, <3 =Ny zh Vi= 12,0k,
j ;

and , .
Z—st(:z’)Z;j < g —Ngyj(x*)Zy; for at least one s, V€ S.
J J
Si zZ* ! d Z! L t
ince 7} = and 7!, = , We ge
T Dye) T Dy T E
p / p
—Nij(2') —Nij(z”)
< Vi=1,2,...,k
ZJ: Dij(a') _; Dij(*)
and

P / p *
—N.. —Ns;
} :L"E) < E Ny (@) for at least one s, Vz €S,
j ( j (@
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ie.,
P P
Nij(z") Nij(z*)
< Vi=1,2,...,k
2 Dy(@) < 2 Diy(a)
and » ,
N, (") Naj(@*)
> for at least one s, Vx € S.
2 Dyle) ” 2= Dyl

This means that 2’ is a Pareto efficient solution of the problem (P). This is the contradiction of

the assumption that (x*) is Pareto efficient solution.
Conversely: Suppose (z*, Z*) is the Pareto optimal solution of the problem (M), it follows that

G

p p
SN Z5 < S -Ny(2)Ziy Vi=1,2,.. 0k
J J

and
P

P
Z —Nsj(x")Z5; < Z —Ngj(x)Zs; foratleastone s, Vo €S,
J J

Now let us assume that (z*) is not a Pareto efficient solution of the problem (P). Hence there exist
some another z’ € S such that

/4 p
Nij(:E,) Nl](CE*) .
> Vi=1,2,...,k
> 5e 22 o

; Dij l‘*)
and
P P
Ngj(2') Ngj(z")
> for at least one s, Vx € 5.
2 Dy(e) ” 2 Dyt
Since Z! L and Z} ! here i = 1,2 kand j =1,2
iJ Dij(x/) iJ Dz’j<$*)’ ) ) J PR P
This implies that
P P
> ONij(a)Zj; = > Nij(a)Zy Vi=1,2,...k
J J
and
P P
Z Ngj(x") Zg; > Z Ngj(x*)Zg; for at least one s,
J J
1.e.,
P P
> =Nzl <Y -Nij(a)Z Vi=1,2,... .k
J J
and
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P P
Z —Ngi(2')Zg; < Z —Nsj(x*)Zg; for at least one s.
J J

Thus, (z*, Z*) is not a Pareto efficient solution of the problem (]\/4\ ). This is the contradiction of
the assumption that (z*, Z*) is a Pareto optimal solution of the problem (]\7 ).

Theorem 1 is proved.

3. Key algorithmic process. It is established from the Theorem 1 that any technique to find
Pareto optimal solution is also applicable for the original problem P. To develop a branch and bound
method for MONSOF (P) optimization problem (P), we first explain five key process: transform the
MONSOF (M) optimization problem into multiobjective nonlinear optimization problem; convert
multiobjective optimization problem into single objective optimization problem; successively refine
partition of feasible space along longest edge of the constructed simplicial computation of lower and
upper bounds for the optimal value of the objective function; finally deleting technique over each
subspace generated by the partitions.

The partition method is successive triangular partition of the initial simplex Sy with the rule of
partition. This means that any infinite nested sequence of partition space constructed through the
developed method shrinks to single point. The commonly used partition rule is the bisection.

The process to find upper bound for the objective function works in two ways. First, each simplex
S constructed through the branching process, the process to find upper bound seeks a upper bound
for the maximum of the objective function taken over X N S. Second for any step of the method,
the upper bound process finds an upper bound for the Pareto optimal solution of the problem (M).
Hence for MONSOF (M) optimization problem.

The process to estimate lower bound for the objective function is the consideration of all fea-
sible points found in the process of finding upper bounds for the Pareto optimal solution of the
problem (M). Hence for MONSOF (P) optimization problem.

The process of deletion is consisted by deleting each partition of subspace in which there is no
solution exists for further processing. In the next subsections, we are giving the detail of processes,
respectively.

3.1. Primary simplex and partition. The n-dimensional simplex Sy is constructed on the basis
of methodology as developed by Horst and Tuy in [27] that Sy containing S into n-dimensional
subsimplices. This process help to find a location of Pareto optimal solution for MONSOF (P). In
the whole process, n-dimensional simplex will be called n-simplex. An initial simplex Sy which
tightly enclosed the given feasible space S can be constructed in the following manner:

n
S’oz{xGR"\xQZUa, a=1,2,...,n, ZJ:QSU},
a=1

where O = max { Z To

tex set Sy is ‘70,‘71,...,?@}, where f/o = (U1, 09,...,0,) and ‘N/Oé = (01,...,0a-1,%,Oat1,-- -
..,Up) and here v, = U — Z e Ug. Further, the subdivision of simplices can be performed in

xeAgSo},andUa:min{xa|xEAQSO,a:1,2,...,n,thever—

the following manner:

Using the technique of branch and bound method, the constructed n-simplex Sy may be split
into two parts. These parts are known as simplices of S. Suppose a subsimplex Sy having the vertex
{170, X71, cee ‘7n} is required to be split into two parts and let ¢ be any mid point of the longest
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edge [175,175] of Sp. This means that UN/S,XN/]Hf/ Vs H = maxg_g HVf) VQH where || - || is any
prescribed norm in R™ and 0, § = 0,1, 2, . Then 51 and Sg are known as 51mphclal bisection of
S. Thus the vertex set of S7 can be represented as Vb, Vl, ... VS 1, C, V9+1, ..., V, and the vertex
set of Sy is VO, Vl, ... VS 1, C, V5+1, ..., V. In the process of branch and bound, if S5 is a nested
subsequence of simplices Sg4+1 C Sa, V@, then for some unique point z € R", we get NgSs = .
3.2. Lower bound. For all simplex S5, (S5 C Sp) by the branching method, the lower bound
process is used to compute a lower bound [b(.S) for the optimal value of n(.S) for the problem

mmZ], )Nij(z), i=1,2,...,k,

subject to

n(S) =4 Yi(z) <0, 1=1,2,...,m,

—leDzj(x)‘i‘lSOa i:1>27"'7k and ]:1’27

. 7p?

Ar—b<0 VxeS and ZeD.

Furthermore, the weighted sum method converts the multiobjective fractional programming into the
following single objective function nonlinear programming:

mlnzl 123 . —w; Zij(x)Nyj(z)

subject to

h(z)n(S) = { Yi(z) <0, 1=1,2,...,m,

—ZijDij(x) +1<0, i=1,2,...,k and j=1,2,...,p,

Ar—b<0 VxeS and ZeD,

where {— Nzy z)} € R*P {Z;;(x)} € R¥P and {D;j(z)} € R**P and the weights [w;] € (0,1)
such that Z w; = 1.

Theorem 2. Suppose the feasible space S of MONSOF optimization problem is a subsimplex of
So obtained by the branch and bound technique having the vertices Vo, Vi, ..., V,. Then 1b(S) <
n(S), where 1b(S) is the optimal value of the linear programming problem in variable fBi;, i =
=1,2,...k, j=1,2,...,p, t and A}, 1=1,2,...,m,and w, | =1,2,...,q, given by

k p
:maxZZﬁij+t

i=1 j=1

subject to

N\ v (T NS (AT (1)
> AV > w(AV, —b)—t>0, r=0,1,...,n,
=1

=1

—w;iN;(V;) = Bi;Dij(V,) >0, i=1,2,....k, j=1,2,...,p,
BZOa >\207 UZOv t—free,

where A; denotes the I'" row of A;, by denotes the components of b, | =1,...,q.
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Proof. According to the definition of 7(.S) and the Lagrangian weak duality theorem of nonlinear
programming, we have 1(S) > [b(S),

)= s | i, 3wz P+ Y Niw) +

=1 j=1

q
+ Z Zﬁz] ZZ]DZ] ) + 1) + ZU[(AN? — bl)

=1 j=1

BS) = T, ZZB”JF i

€5,z€D
i=1 j—1 T i

)

p
Z —wiZZ]N (.ZL')

1j=1

0
Mw =

m q
— BiDij Zij(w) + > NYix) + Y w(Aw —b) | | =
I= =1

" 20 ZZ@J* i [(<WTA,BT>+<BTI,BT>)+

€S,ZeD
o1 =1 x €

+ Z )\[Y}*(.%’) + ZUI(AICC — bl)] =
I=1

=1
k p
— : T T T
=, [0 i, | (VA 57T

+ D ONYi() + ) w(A - bl)] :
I=1 =1

where A(z) = { } € R¥?, B(z) = {Zw } € RF>P I(x

= {Djj(z)} € R™? and
W = [ww] c RF*p can be taken as

0, if Q% j,
wi(z), if i=7.
Since

WA+ 671 BT>} 0, if WIA+pBTI>0 Vxes,
min s —

zeD —00, e.Ww.
It follows that
k p m q
) = s, | 2 2 B iy | 2N+ 2wl =)
i=1 j=1 =1 =1
(2)
subject to

WTA+BTI>0 VzeS, B>0, A>0, u>0.
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Foreach j = 1,2,...,pand ¢ = 1,2,..., k, from the problem (2), we get —w;N;; — 3;;D;; > 0 for

all x € S. Since N;; and D;; are convex functions and for 3;; > 0, then —w; N;; — B3;;D;; is convex

function for all j =1,2,...,pand ¢ = 1,2,..., k. As we know S is simplex with extreme points

Vo, Vi, ..., Vi, we have problem (2) hold if and only if —w; N;; —B;; D;; > 0, where r = 0,1,...,n
This implies that lower bound [b(.S) is given by

k- »p
S) :maxZZBij—l—t

i=1 j=1

subject to

m q
t<D NYi(@) + Y w(Aw—1b) VzeS, G
=1 =1

—Ww Z( ) 61] zg( )>O V,B>O A>0, u>0,

j:172""7p7
r=0,1,...,n,
i=1,2... .k

For each A > 0 and v > 0 and since Yj(x) and (A;xz — b;) are non-convex functions for each

l=1,2,...,mand [ = 1,2,...,q we can get Z AYi(x +Zul (Ajx — by) is a non-convex
l 1

function of z. Additionally, since S is a simplex with vertices Vg, Vl, ..., Vp. It can be seen that for

each V, > 0 hold if and only if

q
Z)‘Yl J+ > w(AV, —b) — 20, r=0,1,...,n.
=1

Theorem 2 is proved.

Theorem 3. Let S1 and So be subsimplex of Sy formed by the branching process such that
So D S1 D Sy. Then

(i) 16(S2) = 1b(S1),

(ii) Ib(S1) > —oc.

Proof. The first part of the theorem can be proved directly from the definition of (b(.S) given in
the proof of Theorem 2 for an arbitrary simplex S.

To prove the (ii), using the part (i), we require only to show that [b(Sp) > —oo. Now from the
proof of Theorem 2, we have

q

k p m
+ YD By(=Zi D) + 1) + Y AYi(@) + > (A — by)

i=1 j=1 =1 =1
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Assuming 5 =0, A =0, u = 0, then

lb(S0 >  min ZZ —w; Zij Nij(x

€S5,zeD
T =1 j=1

For w; > 0, and since N;j(x) is convex on R", then Nl](z:) is continuous for each j =1,2,...,p,

= 1,2,...k, and hance the function F(x,z) Z ) Z —w; Z;N;j(x) is a continuous

function of (:c, Z) on ¥ = Sy x D. By the compactness of WU, 1t mean that mingcg zep F(x, Z) is
finite, therefore 1b(Sy) > —oo.

Theorem 3 is proved.

3.3. Upper bound. This section describes the process to determine the upper bound for the
Pareto optimal solution of the problem M for each simplex S generated by the process such that
Ib(.S) is finite. To find upper bound in each iteration in the algorithmic process, check all the feasible
solutions contained in S and we get more feasible solution and the value of upper bound may be
improved iteratively.

Theorem 4. Suppose S be a subsimplex of Sy with vertices /‘}6,/‘717 cee f/\; and suppose that
Ib(S) # +oo. Let (Z°, 21, Z2,..., Z™) be optimal dual variable corresponding to the first (n + 1)
constraints of linear program (1) and let w = Z:L_O Z"V,. If Yi(w) <0 foreachl=1,2,...,m
then w is a feasible solution of the problem M.

Proof. The dual linear program of problem (1) is

n

k
DLP(S) mlnzzz —Z5:Ni; (V)

1¢=1r=0

subject to

n

Y zr=1, )
r=0

Y —Z7Yi(Vr) >0,

r=0

n —_—~

Y zpDi(Vi) =1, j=12...p,

r=0

D 2T - AV) 20, 1=1,2,....q, )
r=0

Zi;>20, i=1,...,p and r=0,1,...,n.

From constraint (5) of the problem DLP(S), we have

Nz - AV,) >0, 1=12,...,q
r=0

Using the constraint (4) of the problem DLP(S), we get
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n n
A ZV <> Zhi=b, 1=1,2,...,q.
r=0 r=0

This implies that
Alwgbl, l:1,2,...,q.

Therefore, Yi(w) <0, 1 =1,2,...,m, then w is a feasible solution of the problem (M.

3.4. Process of deletion. In the branch and bound search proceeds, finite simplices are generated
by the developed algorithm. Among them, certain simplices are eliminated from further consideration.
At the beginning of each steps, simplex S5 is created by simplicial bisection in the branching process
and it is subjected to the detection by infeasibility test. Suppose Vy, V1,...,V, denote the vertices
of such a simplex S. If forany [ € 1,2,..., ¢ such that

min {Al% — blaAl,Vl/ — by, .. .,Alﬁ — b > 0}
or, for some [ € 1,2,...,m, such that
min {Y;(Vo), ;(V1), ..., Yi(V,)) > 0},

then the simplex S is said to pass the deletion by infeasibility test.

4. Proposed method and its convergence. In this section, based upon the results and branch
and bound process discussed in Section 3, the basic outlines of the developed branch and bound
method are given to solve MONSOF optimization problem (P). The method is coded in Matlab
(Ver. 2014(b)) and run on computer machine 64 bit, RAM 4GB and the whole process is summarized
in the following manner.

Step 1. Initial Setting:

(i) First we choose a suitable weight vector w = (wy, ws, ..., wy) where, each w; € (0,1) such
that Zf_l w; = 1 and the MONSOF optimization problem (7(S)) converts into single objective
(h(z) 7(5)).

(i) Solve the linear programming problem (1) for the initial simplex Sy to find the optimal value
[b(Sp) and find the feasible set F'(Sp).

(iii) Setting, po = 1b(Sp). If F(Sy) # ¢, then compute vy = min{h(x): z € F(Sy)} and
choosing 2" € F(Sp) such that h(x?) = vy otherwise, setting 1y = +o0 and setting Gy = {Sp},
o =1 (iteration counter).

Step 2. Stopping criteria: If v, = py,then STOP and 27 is a Pareto efficient solution for
problem (P).

Step 3. (Iterations:) Setting the iteration counter, o > 1 and execute the process from (a) to (h).

(a) Set z7 = :U"*l,ug = lg—1, Vg = Vg1 if So—1 exist, set S = S If v, = Lo, then
STOP and x7 is a Pareto efficient solution for problem (P) otherwise continue as follows.

(b) Divide S? into two parts S{ and S§ using the bisection along the longest edge of simplicial.
Suppose T" = {57, 59 }.

(c) Test the infeasibility conditions in deletion technique for each simplex of 7" and delete the
each simplex which does not pass the infeasibility test of deletion technique. Now we obtained T
which represent the subset of 7”.

(d) For each SZ C T, execute the process from (d1) to (d3).

(d1) find the optimal value 1b(S) of the linear programming problem (1),

ISSN 1027-3190.  Ykp. mam. ocypn., 2017, m. 69, Ne 11



1466 D. BHATI, P. SINGH

(d2) determine the set F'(S), of feasible solutions contained in S. If F'(S) # ¢ then compute
h(Z) = min{h(x): z € F(S)} and choose = € F'(S) otherwise, set h(Z) = 400,

(d3) if h(Z) < h(z7), set 27 = T and set v, = h(Z).

(e) Set G, = {Gy—1\ S} UT.

(f) Delete from G, all S € G, such that Ib(S) > v,.

(g) If G, # oo, then set p, = min{lb(S): S € G5} and choose S? € G, such that [b(S7) = px
otherwise set p, = V.

(h) Set 0 = o + 1 and go to iteration o.

4.1. Convergence. The convergence of the propose method depends upon the quality of v,.
Therefore, the method may be benefited from a fast local search. This method either finite or
infinite. If it is finite, then it terminates a iteration o. The feasible point £ is a Pareto optimal
solution of original problem P. If the method does not terminates at iteration o, then it is easy to
show that it generates at least one infinite nested subsequence {Sz} of simplices Sz+1 C S5 for
all @. In this situation, following result is a key to the convergence of the algorithm for the sake
of convenience. Suppose, F(z,Z): Sp x D — R be the objective function of problem (]\/4\ ) with
F(:L',Z) = Zle Zj:l _wijZijNij(x) and let H(:E,Z) So x D — RF*P x R? be a vector

—

function formed by the constraints of (M) with H(z,Z) = (Hi(z,Z),..., Hixptqrm (2, Z)) €
€ RFXP x R? x R™ where each components of H(z, Z) is given by

Yi(x), if k=1,2,...,m,
Hi(x,Z) =< —Zp.Dg(z) +1, if k=m+i,j, where i=1,2...k j=12,...,p,
Apjjo—bp_; if k=dj+1,....m+i,j+q.

Theorem 5. Suppose that the proposed method is infinite, and assume {Sz} be an infinite
nested subsequence of simplices generated by the method. Let NgSs = {z*}. Then {x*} is an
optimal solution of the problem (M). Hence the solution {x*} is a Pareto efficient solution of the
problem (P).

Proof. Assume that the method is infinite and the simplicial {S5} be chosen in the theorem. So,
from R. Host and H. Tuy [27], NS5 = {z*} for some point z* € R™. Then z* € Sy since for all
&, Ss C Sp. By the definition of F'(x, Z) and H(x,Z), we can rewrite the problem (M\) as follows:

min {F(z, Z)H (z,Z) <0, € Sy, Z € D}

from Theorem 3, the sequence [b(S5) is nondecreasing, therefore, the limit u* = limg— 00 [6(S5)
exist. Suppose

n(So) =min {F(z,2): H(z,Z) <0, z € Sy, Z € D}
then, it is obviously that,
u* < n(So). (6)
In the next, we can show that
u* = n(So)- (7
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It is noticed that
min {F(z,Z): H(z,Z) <0, Z € D} > n(5°). ®)
Therefore, we only require to prove
u* >min{F(z,Z): H(x,Z) <0, Z € D}. 9)

Contrary, suppose that (6) does not holds. This means that

min {F(z,Z): H(z,Z) <0, Z € D} > u*. (10)
From the problem, we know that fractional functions N;;(z) and D;;(z) are convex function on R"
for each 7 = L2,... ,k, 5 =1,2,...,p. The nonlinear constraint’s Y7(x) are the concave functions
on R" forall [ =1,2,...,m. This implies that N;;(x), D;j(x) and Yj(z) are continuous function.

Therefore, the functions F'(x, Z) and Hz(x, Z), where, k = 1,2,...,k X p+ ¢+ m) are continuous
on ¥ = Sy x D and linear in Z for every fixed value of x. Therefore, for the fixed value of z € S,
the function (Z, 8) — F(z,Z) + (B, H(x, Z)) is linear in Z and j3 respectively, where

B: (/81]'762]'7'"757;]'7)\17)‘27"'a)\maulvu27"'7uq)7

min max F(x,Z)+ (B, H(z,2))} =
ZEDBER’j_X”XRiXRT{ @2)+ (5, H 2)))

= max min — {F(z,2) + (8, H(x, 2))}. (11)
BERE*PxRY xR £€D { J

Form the above, we can write clearly

_ F(x,2), if H(x,Z) <0,
. max {F(x,Z)—l—(ﬁ,H(:U,Z))}:
BERS PRI xR™ +00, otherwise.
From (10), for every x € Sy, we get the following equation:
max {F(z,Z)+ (B,H(z,2)) <0, Z € D} =

= max min { F(z, Z) + (B, H(x, Z))}. (12)
BERE*PxRY xR ZGD{ j

Using the equation (9), we can write

| max min {F(¢*, Z) + (8, H(z*, Z)) } > u*
BERPxRI xR

so there exist 3* satisfying

Eneil% {F(z*,2)+ (3,H(z*,2))} > u*

using the continuity of function (Z, 3*) — {F(z, Z) + (3*, H(z*, Z)) }, we can then find, for every
fixed Z € D an open ball Uz in R" around x* and an open ball V; in R? around Z such that

F@2)+ {(~H# 2))} >u* YZeUs, ZecVy
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Since the ball V7, Z € D, form a covering of the compact set D. There is a finite set £ C D such
that the balls Vz, Z € L/?\, still form a covering of D. Let U Czcp Uy, then for every Z € D, we
have Z € V7 for some Z € E. Therefore,

F(e*, Z2) + {(B,H(z*,2))} >u* YZelUy, ZeVy
But S5 C U for all sufficient large &, because Nz S5 = {x*}. Then

max min {F(z,2) + (B, H(z,Z)): x € Sa, Z € D} > u".
BERFPxRY xR

Hence [b(S5) > u*.
This is a contradiction of our assumption. Therefore we can obtain 7 combining (6)—(9), we can
obtain u* = V(Sp) = min { F(z*,2*): H(z*,Z) <0, Z € D}. This implies that

min {F(2*,Z): H(z*,Z) <0, Z € D} =min{F(z,2): H(z,Z) <0, z € Sy, Z € D}.

An optimal solution Z* of the problem (13) is also an optimal solution (z*, Z*) for problem (]\//.7 ).

Therefore, by Theorem 1, z* is a Pareto optimal solution of the problem (P).

5. Computational experiments. In this section, we are given two numerical problem for the
demonstration of proposed methods. These problems are made by combining the objective functions
of the numerical problems of Shen, Duan and Pei [19] in the sense of multiobjective optimization
problem.

5.1. Numerical problem 1. Consider a multiobjective nonlinear sum of fractional optimization
problem

—2x1 — -2
Max | F} = 17 T —+ ,
z1 + 10 z2 + 10
2 _x%—3x1+x§—3x2—3.5 —I9
27 1+ 1 $%—2x1+x§—8x2+20
subject to

—xf — 23 +3<0,

—2? — 23+ 8xy — 14 <0,
2x1 + x2 < 6,

3x1 4+ 19 <8,

x1 — 22 <1,

x1,72 2 1.

Using the method proposed in Section 4, first we find the simplicial Sy. The vertices of Sy are
obtained as (1.0000,1.0000), (4.0000,1.0000), (1.0000,4.0000). Choosing the suitable weights
for each objective functions and converts MONSOF optimization problem into single objective
optimization problem. After applying the proposed method we achieve the efficient solution which
is given in Table 1.

By examining the table 1, the efficient solution for the problem is x; = 1.8295, xo = 1.8295
and the value of the objective functions at obtained points are F; = —0.6329, F = —2.9683.
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Table 1. Solution of MONSOF optimization Problem 1 using proposed method
S. No. wq wo x1 x9 F Fy Ig\ell%tioofn CPISJe’(I;‘lme
1 0.10 | 0.90 | 1.5147 | 1.5147 | —0.5682 | —3.3414 31 1.632
2 0.20 | 0.80 | 1.5330 | 1.5330 | —0.5721 | —3.3210 32 1.664
3 0.30 | 0.70 | 1.5574 | 1.5574 | —0.5772 | —3.2933 30 1.668
4 0.40 | 0.60 | 1.5899 | 1.5899 | —0.5830 | —3.2562 30 1.593
5 0.50 | 0.50 | 1.6363 | 1.6363 | —0.5936 | —3.2019 30 1.640
6 0.60 | 0.40 | 1.6221 | 1.6221 | —0.5907 | —3.2164 30 1.647
7 0.70 | 0.30 | 1.8295 | 1.8295 | —0.6329 | —2.9683 28 1.603
8 0.80 | 0.20 | 1.8925 | 1.8295 | —0.6329 | —2.9683 28 1.601
9 0.90 | 0.10 | 2.1685 | 1.4945 | —0.6531 | —2.9741 39 2.011

5.2. Numerical problem 2. Consider a multiobjective nonlinear sum of ratios programming

problem as:

et bt

Max(fll fiz far o fa2 f23>
g1 912 921 g2 923

subject to

1+ a2+ 23+ 24 <24,

6 <z <10,

4 <z <6,

8 <wg <12,

6 < x4 <8,

where

fi1 = 2% — 4xy + 203 — 829 + 325 — 1225 + 427 — 1624 — 65,
fi2 = 256% — 16x1 + x% — 8xo + 0.5I§ —4x3+ 0.25x4 — 224 — 15,
g11 ::B% —2x1+x% —2:1:2—#30% —3x3 + x4 + 28,

gi12 = 2x9 + 4x9 4 623 4 814,

4

for =) (af — 16;) + 214,
j=1

foz = 2% — 1621 + 203 — 2022 + 323 — 6023 + 42; — 5614 + 586,

4

fas =Y _ (a7 — 20;) + 324,
j=1
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Table 2. Solution of MONSOF optimization problem 2 using proposed method

S, No. C.PU
No. w1 w9 T To T3 T4 Fy Fy of ' Time
Iteration | Sec.
1 10.10 |0.90 | 6.0624 | 4.0001 |8.0000 |7.9375 |1.1610 | —5.7985 60 3.193
2 10.20 |0.80 |6.2499 |4.0000 |8.0001 |7.7500 |1.0770 | —4.9110 61 3.196
3 10.30 | 0.70 | 6.2500 | 4.0000 |8&.0000 |7.7500 |1.0770 | —4.9106 62 3.273
4 10.40 | 0.60 | 6.0000 | 4.0000 | 8.0000 | 6.0000 | 0.3907 | —2.7833 61 3.236
5 10.50 |0.50 | 6.0000 |[4.0000 |8.0000 |6.0000 |0.3907 | —2.7833 64 3.319
6 |0.60 | 0.40 |6.0001 |4.0000 |8&8.0000 |[6.0000 |0.3907 |—2.7834 61 3.178
7 10.70 |0.30 | 6.0000 |4.0000 |8.0000 |6.0000 |0.3907 | —2.7833 63 3.272
8 10.80 [ 0.20 | 6.0000 |4.0000 |8&8.0000 |6.0000 |0.3907 | —2.7833 61 3.251
9 10.90 |0.10 | 6.0000 |4.0000 |8.0000 |6.0000 |0.3907 |—2.7833 63 3.250

921 = 211 — T2 — T3+ T4 + 2,
go2 = —x1 + xo + x2 — x4 + 10,
923:.%%—4.%4.

Using the method proposed in Section 4, the simplex Sy containing 3. The vertices of Sy are given by

(6.0000, 4.0000, 8.0000, 6.0000), (8.0000, 4.0000, 8.0000, 6.0000), (6.0000, 6.0000, 8.0000,
6.0000), (6.0000, 4.0000, 10.0000, 6.0000), (6.0000, 4.0000, 8.0000, 8.0000).

After choosing the suitable weights for each objective functions and apply the method then we
get the solution of the results which are given in Table 2.

By examining the Table 2, the efficient solution of the problem is xz; = 6.0000, o, =
= 4.0000, z3 = 8.0000, x4 = 6.0000 and the value of the objective function at achieved point
are F1 = 0.3907, F, = —2.7833.

6. Conclusions. Sum of fractional optimization problems are considered to be very difficult
even for single objectives only. In this paper, we proposed a weighted sum based branch and
bound method for solving multiobjective nonlinear sum of fractional optimization problems. The
method is the extension of the method presented by Shen, Duan and Pei [19]. We also designed two
numerical problems by combining the numerical problem which are available in the literature and
these problems are solved by proposed method which is coded in Matlab (Ver 2014(b)). From the
above computational results, we obtain the Pareto optimal solution for the MONSOF (P) optimization
problem. The computational results are summarized in Table 1 and Table 2.
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