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ON MATRIX OPERATORS ON THE SERIES SPACE |Nf,|k
[IPO MATPUYHI OIIEPATOPH B TIPOCTOPAX PSIJIIB ‘Wf,(
k

-0 . .

Recently, the space ‘N p’ has been generated from the set of k-absolutely convergent series ¢, as the set of series
k

summable by the absolute weighted method. In the paper, we investigate some properties of this space, such as S-duality
—0 0 - P
N, k) and (’Np . }Nq‘) of infinite
matrices corresponds to a continuous linear operator and also characterizes these classes. Hence, in the special case, we
deduce some well-known results of Sarig6l, Bosanquet, Orhan, and Sunouchi.
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1. Introduction. Let w be the set of all complex sequences and ¢; be the set of k-absolutely
convergent series. Let A = (a,,,) be an arbitrary infinite matrix of complex numbers and (6,,) be a
positive sequence. By A(x) = (A, (z)), we denote the A-transform of the sequence = = (z,), i.e.,

An (ZE) = i AnyTy,
v=0

provided that the series are convergent for v,n > 0. For (U, V') , we write the set of all infinite matrices
A which map a sequence space U into a sequence V, and also the sets Uy = {z € w: A(x) € U}
and

o0
Ul ={y= () : Z Uty is convergent for all = € U
n=0
are said to be the domain of a matrix A in U and the 5 dual of U, respectively.
Now let > a, be a given infinite series with n th partial sum s,. Then the series X a, is said to
be summable |A, 0|, k > 1, if [16]

o0

D0 A (s) = Anoa (s) F< o0,

n=1

In the case A = (W, pn) and 0,, = P, /pn, the summability |A, 0| is reduced to the summability
methods [N, p,, 0,k and [N, p, |k, [3, 19], respectively. Also |4, 8]x = |C, a|x for A= (C, ) and
6, = n, in Flett’s notation [5]. By a weighted mean matrix A = (a,,), we mean that

Uny = - (1.1
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ON MATRIX OPERATORS ON THE SERIES SPACE |Nz\k 1525

where (p,,) is a positive sequence with P, =pg+p1 +...+p, > o0 asn — oo, Py =p_1 =0.
Throughout the paper, (g,) denotes a positive sequence with Q,, = go+q1+. . .+¢, — 00 as n — o0,
and k* also denotes the conjugate of k£ > 1, i, 1/k+ 1/k* =1, 1/k* = 0 for k = 1. The series
space |NZ|  has been defined in [14] as the set of all series summable by the summability method
IN, D, Onli- Say pr = |Ng|k and )\, = ]W2|k, for brevity. Then the series X a, is | N, pn, Onlk
summable if and only if the sequence a = (a,) € ug. On the other hand, if we take the matrix A as
in (1.1), then, we can write

which implies

Ao(s) = ag, An(s) — Ap—1(s) = P ZPv,lav for n>1.

We define the sequence space pi by

k
o n
k—1 Dn
r=<a=(ap) Ew: 0 P, 1a,] <0y, 1<k<oo.
M (n) nz:ln P’rLPTL—IUZII v v

One can restate the space p, as the domain of the matrix T = (,,) in the space ¢; of k-absolutely
convergent series, i.e., u = (Ix)r, where

1 n=0,v=0,
1/k*
thy = O panfl’ 1<v<n, (1.2)
Pnpnfl -
0, v>n or n>1, v=0,

for all n,v € N ={0,1,2,...}. Besides, it is well known that [ is the BK -space (i.e., Banach

. . . . . o 1/k
space with continuos coordinates) with respect to its natural norm ||z||;, = (Zu:o |xv|k) for
kE > 1. Hence, since the matrix 7" is triangle and py = (I)7, it is immediate by Theorem 4.3.2 of
Wilansky [22, p. 63] that py, is also BK -space with respect to the norm ||z||,, = ||T(z)|];,, k > 1.
We refer the reader to [13] for the case 6,, = P, /p, and p, = 1, and also to [1] for full knowledge
on the normed sequence spaces and domain of triangle matrices in normed or paranormed sequence
spaces and the matrix transformations and summability theory.

The problems of absolute summability factors and comparision of these methods goes to old
rather and uptill now were widely examined by many authors, (see, for example, [3-6, §-20]).
Now, by different standpoint we note that most of these results correspond to the special matrices
I,W € (p1, \,) and (ug, A1), where I is an infinite identity matrix and the matrix W = (wy,)
defined by wy, = €, for v = n, zero otherwise. More recently, the above mentioned space p; has
been derived by the matrix 71" from the space ¢; and triangle matrix operators defined on that space
have been investigated in [14]. Note that although in the most cases the new space generated by the
summability matrix from £ is the expansion or the contraction of the original space, it can be seen
in some cases that these spaces overlap.
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1526 R. N. MOHAPATRA, M. A. SARIGOL

2. Main results. In this paper we compute S-dual of p and exhibit some inclusion relations
between the spaces p; and £;. We also show that each element in the classes (1, Ax) and (ug, A1)
of infinite matrices corresponds to a continous linear operator and characterize these operators, which
includes some known results of Sarigol [14], Bosanquet [4], Orhan and Sarigol [12] and Sunouchi
[20] as a special case. More precisely, we prove the following theorems.

Theorem 2.1. Let 1 < k < oo and (0,,) be a positive sequence. Then

1 b,
,U'f = {1/} sup{ ;(vav —Pv_1%+1) + p‘wv’} < OO}

v

and

1 a
- (vav - P’Ufl"ﬁerl)

=1
Mg:{w: Z% Do

< 00, sup |Ly| <oo}, (2.1)
v

where

k’*Pv

L, =012
Po

V.

Theorem 2.2. Let (0,,) be a positive sequence. Then
(1) L C pg holds for 1 < k < oo if and only if

m 1/k* 00 » kY 1/k
k* k—1 n .

™ Lw=1 n=m
(1) wpr C Ly holds for 1 < k < oo if and only if

« P,
sup 9,;1/]“ = < oo (2.3)
m

(iil) pr C €1 holds for 1 < k < oo if and only if

M
SRS

v—1 Py

(iv) €1 C py holds for 1 < k < oo if and only if
00 N D k
-1 n
wra ) () <

Note that, uy = ¢ for 0,,p, = O(P,) and P,, = O(p,,), and also if np,6, = O(P,), then (2.2)
holds but not (2.3) and so the inclusion p; C ¢ holds strictly. Besides, ¢; C p for all sequence
(pn) , since

0o
> ==
PnPnfl Pvfl

n=v
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Theorem 2.3. Let 1 < k < oo. Assume that A = (any) is an arbitrary infinite matrix and (6,,)
is a positive sequence. Then (u1, ;) C B (u1,\), ie., there exists a continuous linear operator
Ly such that La(x) = A(x), and A € (u1, \g) if and only if, for n =0,1,...,

P,
sup { — (Pvanv - Pu—lan,v+1) + va’n’0|} < o0, (24)
v Pv Py
0 1/k* n g
0 _
Supz n__n Z @v-1 (Pjay; — Pj_1ay j41)] < 00. (23)

Theorem 2.4. Let 1 < k < co. Assume that A = (an,) is an arbitrary infinite matrix and (6,,)

is a positive sequence. Then, (up, A1) C B (fk, A1) ,i.e., there exists a bouned linear operator L 4
such that La(x) = A(zx), and A € (pux, A1) if and only if

P,
sup@ 1/k “ap| <00, n=0,1,..., (2.6)
p

v
k*

1
> ol

<oo, n=01,..., 2.7
=1

o.9] o k>
1
; 5 (Z 5.0 ) < 0. (2.8)

3. Needed lemmas. We need the following lemmas for the proof of our theorems.
Lemma 3.1 [18]. Let 1 < k < co. Then, A € ({y, 1) if and only if

(o.] oo k*
> (fanl) <
v=0 \n=0

Lemma 3.2 [7]. Let 1 < k < oco. Then A € ({1,%y) if and only if

P vlny — Pv—lan,v—H)

<

Q 1
Z — (Pjay; — Pj-1ay,,+1)
v=1

supz |ty |* < 0.
Y n=0
Lemma 3.3 [21]. Let 1 < k < co. Then
(1) A € (41,c¢) if and only if

hm Ay exists for v >0 and sup|an,| < oo;
n,v

(il) A € (bk,c) if and only if

holds for v >0 and supz ’anv‘ < 00.
v=0

Lemma 3.4 [2]. Let 1 < k < s < oo. Then A € (Ux, L) if and only if

m 1/k* 0o 1/k
sup (Z cﬁ*> (Z aﬁ) < 00,
m v=0 n=m

where A = (any) is a factorable matrix of nonnegative numbers, i.e., Gny = ancy, for 0 < v < n,
and zero otherwise.
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4. Proofs of theorems.
o
Proof of Theorem 2.1. Let ¢ € ,ui . Then, the series Z vaxv is convergent for every
V=
r € py, and also = € py, if and only if R € £}, where R = (R;,),,cy is defined by

01/]4:* n
Ro = z0, Ry = Pzpﬁ UZIP,,_% for n > 1. (4.1)

Furher, it can be written from Abel’s partial summation and (4.1) that

m m—1

R, P,
E YTy = Yo Ro + E (P'U'QZ}'U - Pvflwarl) pf + ?mem =
v=0 v=1 m

(2

m—1 efl/k* P oo
= ¢030 + Z (vav - Pv—lwv—&—l) Y Rv + ﬂwmefnl/k Rm = Zwvava
v=1 p’U pm v=0
where
T;Z)(]a V= 0,
VK"
(Potpy — Pocithp1) ——, 1<v<m-—1,
Wmy = P v
I v=m,
m
\O? v > m.

Now, ¢ € uf < W € (g, c) . Therefore, it follows from Lemma 3.3 that

m—1 1
sup{z o

m v=1

i (vav - Pv—l'(/}v—f—l)

v

k*
+ 'mem@ml/k*
Pm

o
} .
if and only if (2.2) is satisfied.

Theorem 2.1 is proved.

Proof of Theorem 2.2. (i) Let us define the matrix 7" by (1.2). Then, it is easily seen that I;, C
ifand only if T € (g, ) . Hence, applying Lemma 3.4 with the matrix 7', it follows that 7" € (I, lx)
if and only if (2.2) holds, which completes the proof.

(i) Take = € py, then y = T'(x) € Iy, and so py C I, states that if y € I, then T (y) € I, or,
equivalently, 7% € (I, l3,) . Now, if we say T~! = S = (s,,,), then we have

1, n=0, v=0,
—dp—
nl, v=n—1 n2>2
Pn—l
S =
" dn v=mn, n>1
Pn717 ) )
0 v>n or n>1, v=0,
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where

Pn—IPn
Ql/k*

n  DPn

d, = for n>1.

Now, if y € lx, thenSy(y) = o,

= 1
Sn(y) = Z SnvlYv = P71 (—dp—1Yn—1 + dpyn) for n>1
v=1

and so, since P,_1 < P, foralln > 1,

= dn—l
HS(y)Hlk < {|y0|k +Z (‘P 1ynfl
n=1 n—

k

d
= O(1) sup ———|lylly, < 0,
n

n—1

which shows that (2.3) is sufficient for 7! € (I4,1;). Conversely, if T~' € (Ix,1)), then S:
lr — [ is a bounded linear operator since [ is a BK -space. Hence, there exists some constant M
such that

1S@)|li, < Mljzll, forall € . 4.2)

Applying (4.2) with x, = 1 for v = n and otherwise, we get, for all v > 0,

o 1/k
|va| < (Z ‘Snv|k> < M7
n=0

which implies (2.3).

Theorem 2.2 is proved.

The other parts can be easily proved by Lemmas 3.2 and 3.3.

Proof of Theorem 2.3. 1t is clear from the definition of matrix transformation that L 4 is a linear
operator, and since py, is a B K -space, it is also continuous by Theorem 4.2.8 of Wilanky [22, p. 57].
For the second part, A € (u1, \g) if and only if (anj);’io € uf and A(z) = (An(z)) € Ag. But, by

Theorem 2.1, (anj);io € uf if and only if (2.8) holds. Further, since (z,,) € 1 < (Ry) € {1 by

(4.1) with k = 1, then —"a,,,, R, — 0 as m — oo, for each n. By the inversion of (4.1), we get

m
m m—1 R P
Z ApypTy = Z (Pvam; - Pv—lan,v-i—l) — + ﬂanmRm
— — Do m
v=0 v=0
which implies
- R
Ap (.’E) = Z (Pvanv - Pv—lan,v+1) Fv
v=0 v
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On the other hand, t* € /¢ if and only if A(z) = (A,(z)) € Mg, whenever t§ = Ag(z) and, for
n>1,

lkz*

n QnQn 1 ZQU 1A

n 1/*

00
nQv—1

ZZ QC; Ul (Pjam’_iDj lav,]—i-l ch] Js

=0 v= n&n

1
where, for 7 =0,1,2,...,
1
(Pjanj - Pj_lan7j+1) ) n = 0,

_ J
an =

1/k*
no On" qanQu-1 1
—————~— (Piay; — Pi_1ayp.j41) —, n>1.
2T GuQuy it~ Prrtauin)

Now, A € (u1,\r) & C € (1,4), ie., equivalently, sup; E = o |cnjF < 00, by Lemma 3.2.
n—=
Thus, it follows from the definition of the matrix C' that

0o k
1
SUPZ |enj|® = sup ‘(PjGOj — Pj1ao 1) —| +
i o j pj
Q |
q 1
+Zek ' Z ~—— (Pjav; — Pj1ay41) —| p < o0,

QnQn 1 bj

if and only if (2.9) is satisfied by (2.4).

Theorem 2.3 is proved.

Proof of Theorem 2.4. The first part is as in the proof of Theorem 2.3. For the second part,
A € (pg, A1) if and only if (anj);io € ,uf and A(x) = (Ap(z)) € A\ for every = € . But, it
follows from Lemma 3.3 that (anj)jo.o 0 € ,u’,f if and only if (2.6) and (2.7) hold. Also, by (4.1), since

P, _
T € up < R €l then —anmﬁ L/k"

R,, — 0 as m — oo for each n, by (2.6). By Abel’s partial
summation and (4.1), we get

m—1 —1/k*

m
P,
Z pp Ty = AnoRo + Z (Pyany — Py—1an41) R, + —mHml/k AnmBoms
'l):l v m
and so
o1/

v

o0
Z P vany — Py_1an v+1) viRv‘

v=0
On the other hand, ¢* € ¢; if and only if A(z) = (A, (z)) € A1 whenever
() 9—1/143*
= Z (Pva0v - vflaO,zH»l) u R,
v=0

v
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and, for n > 1,

QnQv 1 .
ZQnQn 1 v )_

o [ X~ @ Qo1 ok >
:Z (Z 0nOn1 Pam_Pj—lav,j-i—l) ! ) )Rj:Zdanj,

j=1 bj =0
where
gLk
(Pjaoj — Pj—1a0 j+1) = —, n=0, 7520,
dpj = g ny.
N Zn anvl(Pa —P:_1a -1)9j1/k n>1, j>0
v=1 QpQn—_1 v It pj - o

Now, A € (uk, A1) < D € (Ux,f1). Applying Lemma 3.1 to the matrix D gives

Z(Zldnao —Z(!dOJHde) < oo

Jj=0 Jj=0

which holds if and only if condition (2.8) is satisfied by (2.7).

Theorem 2.4 is proved.

5. Applications. Theorem 2.3 and 2.4 have several consequences depending on the choice of an
infinite matrix A, the sequences 6 = (6,,), p = (pn) and ¢ = (¢,,) , For example, if we take A = W
(resp. €, = 1) then A € (u1, A\;) gives us summability factors of the form that if ¥ a, is summable
w1, then ¥ eya, is summable \g (resp. p1 C Ag).

If A is chosen any triangular matrix in Theorem 2.3, then, it is obvious that (2.4) holds, so it can
be omitted, and also (2.5) is reduced to

k
qnQuv—1
sup kZGk ! Z "2 (Pjay; — Pj—1ay,j+1)| < oo, (5.1)
i Pz —j QnQn-1
equivalently,
* k
Ql/k qip;Qj; 0
sup ¢ | L2 + > 05 D(n, j)F b < oo, (5.2)
J Qipj n=j+1
where
. -1 | B
I(n,j) = M |: : (av] av”j-i-l) + ay,j+1
Qnanl Dj

Further, if (5.1) is satisfied, then A: py — A\ is a continuous linear mapping and so there exists a
number M such that

|A(z)|[5, < Mllx|[y, forall =z € py. (5.3)
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1532 R. N. MOHAPATRA, M. A. SARIGOL
Taking any v > 0, we apply (5.3) with 2,11 = 1,2, = 0,m # v+ 1. Hence, it can be obtained that
v=20,1,...

k

o0 n Q
Z or—1 Z nm—1 m_lam,v-i-l < M* (5.4

n=v+1 m=v+1 QnQn—l

(see, also, [14). Thus, it is easily seen from (5.2) that (5.1) implies (5.4),

0" o,
sup 27 |a“| < 00 (5.5)
J Qjp;
and
koo g
P,
sup( J) Z gr—1 Z nQu-1 (@pj — Ay jy1)| < o00. (5.6)
J by n=j+1 QnQn 1

Conversely, by considering (5.2), it is deduced from (5.4), (5.5) and (5.6) that (5.1) is satisfied.
So (5.1) is equivalent to (5.4), (5.5) and (5.6), which gives the following result of [14].

Corollary 5.1. Let A be any triangle matrix and (0,,) be a positive sequence.Then, A € (u1, i) ,
1 <k < oo, ifand only if (5.4), (5.5) and (5.6) are satisfied.

It is well known that the case A = I and k£ = 1 of this result was given by Bosanquet [4] and
Sunouchi [20], and also the case A = I, 6, = n and k > 1 was established by Orhan and Sarigé6l
[12].

Further, if we take A as triangular matrix in Theorem 2.4, then (2.6) and (2.7) hold directly, and
(2.8) reduces to

k*

Z g Z Zg"% _11 (Pjavj — Pj-1ay,+1) < c0. (5.7)

OpJ n=j |v=j

So we get the following main result of [14].
Corollary 5.2. Let 1 < k < oo and 1/k+ 1/k* = 1. Let A be a triangle matrix and (0,,) be a
positive sequence. Then A € (ug, \1) if and only if (5.7) is satisfied.
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