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COMMON FIXED POINT THEOREMS
FOR HYBRID GENERALIZED (F, ©)-CONTRACTIONS
UNDER COMMON LIMIT RANGE PROPERTY WITH APPLICATIONS

CIIIVIBHI TEOPEMMH TTPO HEPYXOMY TOYKY JJIA I'BPU/IHUX
VY3ATAJIBHEHHUX (F, ¢)-CTUCKAHbB 3 BJIACTUBICTIO CIIIJIBHOT'O
I'PAHUYHOTI'O ATAITA30OHY 3 3ACTOCYBAHHSAMU

We consider a relatively new hybrid generalized F'-contraction involving a pair of mappings and use this contraction
to prove a common fixed-point theorem for a hybrid pair of occasionally coincidentally idempotent mappings satisfying
generalized (F, ¢)-contraction condition with the common limit range property in complete metric spaces. A similar result
involving a hybrid pair of mappings satisfying the rational-type Hardy — Rogers (F', )-contractive condition is also proved.
We generalize and improve several results available from the existing literature. As applications of our results, we prove
two theorems for the existence of solutions of certain system of functional equations encountered in dynamic programming
and the Volterra integral inclusion. Moreover, we provide an illustrative example.

Po3misiHyTO BIZHOCHO HOBE y3arajibHeHe TiOpuaHe F'-cTHCKaHHS, IO BKIIOYAae Mapy BimoOpaxeHs. lle cruckaHs 3acto-
COBAHO IIPH JIOBEJICHHI CITUIBHOT TEOPMEMH NP0 HEPYXOMY TOUKY [UIsl BHUIIAJKOBO CIIBIIAAAI0YHMX 1JEMIIOTEHTHUX MaTpPHLIb,
IO 38/I0BOJIbHSIOTH y3araibHeHy yMOBY (F, ¢)-CTHCKaHHs MPH BIATHBOCTI CIIUIBHOTO FPAHUYHOTO J(iala3oHy B MOBHUX
METpUYHHX mpocTopax. Takox HOBeAEHO MOAiOHMIT pe3yinbTar Asl TiOpUIHUX map BiqoOpaeHb, M0 3a10BOIBHSIIOTH YMO-
By apai—Pomwxepca npo (F), ¢)-CTHCKaHHS PalliOHAIBHOTO TUITY. Y3arajJbHEHO Ta IOKPALICHO ACsKi BifoMi JiteparypHi
pesynbraru. SIK 3aCTOCYBaHHS HALIMX PE3yJIbTATiB, OBEICHO (B TEOPEMH MPO iCHYBAHHS PO3B’SI3KIiB JESKOI CHCTEMHU
(yHKIIIOHAJIBHUX PIBHSAHB, IO 3YCTPI4aIOThCA B AWMHAMIYHOMY IPOrpaMyBaHHi, Ta iHTErpajJbHOTO BKJIIOUEHHSA Bonbreppa.
KpiMm TOro, HaBeIEHO LIIOCTPATUBHUIN NPHKIAL.

1. Introduction and preliminaries. Let (X, d) be a metric space. Then, following the Nadler [28],
we adopt the following notations:

CL(X)={A: A is anonempty closed subset of X }.

CB(X) = {A: A is a nonempty closed and bounded subset of X }.

For nonempty closed and bounded subsets A, B of X and z € X,

d(z,A) = inf{d(z,a): a € A}
and
H(A, B) = max {sup {d(a,B): a € A},sup {d(b,A): b€ B}}.

Recall that CB(X) is a metric space with the metric H which is known as the Hausdorff-
Pompeiu metric on CB(X).

In 1969, Nadler [28] proved that every multivalued contraction mapping defined on a complete
metric space has a fixed point. In proving this result, Nadler used the idea of Hausdorff metric to
establish the multivalued version of Banach Contraction Principle which runs as follows:

Theorem 1. Let (X,d) be a complete metric space and T a mapping from X into CB(X)
such that for all x,y € X,

H(Tx, Ty) < Md(z,y),
where X\ € [0,1). Then T has a fixed point, i.e., there exists a point x € X such that © € Tx.
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Hybrid fixed point theory involving pairs of single-valued and multivalued mappings is a relatively
new development in nonlinear analysis (see e.g., [11, 12, 15, 24, 29, 45] and references therein). The
much discussed concepts of commutativity and weak commutativity were extended to hybrid pair of
mappings on metric spaces by Kaneko [20, 21]. In 1989, Singh et al. [40] extended the notion of
compatible mappings and obtained some coincidence and common fixed point theorems for nonlinear
hybrid contractions. It was observed that under compatibility the fixed point results usually require
continuity of one of the underlying mappings. Afterwards, Pathak [30] generalized the concept of
compatibility by defining weak compatibility for hybrid pairs of mappings (including single valued
case as well) and utilized the same to prove common fixed point theorems. Naturally, compatible
mappings are weakly compatible but not conversely.

In 2002, Aamri and El-Moutawakil [1] introduced the property (E.A.) for single-valued mappings.
Later, Kamran [19] extended the notion of (E.A.) property to hybrid pairs of mappings. In 2011,
Sintunavarat and Kumam [44] introduced the notion of common limit range (CLR) property for
single-valued mappings and showed its superiority over the property (E.A.). Motivated by this fact,
Imdad et al. [14] established common limit range property for a hybrid pair of mappings and proved
some fixed point results in symmetric (semimetric) spaces. For more details on hybrid contraction
conditions, one can consult [2, 7, 10, 13, 16, 18, 22, 29, 34, 35, 41 -43].

The following definitions and results are standard in the theory of hybrid pair of mappings.

Definition 1. Let f: X — X and T': X — CB(X) be a single-valued and multivalued map-
ping respectively. Then:

A point x € X is a fixed point of f (resp. T) if x = fx (resp. x € Tx). The set of all fixed
points of f (resp. T') is denoted by F(f) (resp. F(T)).

A point x € X is a coincidence point of f and T if fx € Tx. The set of all coincidence points
of f and T is denoted by C(f,T).

A point x € X is a common fixed point of f and T if v = fx € Tx. The set of all common
fixed points of f and T is denoted by F(f,T).

T is a closed multivalued mapping if the graph of T, i.e., G(T) = {(x,y): x € X,y € Tz} is
a closed subset of X x X.

We also recall the following terminology often used in the considerations of a hybrid pairs of
mappings.

Definition 2. Let (X,d) be a metric space with f: X — X and T: X — CB(X). Then a
hybrid pair of mappings (f,T) is said to be:

commuting on X [20]if fTx CTfx Vr e X;
weakly commuting on X 211 if H(fTz, T fz) < d(fz,Tz) Vzr € X;
compatible [40] if fTx € CB(X)Vz € X and limy, oo H(T fxy, fTxy,) = 0, whenever {x,,}
is a sequence in X such that
lim Tz, - A€ CB(X) and lim fx, —t¢€ A;
n—o0 n—oo
noncompatible [22] if exists at least one sequence {x,} in X such that
lim Tx, > A€ CB(X) and lim fx, >t€ A but lim H(Tfxz,, fTz,)
n—oo n—oo n—o0
is either non-zero or nonexistent,

weakly compatible [17] if T fx = fTx for each v € C(f,T);
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coincidentally idempotent [13] if for every v € C(f,T), ffv = fu, i.e., f is idempotent at the
coincidence points of f and T,

occasionally coincidentally idempotent [36] if f fv = fv for some v € C(f,T);

enjoy the property (E.A.) [19] if exists a sequence {x,} in X such that

lim fz,=t€ A= lim Tx,,
n—oo n—oo
for some t € X and A € CB(X);
enjoy common limit range property with respect to the mapping f (in short CLRy property)
[14] if exists a sequence {x,} in X such that
lim fx, = fue A= lim Tx,,
n—oo n—oo
Sor some u € X and A € CB(X).

The following example demonstrates the interplay of the occasionally coincidentally idempotent
property with other notions described in the preceding definition.
Example 1 ([18], Example 1). Let X = {1,2,3} (with the standard metric),

I G ; 3) and T ({1} (3} {1?3})'

Then, it is straight forward to observe the following:
C(f,T) ={1,2} and F(f,T) = {1},

(f,T) is not commuting and not weakly commuting,

(f,T) is not compatible,

(f,T) is not weakly compatible,

(f,T) is not coincidentally idempotent since ff2 = f3 =2 # 3 = f2,
(f,T) is occasionally coincidentally idempotent since ff1 =1= f1,

Obviously, in this case (f,7T) is also noncompatible, but simple modifications of this example can
show that the occasionally coincidentally idempotent property is independent of this notion, too.
The following example (taken from [18]) demonstrates the relationship between the property
(E.A.) and common limit range property.
Example 2 ([18], Example 2 and 3). Let X = [0, 2] be a metric space equipped with the usual
metric d(z,y) = |z — y|. Define f,g: X — X and T': X — CB(X) as follows:

[1 3}, if 0<z<1,

2—zx, if 0<z<1, 2—z, if 0<x<1, 279
xr= €T = Txr=
/ 9, if 1§a}§2,g 2, if 1<zx<2, 11 .
5 5 1,5, if 1<l’§2

One can verify that the pair (f,T") enjoys the property (E.A.), but not the C' LRy property. On
the other hand, the pair (g,7") satisfies the C LR, property.

Remark 1. 1f a pair (f,T) satisfies the property (E.A) along with the closedness of f(X), then
the pair also satisfies the C LRy property.

Throughout this paper, we denote by R the set of all real numbers, by R the set of all positive
real numbers and by N the set of all positive integers. In what follows, F denote the family of all
functions F': RT — R that satisfy the following conditions:

(F1) F is continuous and strictly increasing;
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(F9) for each sequence {f3,} of positive numbers, lim,, o 3, = 0 <= lim,,_,oc F(5,) = —00;
(F3) there exists k € (0,1) such that limg o+ B*F(3) = 0.
Some examples of functions F € F are F(t) = Int, F(t) = t + Int, F(t) = -1/,

F(t) = In(t? + t), see [47].
Definition 3 [47]. Let (X,d) be a metric space. A self-mapping T on X is called an F-
contraction if there exist F € F and T € R™ such that

T+ F(d(Tz,Ty)) < F(d(z,y)), (M
for all z,y € X with d(Tx,Ty) > 0.

Example 3 [47). Let F: R™ — R be a mapping given by F(z) = Inx. It is clear that F
satisfies (F1)—(F3) for any &k € (0, 1). Under this setting, (1) reduces to
d(Tz,Ty) < e "d(xz,y) forall =z,yeX, Tz#Ty.
Notice that for x,y € X such that T'x = Ty, the previous inequality also holds and hence T is
a contraction.

In what follows, for a metric space (X, d) and a multivalued mapping 7': X — CL(X), we
denote

M (z,y) = max {d(m, y),d(z,Tx),d(y, Ty), % [d(x, Ty) + d(y, Tx)]} .

Definition 4 [39]. Let (X,d) be a metric space. A multivalued mapping T : X — CL(X) is
called an F-contraction if there exist F € F and T € RT such that for all x,y € X with y € Tx,
exists z € Ty,

T+ F(d(y,2)) < F(M(z,y)), whenever d(y,z)> 0. ()
Example 4 [39]. Let F': RT™ — R be mapping given by F'(z) = In z. Then for each multivalued
mapping 7' : X — CL(X) satisfying (2), we have
dly,z) <e "M(z,y) forall z,yeX, zeTy, y#z

It is clear that for z,y € X such that y = z the previous inequality also holds.

Some fixed point results for single-valued (resp. multivalued) F'-contractions were obtained in
[3, 23, 47] (resp. [39]).

Our aim in this paper is to prove a common fixed point theorem for a hybrid pair of occasionally
coincidentally idempotent mappings satisfying generalized (F’, ¢)-contraction condition under CLR
property in complete metric spaces. A similar result for a variant of rational type Hardy —Rogers
generalized (F,p)-contractive condition is also derived. Here, it can be pointed out that Sgroi
and Vetro [39] introduced and studied such conditions for multivalued mappings while the similar
conditions were earlier introduced an studied by Wardowski [47] for single-valued mappings. Our
results generalize and improve several known results of the existing literature. Finally, we utilize our
results to prove the existence of solutions of certain system of functional equations arising in dynamic
programming, as well as Volterra integral inclusion besides providing an illustrative example.

2. The Main Results. This section is divided into two parts. In the first subsection, we prove
a common fixed point theorem for a hybrid pair of occasionally coincidentally idempotent mappings
satisfying a generalized (F ¢)-contractions condition via C'LR property in complete metric spaces,
while in the second one we obtain results for hybrid pairs which satisfy a rational Hardy — Rogers
type (F, ¢)-contractive condition.
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Definition 5. Let (X,d) be a metric space, f: X — X and T: X — CB(X). Then hy-
brid pair (f,T) is said to be a generalized (F,p)-contraction, if there exist an increasing, upper
semicontinuous mapping from the right-hand side

® = {p:[0,00) = [0,00) | limsupp(s) < p(t), @(t) <tVt>0},

s—tt

F € F and 7 € R such that
T+ F(HP(Tx,Ty)) <
& (f, T2), P (Fy, Ty), & (fy, f2), 5 [dP( 2, Ty) + Py, T2)],

SE\e|maxy go(fo, Ta)dP(fy, Ty) dP(fo, Ty)dP(fy, Tx) dP(fz, Ty)d?(fy,Tx) )
L+d(fy, fr) ° 1+d(fy. fz) = 1+d(Tz, Ty)

forall z,y € X, p > 1 with H(Tz,Ty) > 0.

Definition 6. Let (X, d) be a metric space, f: X — X and T : X — CB(X). Then hybrid pair
(f,T) is said to be a rational Hardy—Rogers type (F,p)-contraction, if there exist an increasing,
upper semicontinuous mapping from the right-hand side

O ={p:[0,00) = [0,00) | limsupe(s) < p(t), p(t) <t,V t >0},

s—tt

F € F and T € Rt such that
T+ F(HP(Tx,Ty)) <

B+ d(fz, Tx)]d(fy, Ty)
1+ d(fz, fy) + (@ (2, Tw) + dP(fy, Ty)] +

+6[dP(fx, Ty) + d*(fy, Tx)]

adP(fx, fy) +

< Fle “)

forall x,y € X with Tx # Ty, where p > 1, o, 3,7, >0, a+ 5+ 2v+20 < 1.

Now we propose our first main result as follows:

Theorem 2. Let (X, d) be a metric space, f: X — X and T: X — CB(X). If the hybrid pair
(f,T) satisfies generalized (F,p)-contraction condition (3), and also enjoys the CLRy property,
then the mappings f and T have a coincidence point.

Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T)
has a common fixed point.

Proof.  Since the pair (f,T) enjoys the C LRy property, there exists a sequence {x,} in X
such that

lim fx, = fue A= lim Tx,,
n—oo

n—o0

for some u € X and A € CB(X). We assert that fu € T'u. If not, then using condition (3), we have
T+ F(HP(Txy, Tu)) <

@ (Fn, Tn), @7 (s, Tu), P fu, fn), 5 [0 frm Tu) + P (fu, Trg)]
< Flel maxq go(ro, Twn)dP(fu, Tu) dP(fon, Tu)dP(fu, Tay) dP(fz,, Tu)d?(fu, Ta,)
Crd(fufan) Lt d(fufe) L@ (T, Tw)

ISSN 1027-3190.  Yxp. mam. ocypn., 2017, m. 69, Ne 11



COMMON FIXED POINT THEOREMS FOR HYBRID GENERALIZED (F, ¢)-CONTRACTIONS... 1539

Passing to the limit as n — oo, we get

T+ F(HP(A, Tu)) <

@, A), (Fu, Tw), 0, 3 [0 fu, Tu) + @2, A,
S E e | max§ go(fu, A)ydP(fu, Tu) dP(fu, Tu)d?(fu, A) dP(fu, Tu)d?(fu, A)
14+ dP(fu, fu) = 1+dP(fu, fu) = 1+dP(A Tu)

@ (fu A), @2, Tu), 0, [d7(fu, Tu) + P (fu, A)],

=F | ¢ | max A
d? (fu, A)dP(fu, Tu), dp(ﬁ dg?j";Z)T .

Using fu € A, 7 > 0, (F1) and property of ®, we obtain
1
HP(A, Tu) < ¢ <max {O,dp(fu,Tu),(), §[dp(fu,Tu) + O],0,0}) =

=@ (d’(fu,Tu)) < d°(fu,Tu).
Since fu € A the above inequality implies
d(fu,Tu) < H(A,Tu) < d(fu,Tu),

a contradiction. Hence fu € Twu which shows that the pair (f,7") has a coincidence point (i.e.,

C(f.T) # 2).

Now, assume that the hybrid pair (f,T") is occasionally coincidentally idempotent. Then for some
v € C(f,T),we have ffv = fv € Tv. Our claim is that Tv = T fv. If not, then using condition
(3), we get

T+ F(HP(T fv,Tv)) <

@ (f o, T o), d(fo, T0), 7 (Fo, £ fo), 5 |00 (Fo, Tfo) +d(f o, )],
< F\o|lmaxy ge(f fo, T fo)d(fo,Tv) d(fo,Tfo)dP(f fo,Tv) dP(fo,Tfo)dP(ffv,Tv)
1+ dr(fo, ffv) ’ 1+ dr(fo, ffv) ’ 1+ dr(T fv,Tv)

@ (fo, T o), dP(fo, T0), 0, [07(fo, Tfo) + ' (fo, To)],

= F'|¢|max
0TI (Fo, 7o), & fo TFo) (o, 7o), Tl T

Since fv € Tw, the above inequality implies
1
T+ F(HP(Tfv,Tv)) < F (cp <max {dp(fv,va),0,0, 2dp(fv,va),0,0,0})> =

= F(p(@(Tfv, fv))).
Using (F) and property of ®, we obtain
d"(T fv, fv) < d’(T fv, fv),

which is a contradiction. Thus we have fv = ffv € Twv =T fv which shows that fv is a common
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fixed point of the mappings f and 7.

Theorem 2 is proved.

In view of Remark 1, we have the following natural result:

Corollary 1. Let (X, d) be a metric space, f: X — X and T : X — CB(X). If the hybrid pair
(f,T) satisfies generalized (F, p)-contraction condition (3), and enjoys the property (E.A.) along
with the closedness of f(X), then the mappings f and T have a coincidence point.

Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T)
has a common fixed point.

Notice that, a noncompatible hybrid pair always satisfies the property (E.A.). Hence, we get the
following corollary:

Corollary 2. Let f be a self mapping on a metric space (X,d), T a mapping from X into
CB(X) satisfying generalized (F,p)-contraction condition (3). If the hybrid pair (f,T) is non-
compatible and f(X) a closed subset of X, then the mappings f and T have a coincidence point.

Moreover, if the pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T) has a
common fixed point.

If F: Rt — R is defoned by F(t) = Int and denoting e~ = k, then we have the following
corollary:

Corollary 3. Let (X,d) be a metric space, f: X — X and T: X — CB(X). Assume that
there exist k € (0,1), ¢ € ® such that

@ (f, Ta), (9, Ty), (9, f2), 5 |d2( . Ty) + (fy, Ta)],
HI (T, Ty) <k | maxq gp( fo Ta)d?(fy, Ty) d(fx, Ty)d?(fy, Ta) d?(fz, Ty)d?(fy, Tx)
Tt dr(fy. fz) L+ d(fy. fr) 1+ do(Tz,Ty)

Sorall x,y € X with H(Tx,Ty) > 0, p > 1, and the hybrid pair (f,T') enjoys the CLRy. Then
the mappings f and T have a coincidence point.

Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T')
has a common fixed point.

Since every members of F and & are increasing, we can deduce the following far more natural
results from Theorem 2:

Corollary 4. Let (X,d) be a metric space, f: X — X and T: X — CB(X). Assume that
there exist F € F, o € ® and 7 € R" such that

v F(HP(Ta, Ty)) < F (<P ( max {d”(fx, Ta),d(fy, Ty), & (fy. fo),

% [ (fx, Ty) + ¥ (fy, m]}))

Sorall x,y € X with H(Tx,Ty) > 0, p > 1, and the hybrid pair (f,T') enjoys the CLRy. Then
the mappings f and T have a coincidence point.

Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T)
has a common fixed point.

Remark 2. Corollary 4 is an improved version of Theorem 11 due to Kadelburg et al. [18].
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Corollary 5. Let (X,d) be a metric space, f: X — X and T: X — CB(X). Assume that
there exist F € F, ¢ € ® and 7 € R such that

@ (f3, Ta)d(fy,Ty) & (fo,Ty)d(fy, Tz)
T+ FHTn Ty) < F (*” <max{ T+ d(fy fo) 1+ d(fyfa)

st

Sorall x,y € X with H(Tx,Ty) > 0, p > 1, and the hybrid pair (f,T') enjoys the CLRy. Then
the mappings f and T have a coincidence point.

Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T')
has a common fixed point.

Now, we present our second main result as follows:

Theorem 3. Let (X,d) be a metric space, f: X — X and T: X — CB(X). If the hybrid
pair (f,T) satisfies a rational Hardy—Rogers (F, p)-contraction condition (4) and also enjoys the
CLRy property, then the mappings f and T have a coincidence point.

Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T')
has a common fixed point.

Proof.  As the pair (f,T') shares the C LR property, there exists a sequence {x,} in X such
that

lim fz, =fue A= lim Tz,,
n—oo n—oo

for some u € X and A € CB(X). We assert that fu € T'u. If not, then using condition (4), we have

Bl + dP(fxn, Txy)|dP(fu, Tu)
adP(fxy, fu)+ 1+ d(fzn, fu)

+[dP(fxy, Txn)+dP(fu, Tu)|+0[dP(frn, Tu)+dP(fu, Txy,)]

T+F(HP (Txy, Tu)) <F|¢

Passing to the limit as n — oo in the above inequality, we obtain

T+ F(HP(A,Tu)) < F(p(B+ v+ 0)dP(fu, Tu)).
Using 7 > 0 and (F1) and property of @, it follows that

dP(fu, Tu) < dP(A,Tu) < (B+~v+0)d’(fu,Tu),

a contradiction, as 5 + v+ d < 1. Hence, fu € T'u which shows that the hybrid pair (f,T) has a
coincidence point (i.e., C(f,T) # @).

Now, if the mappings f and T are occasionally coincidentally idempotent, then there exists
v € C(f,T) such that ffv = fv € Tv. Our claim is that fu is the common fixed point of f and 7.
It is sufficient to show that Tv = T fv. If not, then using condition (4), we get

T+F(H"(T fv, Tv)) <

wd(ffo. fo) + PO EUTOTION(fo, Tv) |

<Fle L+ d(f fo, fv) -
AP (f f0, T f0) +dP(fo, T+ [P (f fo, To) +dP(fo, T 0)
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(B @R T (f0.Te) + o (fo. Tf) + d(fo. To)l+
+o[dP(fv, Tv) 4+ dP(fv, T fv)]
Since fv € Tw, the above inequality implies
T+ F(d’(Tfv,Tv)) < F (o(y + 6)d"(fv, T fv)).
Using (F7) and property of ®, we can have
d?(T'fv, fv) < (y+0)d’(fv, Tfv),
a contradiction, as v 4+ & < 1. Thus, fv = ffv € Tv = T fv which shows that fv is a common
fixed point of the mappings f and 7.
Theorem 3 is proved.
If F: R™ — R is given by F(t) = Int and denoting e~" = k, then we have the following
corollary:

Corollary 6. Let (X,d) be a metric space, f: X — X and T: X — CB(X). Suppose that
there exist k € (0,1), ¢ € ® such that

(o fy) 4 B U2 TNy, T)
HP (Tx, Ty) <ky L+dv(fz, fy)
+0[dP (fx, Ty) + dP(fy, Tx)]

forall x,y € X with Tx # Ty, where p > 1, o, 5,7,0 >0, a4+ B+ 2y + 26 < 1, and the hybrid
pair (f,T) enjoys the CLRy. Then the mappings f and T have a coincidence point.

Moreover, if the pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T) has a
common fixed point.

In view of Remark 1 and increasingness of the members of F and ®, we have the following
natural corollary:

Corollary 7. Let (X,d) be a metric space, f: X — X and T: X — CB(X). Suppose there
exist F € F, p € ® and T € R" such that

T+ F(HP(Tx,Ty)) <

< F(p(adl(fz, fy)+ B[dP(fx, Tx) + d(fy, Ty)] + v [d (fr,Ty) + d(fy, Tx)]))

forall x,y € X with Tx # Ty, wherep > 1, o, 3,7 > 0, a+28+2v < 1, and enjoys the property
(E.A.) along with the closedness of f(X). Then the mappings f and T have a coincidence point.
Moreover, if the hybrid pair (f,T) is occasionally coincidentally idempotent, then the pair (f,T)
has a common fixed point.
3. Ilustrative example. In this section, we provide an example to establish the genuineness of

+y[dP(fz, Tx) + dP(fy, Ty)]+

our extension.
Example 5. Let X = [0, 3] be a metric space equipped with the metric d(z,y) = |x —y|. Define
f:X—=XandT: X — CB(X) as follows:

3—z, ifzel0,2], [1,2], ifzel0,2],

3, ifz € (2,3, [0,2}, if z € (2,3].

9 1
Let F': RT — R such that F(t) =t + In(t), ¢ : RT — RT such that p(t) = ot and 7 = 5> 0
and p > 1, then the condition (3) takes the form
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9 1
HP(Tx, Ty) < 1%@(33 y)e100@)—H (T Ty)—5 “

where
@ (f2,T2), d(fy, Ty), ?(fy, f), 3 [0(f, Ty) + Py, To)]

Oz, y) = max§ go(fo, Ta)dP(fy, Ty) dP(fz, Ty)d"(fy, Tx) d°(fz,Ty)d"(fy,Tx)
1+dr(fy, fx) =~ 1+4+d°(fy,fx) =~ 1+dP(Tx,Ty)

Then it is easy to verify that
FeF;, pe®; f(X)=][1,3]U{3}, aclosed setin X; C(f,F) =[1,2]
1

the hybrid pair (f,T') satisfies C LRy property, as for the sequence { —
n

1 1
lim fz, = lim <2—> =2=fle[l,2] = lim T<1+>;
n n

n—o0 n—oo n—oo

(f,T) is not coincidentally idempotent because ff1 = f2=1# 2= f1;

(f,T) is occasionally coincidentally idempotent, because f f 5= f 5=

l\D\C&J

Now, in order to verify condition (5), we distinguish two cases:
Case 1. If x € [0,2] and y € (2, 3], then

H(Tw, Ty) = H <[1,2], [0, ;D _

:max{d ([1,2], {o, ;D , d([o, ;] ,[1,2])} :max{g,l} = %

1 5
, ]) =5 Therefore, (5) reduces to

2
P P9 (5\P (3P 1
3NT_ 9 (Y w(3) -(2) 3
2 10 \ 2
which is true for all p > 1.

Case 1. If z € (2,3] and y € [1,2], then

and d(fy,Ty) =d (3, [O

H(Tw, Ty) = H ([o ﬂ ,[1,2]) - g and  d(fz,Tz) = d (3, [0, ;D _ g

Therefore, (5) reduces to
P P9 (5\P_(3\P 1
3NT_ 9 (3 w(3) -(2) 3
2 10 \ 2
which is true for all p > 1.

Notice that for x,y € [1,2] (or z,y € (2,3]) H(Tz,Ty) = 0 and so (5) is true.
Thus, all the hypotheses of Theorem 2 are satisfied and the hybrid pair (f,7") has the common

3
fixed point (namely 5)

With a view to establish genuineness of our extension, notice that for x = 1, y = 3, we have
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3
H(Tz, Ty) = X d(fz, fy) = d(2,3) =1,

S (e, Ta) + d(7y, Ty)] = [d(Q, 1,2)) +d (3, [o, ;m -1 <o+ 5) =2

and

5 (72, Ty) + d(fy, To)) = {d <2, [o, ;D +d(3, [1,2])] =: (Z + 1) =2

which shows that the contractive condition of Theorem 11 (due to Kadelburg et al.[18]) is not
satisfied. Thus, in all our results (Corollary 4 as well as Theorem 2) are applicable to the present
example while Theorem 11 of Kadelburg et al. [18] is not which substantiates the utility of Theorem 2.

4. Applications. As applications of our main results, we prove an existence theorem on bounded
solutions of a system of functional equations. Also, an existence theorem on the solution of integral
inclusion is proved.

4.1. Application to dynamic programming. In 1978, Bellman and Lee [5] first studied the
existence of solutions for functional equations wherein authors notice that the basic form of functional
equations in dynamic programming can be described as follows:

q(z) = sup{G(z,y,q(7(2,y)))}, x €W,
yeD
where 7: W x D — W, G: W x D xR — R are mappings, while W C U is a state space, D C V'
is a decision space, and U, V' are Banach spaces.
In 1984, Bhakta and Mitra [6] obtained some existence theorems for the following functional
equation which arises in multistage decision process related to dynamic programming:

a(x) = sup {9(z,y) + G(z,y,a(r(z,9)))}, €W,
Y
where 7: W xD—=W, g:WxD—>R,G: W x D xR — R are mappings, while W C U is a
state space, D C V is a decision space, and U, V' are Banach spaces.

In recent years, a lot of work have been done in this direction wherein a multitude of existence
and uniqueness results have been obtained for solutions and common solutions of some functional
equations, including systems of functional equations in dynamic programming using suitable fixed
point results. For more details one can consults [26, 27, 31-33, 37] and the references therein.

Consider now a multistage process, reduced to the system of functional equations

i) = sup {9(z.y) + Gi(z,y,qi(r(z,9))}, zeW, ie{l,2}, (6)
Y
where 7: WxD —- W, g: WxD —=R, G;: WxDxR — R are given mappings, while W C U
is a state space, D C V is a decision space, and U, V are Banach spaces. The purpose of this section
is to prove the existence of solutions for a system of functional equations (6) using Theorem 2.

Let B(WW) be the set of all bounded real-valued functions on W. For an arbitrary h € B(W)
define ||h|| = sup,cyw |h(z)|, with respective metric d. Also, (B(W),||-||) is a Banach space
wherein convergence is uniform. Therefore, if we consider a Cauchy sequence {h,,} in B(W), then
the sequence {h,} converges uniformly to a function, say h*, so that h* € B(W).

We consider the operators 7; : B(W) — B(W) given by
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Tini(r) = sup {g(a, ) + G, . (7))} )
yeE

for h; € B(W), = € W, for i = 1, 2; these mappings are well-defined if the functions g and G; are
bounded. Also, denote

T1h,T: Tk, T:
A(Toh, Tok), d(Toh, Tih), d(Toh, i), TR AT T30)

MaX\ 40Ty b, Toh)d(Tik, Tok) d(Tih, Tok)d(Tik, Toh) d(Tih, Tok)d(Tik, Toh) (&)
L+ d(Tok, Toh) 1+ d(Tok,Toh) 1+ d(Tih, Tik)

O(h, k)=

for h,k € B(W).

Theorem 4. Let T;: B(W) — B(W) be given by (7), for i = 1,2. Suppose that the following
hypotheses hold.:

(i) there exist T € R and ¢ € ® such that

p(O(h, k)(z))
(1+ 7v/sup,ew @(O(h, k)(x)))

‘G1<m7 Y, h(w)) - GQ(xu Y, k(x»’ =

forall x e W, y € D,
(i) g: W xD —=Rand G;: W x D xR — R are bounded functions, for i = 1,2;
(iil) there exists a sequence {hy} in B(W) and a function h* € B(W') such that

lim Tih, = lim Tyh, = T1h*;
n—oo n—oo

(iv) Th\Tih = T h, whenever Tih = Thh, for some h € B(W).
Then the system of functional equations (6) has a bounded solution.

Proof. By hypothesis (iii), the pair (77, 7%) shares the common limit range property with respect
to T7. Now, let \ be an arbitrary positive number, € W and hy,ho € B(W). Then there exist
Y1, Y2 € D such that

Tihi(z) < g(@,y1) + Gulz, y1, ha(T(z, 91))) + A, ©)
Toho(z) < g(x,y2) + Ga(x, y2, ha(7(2,32))) + A, (10)
Tihi(x) > g(z,y2) + Gi(z, Y2, hi(T(x,42))), (11)
Toho(x) = g(@,y1) + Go(x, y1, ha(7 (2, 11)))- (12)

Next, by using (9) and (12), we obtain

Tihi(x) — Taho(x) < Gi(z,y1, ha(7(@,91))) — Ga(x, Y1, he(T(z,91))) + A <
< |Gi(@,y1, ha(r(z,91))) — Ga(, g1, ha(T(z,y1)))| + A <
¢(©(h, k)(z)) )
(1 + 7y/supgew ©(O(h, k)(2)))?
and so we have

Tihy(x) — Toha(x) < (O k)(x)) + A (13)

(1+7/sup,epw ¢(O(h, k)(2)))?
Analogously, by using (10) and (11), we get
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p(O(h, k) (x))
(1+7/sup,epw ¢(O(h, k)(2)))?

Toho(x) — Tihy(x) < + A (14)

Combining (13) and (14), we obtain
p(O(h, k)(x)

r)— T :
[T1hi(z) — Tahe(x)| < (14 7v/supyen 2(O(h, k)(2)))?

+ A,

implying thereby
p(O(h, k))

G r/p@mmye

Notice that, the last inequality does not depend on =z € W and A\ > 0 is taken arbitrarily, therefore
we have

d(T1hy, Tohy) <

p(O(h, k))

(1+7/(0(h, K)))*

-1
If we consider F' € F defined by F'(t) = —=, for each t € (0,4+00), and put f = T, T' = T5, then

Vit

d(Tihy, Toho) <

we get condition
7+ F(d(fh1, Thy)) < F(p(O(h, k)))

where ©(h, k) is given in (8). Thus all the hypotheses of Theorem 2 are satisfied for the pair (f,T)
and p = 1. Moreover, in view of the hypotheses (iv), the pair (71, 7%) is occasionally coincidentally
idempotent, so by using Theorem 2, the mapping 77 and 75 have a common fixed point, that is, the
system of functional equations (6) has a bounded solution.

4.2. Application to Volterra integral inclusions. Here, we present yet another application of
Theorem 3. This application is essentially inspired by [46].

We establish new results on the existence of solutions of integral inclusion of the type

o(t)
x(t)Eq(t)—l—/k(t,s)F(s,x(s))ds (15)
0

fort € J=10,1] C R, where 0:J — J, q: J — E, k: J x J — R are continuous and F':
J x E — C(E), where E is a Banach space with norm ||-||z and C(FE) denotes the class of all
nonempty closed subsets of E.
Let C(J, E) be the space of all continuous E-valued functions on .J. Define a norm ||-| on
C(J,E) by
2]l = sup [[«(t)]| -
teJ

Definition 7. A continuous function a € C(J, E) is called a lower solution of the integral
inclusion (15), if it satisfies

o(t)
a(t) < q(t) + / k(t,s)vi(s)ds for all vy € B(J, E)
0
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such that v1(t) € F(t,a(t)) almost everywhere (a.e.) for t € J, where B(J, E) is the space of all
E-valued Bochner-integrable functions on J. Similarly, a continuous function b € C(J, E) is called
an upper solution of the integral inclusion (15), if it satisfies

o(t)
b(t) > q(t) + / k(t, s)va(s)ds, for all vy € B(J,E)
0

such that va(t) € F(t,b(t)) a.e. for t € J.
Notice that, all the solution lies between lower solution ‘a’ as well upper solution ‘b’. We can
denote the solution set as an interval [a, b].

Definition 8. A continuous function x: J — E is said to be a solution of the integral inclusion
(15), if
o(t)
x(t) = q(t) + / k(t,s)v(s)ds
0
for some v € B(J, E) satisfying v(t) € F(t,x(t)) forall t € J.
In what follows, we also need the following definitions:
Definition 9. 4 multivalued mapping F : J — 2F is said to be measurable if for any y € E,
the function t — d(y, F(t)) = inf{||ly — z|| : x € F(t)} is measurable.
Definition 10. A multivalued mapping (3 : J x E — 2 is called Carathéodory if
(i) t > (t,x) is measurable for each x € E, and

(il) =+ (t,x) is upper semicontinuous almost everywhere for t € J.
Denote

1E(t, 2)|| = sup{|[ul|z : uw € F(t,2)}.

Definition 11. A4 Carathéodory multimapping F(t,x) is called L'-Carathéodory if for every
real number r > 0, there exists a function h, € L'*(J,R) such that

|F(t,z)|| < he(t) for almostevery te.J

and for all x € E with ||z||g < r.
Denote

Sp(z) = {v e B(J,E): v(t) € F(t,z(t)) ae. teJ}.

Lemma 1 [25]. If diam (E) < oo and F: J x E — 2F is L'-Carathéodory, then Sk(x) # @
for each x € C(J, E).

Lemma 2 [46]. Let E be a Banach space, F' a Carathéodory multimappping with S}p %+ & and
L: LYJ, E) — C(J, E) a continuous linear mapping. Then the operator

LoSL:CJ,E) — 2¢UE)

is a closed graph operator on C(J, E) x C(J, E).
Let us list the following set of conditions:
(Hp) the function k(¢, s) is continuous and nonnegative on J x J with

sup k(t,s) <1,
t,seJ
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(H;) the multivalued mapping F'(¢,z) is Carathéodory;
(H2) the multivalued mapping F'(¢,x) is increasing in = almost everywhere for ¢ € J;
(H3) There exist 7 € RT and ¢ € ® such that

[F(s,2(s)) — Fls,y(s)| < \/ e [«o(m D2 +ed@ ]+ |~ 5

forall s € J, x € E, where

1+ |fx—Tx|][fy — Tyl
L+ |fx— fy

+0[lfz =Tyl + | fy — Tx|]

Alz,y) = ol fr — fyl + © [z — Tl + | fy — Tyl +

with o, 8,7,6 > 0,a+ B+ 27+ 26 < 1;

(Hy) Sk(z) # @ for each z € C(J, E).

Theorem 5. Suppose that the conditions (Hy) — (Hy) hold. Then the integral inclusion (15) has
a solution in [a,b] defined on J.

Proof. Let X = C(J, E). Define a multivalued mapping 7 [a,b] C X — 2% given by

o(t)

Tx = uc€lab:ut)=q(t)+ / k(t,s)v(s)ds; v € Sk(z), forevery t € [0,1]
0

Observe that 7" is well-defined, as owing to (Hy), Sk (z) # @. To show that T satisfies all hypotheses
of Theorem 3 defined on [a, b].
For all 9, u € 2% on t € J and making use of (Hp) and (Hs), we have (for vi,vs € SE())

o(t) o(t)
19(8) — p(t) |2 = / K(t, $)v (s) ds — / k(L s)oa(s) ds|| <

0 0 .
o(t)
< / k(t, s)ds||vi(s) —va(s)||g <
0
1 1
< sup k(t, S)\/[G_T [(SD(A(Ul,Uz)))z + o(A(v1,v2))] + 4} -5

This implies that

19(8) — ()] < \/ e {«o(mvl,vz))ﬂ T o(A(vr,v2))] + 4} -2

for each ¢t € J.
On considering F' € F defined by F(t) = In(t?> +t), for each t € (0,+00), then we have
condition
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T+ F([9() — u(t)[[2) < Fp(A(vr,v2)))-

Thus we deduce that the operator T satisfy condition (4) where f is an identity mapping and p = 1.
Also T is a closed mapping, using Theorem 3, we conclude that the given integral inclusion has a
solution in [a, b].

Theorem 5 is proved.
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