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LEHMER SEQUENCES IN FINITE GROUPS *
MNOCIIJOBHOCTI JIEMEPA Y CKIHHEHHUX I'PYITIAX

We study the Lehmer sequences modulo m. Moreover, we define the Lehmer orbit and the basic Lehmer orbit of a
2-generator group G for a generating pair (z,y) € G and examine the lengths of the periods of these orbits. Furthermore,
we obtain the Lehmer lengths and the basic Lehmer lengths of the Fox groups G+ for ¢t > 3.

Busuarotecs mocmigoBHocTi Jlemepa 3a momynem m. Kpim Toro, BuzHadeHo MOHATTs opOiTi Jlemepa Ta 6a3oBoi opOiTh
Jlemepa nBoreHepatopHoi rpynu G I MOpowKykodol mapu (z,y) € G Ta TOCTIIKEHO TOBKHHH HePiofiB LIl UX OpPOIT.
Takoxx BcraHOBJIEeHO noBxuHHU Jlemepa Ta 6a30Bi nowxkunu Jlemepa juist rpyn @okca Gi,c mpu ¢t > 3.

1. Introduction and preliminaries. The Lehmer sequence U = U (L, M) = {U, }° is the sequence
of integers which is defined by integer constants L, M, Uy = 0, U; = 1 and the recurrence

LU,y —MU,—o for n odd,

Uy = (1

U,—1— MU, _o for n even,
where LM # 0 and K = L —4M # 0. The sequence U is called a Lehmer sequence and U, is
a Lehmer number. For more information on this sequence, see [6]. The Lehmer numbers and their
properties have been studied by some authors (see, for example, [5, 7, 8]).

It is well-known that a sequence is periodic if, after a certain point, it consists only of repetitions
of a fixed subsequence. The number of elements in the repeating subsequence is the period of the
sequence. A sequence is simply periodic with period £ if the first £ elements in the sequence form a
repeating subsequence.

The study of Fibonacci sequences in groups began with the earlier work of Wall [9]. In the mid
eighties, Wilcox extended the problem to Abelian groups [10]. Campbell, Doostie and Robertson [1]
expanded the theory to some simple groups. There they defined the Fibonacci length of the Fibonacci
orbit and the basic Fibonacci length of the basic Fibonacci orbit in a 2-generator group. Deveci
and Karaduman [4] defined the generalized order-k Pell sequences in finite groups and obtained the
periods of the generalized order-k Pell sequences in dihedral groups D,,. Deveci [3] expanded the
concept to the Pell—Padovan sequence and the Jacobsthal — Padovan sequence. Now we extend the
concept to the Lehmer sequences.

In this paper, the usual notation p is used for a prime number and the notation {UM ’L} is used
for the Lehmer sequence U.

2. The Lehmer sequences modulo ««. Reducing the Lehmer sequence by a modulus «, we can
get a repeating sequence, denoted by

UM Ha)} = {ug" (@), U} @), UM (), UM @),

where UZ-M’L(a) = UZM’L (mod «). It has the same recurrence relation as in (1).
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Theorem 2.1. The sequence{ UML(a) } is simply periodic if M = +1, and is periodic otherwise.

Proof. The sequence repeats since there are only a finite number o of pairs of terms possible,
and the recurrence of a pair results in recurrence of all following terms, which impliest that the
sequence {UM ’L(a)} is periodic. From definition of the Lehmer sequence we have

LU, 1-U, for n odd,
MU, 2 =
U,-.1—-U, for n even,

so if U;\_{’lL(a) = U;\j_’f(a), UZ-M’L(oz) = UJM’L(a) and M = =41, then Uij\fﬁ_l(a) = UlM’L(oz) and
U%}L(a) = Ué\/[ L' («), which implies that the sequence {UML ()} is simply periodic.

Let kM-X(a) denote the smallest period of the sequence {UM-X(a)}, called the period of the
Lehmer sequences modulo a.

Example. We have {U'®(7)} ={0,1,1,4,3,4, 1,1,0,6,6,3,4,3,6,6,0,1,1,4, ...}. So, we
get k15 (7) = 16.

t )

Theorem 2.2. If m = Hi:1p?’ t > 1, where p; are distinct primes, then kaL(m) =

= lem[kME(ps)] (where the least common multiple of KM (pY), kML (pS?), ... kML (pt)

is denoted by lem []{:ML(pf’)D

Proof. The statement, “k™-" (p{?) is the length of the period of {U:" (pf)}~, implies that the
sequence {U M.L (pf’)} repeats only after blocks of length u - kL (pf') ,u € N, and the statement,
“kM-IL (m) is the length of the period {UM:X (m)} », implies that {UM-E (p$')} repeats after
kML (m) terms for all values . Thus, kML (m) is of the form u - KM-L(pS?) for all values of 4, and
since any such number gives a period of { UM% (m)}. Then we get that k*-F(m) = lem [KMF(pf?)].

Theorem 2.3. If kML (p?) # kME(p) and M = +1, then kML (p?) = p.kM:E(p).

Proof. Let kML (p?) # kML (p) and M = +1, then the sequence {UM-"} is

Ut =0,  uMt=1,...,

M,L M,L
Uk]\/I,L(p) = A1.p, UkA{,L(p)+1 =Xp+1,...,
M,L _ M,L —
Usz’L(p) = \1.2p, U2AkM1L(p)+1 =X2p+1,...,
M,L _ 2 M,L o 2
Up.kl\/l,L(p) = A1.p%, Up_kM,L(p)+1 =Xp +1,...,

where A, A2 € N such that p{ ged(A1, \2) (Where by ptged(A1, \2) we mean that p not di-

vides greatest common divisor A; and )\2). Since the elements succeeding U%C’ﬁl o) = 0 and

Ué\i’]ﬁl D)+l = 1, the cycles begins again with the p2nd element, i.e., U%g’f;}i » = Uéw L and
M,L _ 1ML M,L(,2 M,L

Up.kM’L(p)Jrl = U, '". Then we get that k""" (p*) = p.k""*(p).

Conjecture 2.1. (i) If p # 2, KML(pt*h) £ EML(ph) ¢ > 1, and M = +1, then kML (ptl) =
= p.EME(ph).

(i) If kML (201 £ ML (24, ¢ > 2, and M = +1, then KM (2041) = 2. KM (21),

3. The Lehmer length and the basic Lehmer length of generating pairs in groups. Let G be
a group and let x,y € G. If every element of G can be written as a word
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up , u2 U3 yu4 xumfl yum

; )
where u; € Z, 1 < i < m, then we say that x and y generate G and that GG is a 2-generator group.
Let G be a finite 2-generator group and X be the subset of G x G such that (z,y) € X if, and only
if, G is generated by = and y. We call (x,y) a generating pair for G.

Definition 3.1. For a generating pair (z,y) € G, we define the Lehmer orbit U%]L(G) ={z;}
as follows:

Z x

Y

(zim1) M ()" for i even, .
Ty = x, 1 =Y, Tit] = 1> 1.
(xi_l)_M(xi) for i odd,

Theorem 3.1. A Lehmer orbit U%,’L (G) of a finite group is simply periodic if M = +1, and is
periodic otherwise.

Proof. Let n be the order of . Since there are n? distinct 2-tuples of elements of G, at least one
of the 2-tuples appears twice in a Lehmer orbit of G. Thus, the subsequence following this 2-tuples.
Because of the repeating, the Lehmer orbit is periodic.

Since the Lehmer orbit is periodic, there exist natural numbers v and v, with « > v, such that

Ty+1 = Ty+1, Ty+42 = Ty4-2-

By the defining relation of the Lehmer orbit, we know that

(Tut2)(@upr)™ " forv odd, 4 ()M (Tyy2) (o) F forv odd,
- an Ty

)—]V[
(Tys2)(zysr1)™t  forv even, (Tyr2)(wpy1)™!  forov even.

Hence, x,, = x, for M = %1, and it then follows that

LTy—v = Ty—y = Z0, Ty—v+1 = Ty—v+1 = T1-

Thus, the Lehmer orbit U25"(G) is simply periodic for M = +1.

In this paper, we denote the length of the period of the Lehmer orbit U%L(G) by Len U%jL(G)
and we call the Lehmer length of G with respect to generating pair (z,y) and integer constants L, M.

Lemma 3.1. If M = +1 and the Lehmer orbit U%L(G) of (x,y) € X has length ny, then for
any i, 0 <i <ny — 1, we have (z;,z;11) € X. Also we have Ué\j[y’L(G) = U%}JLZ(G)

Proof. We will use the induction method on i to show (x;, z;+1) € X. The case ¢ = 0 is trivially
true. Suppose by way of inductive hypothesis that (zx, zx11) € X and consider (zj11, Zg12). Now

- (Thy2)(zpyr) % for k  odd,
(zp) " =
(Try2)(zpy1)”t  for k  even,

so, since every element of G has an expression of the form (2) with x;, = x, xp11 = y, we see that,
on replacing (z3,) ™ by

(l’k+2)($k+1)_L for k Odd,
(zpi2)(zpr1)~t  for k even,

every element of GG is generated by xx1 and x4 2.
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Finally suppose U%J’L(G) = {z;} and U%’L(G) = {b;}. Then again an inductive argument
proves that if zg = b;, 1 = b;41, then vt @) = vt a).

For suppose x; = b;yj, i < t. Then &y = (w4—2) ' (w¢-1)% = (bt—2+;) *(bt—14;)*> = bj1+ and
the result is proved.

Lemma 3.1 gives immediately the following theorem.

Theorem 3.2. If M = +1 and G is a finite group, then X partitioned by and the Lehmer orbits
UM (@) for (z,y) € X.

To examine the concept more fully we study the action of the automorphism group Aut G of G
on X and on the Lehmer orbits UQ%’L(G), (z,y) € X. Now Aut G consist of all isomorphisms 6 :
G — Gandiff € Aut G and (z,y) € X, then (20, y0) € X.

For a subset A C G and 6 € Aut G the image of A under 6 is A0 = {af: a € A}.

Lemma 3.2. Let (z,y) € X and 0 € Aut G. If M = +1, then U5"(@)0 = UML (@).

z6,y0
Proof. Let U%L (G) ={zi}. Now {z;} 0 = {x;0} and since
((wi_l)*M(xi)L) 0 = (.’L’i_l)iMe({L'i)Le and (((L‘Z_l)iM(a}Z)) 0= (a;,_l)*MG(a:,)H

the result follows.

If M = +1 and n of the elements of Aut G map U%/’L(G) into itself. Then there are | Aut G|/n
distinct Lehmer orbits U %:;0(6’) for 0 € AutG.

Definition 3.2. For a generating pair (x,y) € X and M = +1, we define the basic Lehmer

orbits U%L(G) of basic length m to be the sequence {x;} of elements of G such that

(1) M(x)"  for i even,
To =T, r1 =1, Tiyl = 1> 1,
(xi_l)_M(xi) for i odd,

where m > 1 is least integer with
Ty = Tym0, T1 = Tmy10,

for some 0 € Aut G.
Since z,, Tm1 generate G, it follows that § is uniquely determined.

In this paper, we denote the length of the period of the the basic Lehmer orbit U%L(G) by

Len Uaj;\f[y’L(G) and we call the basic Lehmer length of G' with respect to generating pair (x,y) and
integer constants L, M.

From the definitions it is clear that the Lehmer lengths and the basic Lehmer lengths of a group
depend on the chosen generating set and the order in which the assignments of xg, x; are made.

Theorem 3.3. Let G be a finite group and (x,y) € X. If M = =+1, the orbit U%}L(G) has

length ny and the basic orbit U%L(G) has length my, then my divides ny and there ny/m, elements

of Aut G which map U%/’L(G) into itself.

Proof.  Since Upy"(G) = Uzy"(G) U Upglo(G) U Upgi” o(G) U ... and LenUzy"(G) =

= Len Ué‘g’ng(G) we have n; = mj - A, where X is order of automorphism 6 € AutG. Clearly
1,0,0%,...,0* map U}S"(G) into itself.

4. The Lehmer lengths and the basic Lehmer lengths of the Fox groups. The Fox groups
G141, are finite metacyclic groups of order |t — 1|3, having generators of order (¢ —1)? (see [2]). They
are presented by
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<x, y: oy =y'z, yr = xty>.

The relations of G + imply the relation x'~! =y

1-t

179

In this section, we obtain the Lehmer lengths and the basic Lehmer lengths of G ; for M = £1

and t > 3.
Theorem 4.1.

(1) Let t = 3, then tree cases occur:

(1) If M = 1 and L is an integer such that L # 0, then

LenUp ) (Gis) =

and

Len leij(GL?)) =

Len U;;’L(GL:;) =

and

Len U;;;’L(Glyg) =

LenU, ) (Gi3) =
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and
r2, L =0 (mod 4),
S 1, L=1(mod 4),
Len U;:;(GL;J,) =
2, L=2(mod 4),
2, L=3(mod 4).

(i1) Let t > 4, then two cases occur:

(1) IFEME (8 —1)2) = EML(t — 1), then LenUpy" (G14) = LenUpy " (G1y) = KMAL(t — 1),

Q@) If KME((t—1)2) # kML — 1), then LenUpy"(Giy) = EME((t — 1)) and
Len UP55(G1y) = KML(E—1).

Proof. i (1) Let M =1 and L is an integer such that L # 0.

If L =0 (mod 4), then the Lehmer orbit is

R TR TN TR N TR
So we get Len U%:;(Gl’g) = 4 and Len U%ij(GLg) = 2 since 26 = yx and yf = y~!, where 0 is a

outher automorphism of order 2.
If L =1 (mod 4), then the Lehmer orbit is

'r7 y? yx? x? y?""

So we get Len U%ij(GLg) = 3 and Len U%ij(GLg) = 1 since 20 = yx and yf = x, where 0 is a
outher automorphism of order 3.
If L =2 (mod 4), then the Lehmer orbit is

r, Yy, yxr, y, x_lv Y, Y, Y, Ty Y, ...

So we get Len U%:;(GL;;) = 8 and Len le,’?f(GLg) = 2 since 20 = zy and yf = y, where 0 is a
outher automorphism of order 4.
If L =3 (mod 4), then the Lehmer orbit is

Ty, Yo, Ty wy, 1,y
So we get Len U%jzf(Gl,g) = 6 and Len U;:;(GLg) = 2 since 20 = y~! and yf = zy, where 0 is a
outher automorphism of order 3.

(2) Let M = —1 and L is an integer such that L. > 0.
If L =0 (mod 4), then the Lehmer orbit is

x? y7 xy? y7 mil’ y7 y:‘c7 y? x’ y7 AR
So we get LenU, ,'"(G1.3) = 8 and Len U;;’L(Glyg) = 2 since z0 = yx and y0 = y, where 0 is a
outher automorphism of order 4.

If L =2 (mod 4), then the Lehmer orbit is
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Ty, Y Y T Yy
So we get Len Uy ;" (G1.3) = 4 and Len Uy 5" (G 3) = 2 since 26 = zy and y0 = y ', where 6 is
a outher automorphism of order 2.
If L =1 (mod 4) or L = 3 (mod 4), then the Lehmer orbit is

‘/1:7 y) $y’ x’ y?"“

So we get Len Uy 3% (G1.3) = 3 and Len Uy o“(G1.3) = 1 since 6 = zy and yf = z, where 6 is a
outher automorphism of order 3.

(3) Let M = —1 and L is an integer such that L < 0.

If L =0 (mod 4), then the Lehmer orbit is

r, Yy, 2y, Y, x_lv Y, YT, Y, T, Y,. ...

So we get Len U;;’L(Glyg) = 8 and Len U;;’L(GL;}) = 2 since 20 = yx and yf = y, where 0 is a
outher automorphism of order 4.
If L =1 (mod 4), then the Lehmer orbit is

$7 y? xy? x? y?""

So we get Len U;,;’L(Gl,g) = 3 and Len U;;’L(Gl,g) = 1 since 20 = xy and y6 = x, where 0 is a
outher automorphism of order 3.
If L =2 (mod 4), then the Lehmer orbit is

T Y, Y, Y T Y
So we get Len le,’yL(GLg) = 4 and Len U%j‘qf(GLg) = 2 since 20 = zy and yf = y~ !, where 6 is a
outher automorphism of order 2.
If L =3 (mod 4), then the Lehmer orbit is

—1 —1
x, Y, xY, * Y YL, T, Y,....

So we get Len Uy’ (G1.3) = 6 and Len Uy (G13) = 2 since 0 = y~! and yf = ya, where 6 is a
outher automorphism of order 3.

ii (1") The proof is similar to the proof of the Theorem 3.1 in [2] and is omitted.

) If kML (¢ — 1)%) # kML (t — 1), then there are 3 subcases:

Case 1. If M =1 and L is an integer such that L > 0 and M = —1 and L is an integer such
that L < 0, then the Lehmer orbit U2," (G ) is

To =T, 1 =Y, -,

_ 12 43t—1 _
$kAI,L(t_1) =X y kavL(t—l)—i-l =Y,

(—a+1)t+a
)

L(t—a)kML(t—1) = T L(t—a)kML(t—1)+1 = Y5 -+

L(t—1)EML(t—1) = TEML((t—1)2) = T L(t—1)EML(t—1)+1 = ka,L((t,l)z)H =Y.

where 2 < a <t — 2.
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So we get Len U™ (G1,4) = kM F ((t —1)2) and Len Uz " (G14) = EME(t — 1) since 20 =
= 272 and yf = y, where 6 is the inner automorphism induced by conjugation by 3'~2.
Case 2. 1If M =1 and L is an integer such that L < 0, then the Lehmer orbit U%ij(GLt) is

o =T, Ty =Y, )
_ ()2 _
TELL(t—1) = & ) TELLt—1)4+1 = Y-
(t)afl
)

L(t—a)ktL(t—1) = T L(t—a)kbL(t—1)+1 = Y5>

L(t-1)kLL(t—1) = xkl,L((t,l)z) =, T—1)kLL(t—1)+1 = %I,L((t,l)z)ﬂ =Y.

where 2 < a <t — 2.

So we get Len U%Zf (G14) = kYL ((t - 1)2) and Len U%yL (G14) = kYE(t — 1) since 26 =

=a' and yf =y, where @ is the inner automorphism induced by conjugation by .

Case 3. If M = —1 and L is an integer such that L > 0, then the Lehmer orbit U} (G ;) is
o —=x, 1 =1Y,...,

_ ()2 _ o —t2+3t—-1
TELL(t-1) = ) ) TELL(t-1)41 = Y 7o

(t)afl, . (—a—‘,—l)t-i—a’ o

L(t—a)kbL(t—1) — L L(t—a)kbL(t—1)+1 = Y

L(t—1)kbL(t—1) = TELL((t-1)2) = L» T(—1)kLL(t—1)+1 = TELL((t—1)2)+1 = Y» -+ >

where 2 <a <t —2.
So we get Len Uy (G1y) = k=0 ((t —1)?) and LenU, g™ (G1y) = k=VE(t — 1) since
x0 = x' and yf = y~'*2, where 0 is a outher automorphism of order ¢ — 1.
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