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EXISTENCE AND NONEXISTENCE OF SOLUTIONS
OF REACTION-DIFFUSION EQUATION
WITH ROBIN BOUNDARY CONDITION

ICHYBAHHS TA HEICHYBAHHS PO3B’SI3KIB PEAKIIITHO-IU®Y3IHHOI'O
PIBHAHHSA 3 TPAHUYHUMHU YMOBAMHU POBEHA

We investigate the long-time behavior of the reaction-diffusion equation, which has a nonlinearity of polynomial growth
of any order, with Robin boundary condition. Sufficient conditions are obtained for the solutions of the problem to be
bounded or approaching infinity at a finite time.

JlocnifkeHO TOBrOTpUBALY MOBENIHKY peaKLiiHO-Iu(y3iHHOrO piBHSAHHSA 3 TPaHUYHAMH yMOoBaMH PoOeHa, sike MiCTUTB
HEIHIHHICT MOJIIHOMIaTBHOTO POCTY OYIb-IKOT0 HOpAAKYy. OTpHUMaHO JOCTAaTHI YMOBH JUIS TOTO, 1100 PO3B’SI3KH TPAHUYHOT
3aa4i Oyan oOMeXeHNMH, ab0 HPsIMYBAJIK /10 HECKIHYEHHOCTI Ha CKIHYEHHOMY MPOMIKKY 4Yacy.

1. Introduction. We consider the following reaction-diffusion equation with Robin boundary

condition:
up — Au + a(z, t)|ulfu — b(z, t)|ul"u = h(z,t), (z,t) € Qr=Qx(0,T), (1.1)
@ / . / / .
+ k(2 t)u =(z',t), (2',t) €eXp=00x10,T), (1.2)
I el
u(z,0) = ugp(z), =z €, (1.3)

where Q@ C R™, n > 3, is a bounded domain with sufficiently smooth boundary 0€2; p,v > 0
are given some constants; 7" is a positive number; A is the n-dimensional Laplace operator; a:
Qr - R, b: Qr — ]R_lir and k: X7 — R! are given functions; h and ¢ are given generalized

functions. gz denotes the normal derivative of the function « in direction of the outer normal vector
7. Here u(x,t) is an unknown function which can represent temperature, population density, or in
general the quantity of a substance.

Existence and nonexistence of solutions of nonlinear parabolic problems extensively investigated
during the past few decades. We refer the reader to the survey paper of Galaktionov and Vazquez
[5], Levine [7] and books of Quittner, Souplet [17] and Samarskii et al. [19]. There are many studies
on blow-up of solutions of semilinear parabolic equation without time-dependent coefficients under
homogeneous Dirichlet or Neumann boundary condition (see [1, 2, 4, 11, 12]). Also, some nonlin-
ear initial value parabolic problems with time-dependent coefficients under homogeneous Dirichlet
boundary condition and homogeneous Neumann boundary condition were investigated in [16, 14]
respectively.

One of the first papers on this subject is due to Hale, Rocha in [6], with homogeneous Robin
boundary condition in a bounded domain 2 C R", n < 3, and where it is shown the existence of
attractor.
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In [3], blow-up phenomena was investigated for the nonlinear parabolic equation under homoge-
neous Robin boundary condition without time dependent coefficients.

In [8], Marras and Piro considered the semilinear parabolic equation u; = Awu + f(u) under
the Robin boundary conditions by taking constant coefficient on the bounded domain of R?. They
determined sufficient conditions on the geometry and data to preclude the blow-up of the solution
and to obtain an exponential decay bound for the solution and its gradient.

In [18], Rault investigated the Fujita phenomenon for nonlinear parabolic problems d;u = Au+uP
in an exterior domain of R™ under the homogeneous Robin boundary conditions with time dependent
coefficient in the superlinear case for positive solutions.

In [13], Payne and Schaefer studied the semilinear parabolic equation u; = Au + f(u) under
a Robin boundary condition without time dependent coefficient where f satisfies the constraint

uf(u) > 2(1 4+ a)F(u), F(u) = / f(s)ds, @ > 0. They determined sufficient conditions which
0

ensure that blow-up does occur or does not occur.

After that in [15], Payne and Philippin dealt with the time dependent semilinear parabolic equation
ut = Au+ b(t) f(u) under a Robin boundary condition. They determined upper and lower bounds
for the blow-up time on a region ) C R3.

In [9], a lower bound for the blow-up time was derived for a nonlinear parabolic problem with a
gradient term; u; = Au + ki (t)u? — ka(t)|Vul?, p,q > 1 under the Robin boundary conditions by
taking constant coefficient.

In a recent paper [10], we considered problem (1.1)—(1.3) and showed the existence of generalized
solution by using a general result in [20] and the existence of global attractor for the autonomous
case.

The purpose of this paper is to investigate the asymptotic behavior of solutions and to give
some condition for blow-up of solutions of the problem (1.1)—(1.3) in finite time. In this study,
we investigate Robin type boundary-value problem for reaction-diffusion equation by taking Yamabe
type polynom as the nonlinear part of the equation. Also, differently from articles above, we consider
the problem in nonstationary case, i.e., the coefficients in the equation and boundary condition depend
on time. Moreover, here the asymptotic behavior is studied in the space where the solution exists.

The plan of this paper is as follows: In the next section we give some results on the existence and
uniqueness of the solution of the problem (1.1)—(1.3). In Section 3, we give some conditions under
which the solutions of the problem (1.1)—(1.3) is bounded in L2(2) for all ¢ > 0. We also obtain
additional condition under which the solutions tend to zero as ¢ — oo. In Section 4, we investigated
the effect of exponents p, v and the data on the behavior of the solutions, some sufficient conditions
are obtained for solutions of the problem tending to infinity at a finite time.

2. Preliminaries. First, we give the definition of the generalized solution and then recall the
existence and uniqueness theorems since we will investigate the behavior of the solution which exists.
For more details, we refer to [10].

We shall assume h € Ly (0, T; (W3 (2))*) + L p42(Qr), ¢ € L2(0,T; W;l/z(ﬁﬂ)) and define
p+1
the following class of functions u: Q7 — R1:

Py = La(0,T; W3 (Q)) N Lo (Qr) N Wy (0, T; (Wa (2))*) N {u: u(x,0) = ug(z)}.
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We will understand the solution of the considered problem in the following sense:
Definition 2.1. A function u € Py is called the generalized solution of problem (1.1)—(1.3) if'it

satisfies the equality;

T T

//udxdt+/ (a:,T)v(a:,T)d:z—l—//DuDvdde—

0 0 Q

T
+ 0/ Q/ (@) [ulf u— b, £) [u]” ) vt

T
/ux() de:r—l—//k:v tuvdxdt
0

o0

T

O\H

/ hvdzdt +
Q

Sor all v € Wy (0,T; (W5 (22))*) N La(0,T; W3 (2)) N Lyp2(Qr).
Theorem 2.1. Assume that the following conditions are satisfied with 0 < v < p:

(i) a and b are positive functions,

pvdx'dt,
0 002

Lpra(R*5Lp2(), if v<p,
a € Loo(RT; Lo (92)), be T W
Loo(RY; Loo(),  if v=p.

If v < p, then there exists a number ag > 0 such that a(x,t) > ag for almost every (x,t) €

€ QxRT.
If v = p, then there exists a number by > 0 such that a(x,t) — b(x,t) > by for almost every
(x,t) € Q x RT.
(i) k € Loo(RT;L,,—1 (00Q)) and there exists a number ko > 0 such that k(x',t) > —kq for
almost every (z',t) € 0Q x RT,

min{a’, 01} .
—a i 0<v<p,
ko <
0 min {V/, 6, } .
C% Yy v=p

Then problem (1.1)—-(1.3) is solvable in Py for any (h, ) € [L2(0,T; (W5 (2))*)+ L pt2 (Q1)] X
P

x Ly(0,T; W;lﬂ(aﬂ)) and ug € W) N L,42(Q) (here 01, o’ and V' are positive numbers such
that o' < ag, V' < by, 01 < 1 and c3 comes from Sobolev’s embedding inequality ||ul|1,@50) <

< csllullwy @)
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Theorem 2.2. Assume that the conditions of Theorem 2.1 are satisfied. If there exists a positive
number by such that b(x,t) < by < ag for almost every (x,t) € Qr when 0 < v < p, then the
solution is unique. Moreover, if u and v are solutions of problem (1.1)—(1.3), with initial data ug
and vy, respectively, then

2(by (p+1)+1)t

Ju(z, t) —o(@,1)[7,0) < lluo = vol7, )€ as v <p,

u(z, t) = v(@, t)[7, ) < luo — voll7 e as v=p.

3. Asymptotic behavior of solutions in homogeneous case. In this section, we show that under
some conditions the solutions of problem (1.1)—(1.3) is bounded in L2(2) for all ¢ > 0 in the case
of h(z,t) =0, p(2’,t) = 0. We also describe the asymptotic behavior of these solutions.

The main result of this section is the following theorem.

Theorem 3.1. Let condition (i) of Theorem 2.2 be fulfilled. Assume that function k belongs to
Loo(RT; Ly,—1 (09)) and there exist positive numbers by and ko such that b(z,t) < by, k(z/,t) > ko
hold for almost every (x,t) € QxR and (2',t) € OQ x R, Then we have the following inequalities
for the solution of problem (1.1)—(1.3) for all t > 0:

2

_ 2/p’
Ky g, 1/ ) P2 K,
i 281 _ d _ =
K ((2 o 0 K

where K = K;(¢ ca,ko,b1,p,v) > 0, Ko = Ks(ap,c5,p) > 0as 0 < v < pand K; =
= Kj(G ca,ko) < 0, Ko = Ks(bg,c5,p) > 0 as v = p. (Here ¢, ca, c5 come from inequalities
lull Loy < eallullig ), Ul @) < EllDullg, @) + 1ullZ,00) lulla@) < eslullz, @)

Proof. Conditions of Theorem 2.1 provide that problem (1.1)—(1.3) has a solution in Fy. Let
define the auxiliary function:

3.1)

Jul? () (1) <

1
E(t) = 2/u2dac,

Q

where u(z,t) is solution of problem (1.1)—(1.3) and compute E’(t) = / uugda:
Q

E'(t) = /uAuda; — /a(:c, t)|ulP2dx + /b(a:, t)|u|"2dx,
Q Q Q
after applying the integrating by parts, and using the conditions of theorem 3.1, we get
1
E'(t) < —— min {1, ko}|ull7,q) — /a(z,t)lup”da:+ /b(:r,t)lm"”d%
cc
2 Q Q
Here first consider the case 0 < v < p. By using the assumptions of Theorem 2.1 we have
1 . 2
E'(t) < —% mln{l,ko}HuH%Q(Q) - ag\u|’£—;2(m + b / ||V 2dz.
Q
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We separate the end term of the right-hand side such that the following:

1 9 200y, E(pr2
E'(t) < 2 min {1, k0}||u|]%2m) - GOV“EH(Q) by / |u‘p(ﬂ )]u|P(p ) d.
2

Q

Applying Hulder and Young inequalities for the last term, we deduce that

1 . v 1
E(t) < <—602mln{17k0} +c(e)f/ >) lullta) = (00 =) luliley, G2
2 5

o/(p=v), N~ 2 (p—=v) /v
where € < min < ag, V(% - (p = v)écs , thus we obtain
p\  pmin{l ko}

, 1 o/ (p—v) 2\ P2 (p+2)/2
E(t) <2 <_Ec2 min {1, ko} + c(e)b > E(t) — (ag — ¢) <C2> (E(t)P+2)/2,
2 5

for convenience we denote coefficients by K7, Ko:

K =2 (—12 min {1, ko} + c(e)bf/(p”)) :
CC2

o\ (042)/2
Ky = (ap —¢) (2> ,

then we have

E'(t) < KiE(t) — Ka(E(1))*2)/2,
where K1 > 0, K5 > 0 by depending on choosing of €. Now we solve the following inequality:

E'(t) < KiE(t) — Ka(E(1))# )/
with

L[ 9
E0) = 3 upde,
Q

making use of the substitution v = (E(t))~#/2, then we obtain
1, P P
—Kjv> Ky=
v SR 2 Koo,

that is

by integrating we have

p
LRt K1t
ve2 —v(0) > —=e2 S ——

0) 2 K Ky’
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that is

it follows that

which completes the first part of the proof.
Now consider the case v = p. By making use of same arguments as in the case 0 < v < p, we
obtain a differential inequality of the following form:

E'(t) < KiE(t) — K2(B(1)) 7272

with

1 9\ (P+2)/2
Kl = —2~72 min{l, k0}7 K2 = b[) (2> N
ccs cE
if we solve this inequality then we arrive at the desired result for the case v = p.
Theorem 3.1 is proved.
Now, we investigate the decay to zero of the solutions under some extra conditions.
Corollary 3.1. Assume that the following inequality is satisfied with 0 < v < p:

v (8- v
p ( R ) < ap. (3.3)
Then
ull o) () < lluoll o) VE >0, (3.4
and
u(xz,t) -0 as t— oo, (3.5)

under the assumptions of Theorem 3.1.
By using the assumption (3.3) we can apply the Young inequality to (3.2) with

—v ~ (p—y)/y
v (07— v)ed ey
p\ pmin{l, ko} >

then we have negative constant K. Considering this in (3.1), we obtain (3.4), (3.5) immediately.
Corollary 3.2. If ug = 0, then the solution is zero regardless of the sign of K1 under the
assumptions of Theorem 3.1.
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In light of inequality (3.1) we have the following:

2
2 2[uolr, o)
ulz, @) < % ) )
2o o], (g (1= e7250%) - 2022000
1

Corollary 3.3. If v = p, then ||lu| 1) (t) < |luollp,() for all t > 0 and u(z,t) — 0 ast — oo
under the assumptions of Theorem 3.1.

By using the inequality (3.1), we give the following results on the existence of invariant set and
the asymptotic behavior of the solution.

Corollary 3.4. Under the assumptions of Theorem 3.1,

2 1 9 1
130 (1) < 2 (K) when luol, 0 < 2 <K>

forallt > 0 and
K 2/p
@ <2(3) @ o
4. On blow-up. In this section we will give sufficient conditions which ensure that the solution

of problem (1.1)—(1.3) blows-up at some finite time ¢* in the case of h(z,t) = 0, p(z’,t) = 0, for
the sufficiently smooth solution;

up — Au + a(x, t)|u|Pu — bz, t)|ul’u =0, (z,t) € Qx(0,t%),
=0, (a',t) € 09 x (0,t*),

<8u + k(x',t)u)
on
o0

kU(J},O) = Uo(ﬂf), HARS Q7

where (2 C R™, n > 2, is a bounded domain with smooth boundary 9f).
Theorem 4.1. Assume that the following conditions are satisfied for every (z',t) € 9Q x (0, t*],
(z,t) € Q x (0,t%]:
. , 0 0 J. .,
(i) a(z,t) >0, b(z,t) >0, k(z',t) >0, —a(x,t) <0, =b(z,t) >0, —k(2/,t) <0
ot ot ot
(if) v > p > 0 and let inequality a(x,t) < b(x,t) hold when v = p;
(i) wug > 0 satisfies given inequality
2 2
2 / bz, 0)ul2dx — Av+2) /a(m, 0)u8+2dx >

p+2
Q

> (v +2) /(Vuo)Qdac + /k(x’,())u%dx'
Q o0

If uw is a positive solution of problem (1.1)—(1.3), then u blows-up in L2(2) in finite time t*.
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Proof. Let define the auxiliary function G(t) = / u?dx where u(x, t) is solution of the problem
Q
and compute G'(t):

G'(t)= -2 [ (Vu)?dex — 2 [ k(2', t)uda’+
fioas s

o0

+2/b(:p,t)u”+2d:c—2/a(fv,t)up+2da:,
Q

Q

G'(t) > -2 (1 + g) /(W)2da:+ /k:(ﬂc',t)u2d:n' +
Q o0

2
+2/b(x,t)u”+2dx -2 <;12> /a(x,t)up+2da:.
Q

Q

We denote right side of this inequality by H (t) and compute H'(t), then we get

H'(t) = 2(v +2) / (ug)?dz — 2 (1 + g) / glz(a:’,t)u2da;’—
o0

Q

v+ 2 da
—2 — (z,t)u’2d
<p+2> 8t(x, JuP " dx+

b
2 [ = v 2.
+ /at(:v,t)u dx
Q

In the last inequality, by using condition (i), we obtain
H() > 2(v +2) / (ue)2dz.
Q

Since H'(t) > 0 and H(0) > 0 (condition (iii)), it follows that H(¢) > 0 for ¢ > 0.
By using G(t), (3.1) and Schwarz inequality, we have

(G'(t)? = 2/uutda: / de/ 2dx < 7G() (t)

Q

and since G'(t) > H(t), we get

It follows that
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()%

Integrating the above inequality from O to ¢, we obtain that

e _ e %) i
70 > |50 D
By using G'(t) > H(t) in (4.1), we have,
G/ (t
(2)z/ ZM’ M = H(OZV‘
o) () o) (%)
We integrate above inequality, we get
1 1 v
GOFE  Gope = 2!
or
L ! Y M. (4.2)

GOPE = GOPE 2

Since inequality (4.2) does not exist for all time ¢ > 0, we say that « blows-up at some finite time ¢*
and t* is bounded above by

Theorem 4.1 is proved.
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