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POLYNOMIAL APPROXIMATION IN BERGMAN SPACES *
ITOJIIHOMIAJIBHI HABJIM’KEHHSA YV ITPOCTOPAX BEPI'MAHA

The purpose of this work is to obtain Jackson and converse inequalities of the polynomial approximation in Bergman spaces.
Some known results presented for the moduli of continuity are extended to the moduli of smoothness. We proved some
simultaneous approximation theorems and obtained the Nikolskii — Stechkin inequality for polynomials in these spaces.

Mertoro nanoi pob0TH € BCTaHOBICHHS HEPIBHOCTI JIXKeKCOHA Ta 00epHEHUX HEPIBHOCTEH ISl MOJTIHOMIANbHUX HAOIMKEHb
y npoctopi beprmana. Jlesiki BizoMi pe3yabTaTH A1 MOIYJIIB HEIIEPEPBHOCTI y3araJlbHEHO HA MOIYJI IIaaKocTi. JloBeneHo
JIesIKi CIiJIbHI T€OpeMH NpO HAONMKEHHS Ta BCTAHOBICHO HepiBHICTh Hikonbcbkoro— CTeukiHa Ui MOMIHOMIB y HUX
HpPOCTOpAx.

1. Statement of problem. Let 2 C C be an arbitrary domain in the complex plane. The Bergman
space BP (Q) consists of all functions f analytic in 2 for which

1/p
I91,:=4 [[Ir@rase g <o
Q
1
for 0 < p < oo, where do (z) := —dzdy is area measure on 2. B> (Q) is the set of functions
T

f bounded and analytic in §2. In this case we set || f||,, := sup,cq |f (2)|. B°(f) is the set of
functions f analytic in 2 with

1£]lg = exp // log | (2)|do (2) | < oo,
Q

where log | f| is summable on . || f|[, is called the norm of f and it is a true norm if p > 1. If Q2 is
the complex unit disc D, then we will write B? instead of B? (D).
For a function f, analytic in D, the integral means are defined by

1/p

27
1 D\ |P
My (r, f) == %/)f(re”)\df) , 0<p<oo, 0<r<l,
0

and Mo (1, f) 1= supgepo,2n) | f (re®)|. If they are stay bounded as r — 17, then f is said to
belong to Hardy space HP. Thus H>® = B consists of all bounded analytic functions in ID. The
norm || f||;, of a function f € H? is defined as the limit of M), (r, f) as r — 17. It is a true norm
if p > 1. HY is the set of functions f analytic in D with
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2w

1910 = exp | o= [10s7 ()] a0 | < v,

0
where log|f| is summable on D. It is well known that H? C B? and 1 £llop < N1l g
for 0 < p < o0.

The main initial problem in Approximation Theory is density of the set of polynomials in spaces
investigated. The first results related with the density of the set of polynomials in Bergman spaces
were obtained in 1934 by Farrel and Markushevich (see, e.g., [6, 17]). Also the same problems was
considered by Al’per [1], Burbea [3] and Metzger [9] for Bergman spaces BP (2) , where p > 1 and
Q) is a bounded simply connected region with a simply connected complement. In [1] Al’per defined
a moduli of continuity in B? (£2) and proved the direct theorem in this space. Also in the same
article Al’per also obtained the Quade type [10] converse inequalities in BP (€2). Later L. F. Zhong
[25] construct a polynomial that near best approximant for functions of Bergman spaces B? (2),
where 1 < p < oo and 2 is a bounded region with a sufficiently smooth boundary. For discs in C
these problems in BP was considered by many mathematicians: For p = co Storozhenko [14] proved
a Jackson-type direct theorem in B for boundary moduli of smoothness. She also defined [15]
different moduli of smoothness on the unit circle and obtained a direct theorem of approximation in
B°°. Later Kryakin [7] extended the properties of Storozhenko’s moduli of smoothness on whole
D and he find Jackson-type direct theorem, simultaneous approximation theorem in B*°. For 0 <
< p < oo F. Ch. Xing and C. L. Su[23] (p > 1) and X. C. Shen and F. Ch. Xing [13] (0 < p < 1)
was proved direct theorem for moduli of continuity in BP. Also for 0 < p < oo X. C. Shen and
F. Ch. Xing [13] (0 < p < 1) and F. Ch. Xing and Z. Su [24] (p > 1) proved Quade-type converse
inequalities in BP. A different method has been applied by G. Ren and M. Wang [11] to obtain
Jackson inequality with moduli of continuity in B? (Qg), 0 < p < oo, where Qp is the arbitrary
disc with radius R. For 1 < p < oo, M. Sh. Shabozov and O. Sh. Shabozov [12] find some exact
constants of Jackson inequality with first and second degree moduli of smoothness in BP. Also
several questions related with the approximation by algebraic polynomials were considered by S. B.
Vakarchuk [18] in BP, 1 < p < oo. For p > 0, F. Ch. Xing [21] proved the Bernstein inequality and
Quade-type converse inequalities [22] in BP. For 0 < p < oo, M. Z. Wang and G. Ren [19] proved
the direct theorem on polynomial approximation in B (QR).

Above results are contain inequalities with moduli of continuity, except the results of Storozhenko
[14] and Kryakin [7]. In this work we will generalize these results to the moduli of smoothness of
arbitrary order. For 0 < p < oo, we will prove some direct and converse theorems of polynomial
approximation in BP for moduli of smoothness. In case of 1 < p < oo, we obtain simultaneous
approximation theorem in BP. The rests of the work organized as follows. Section 2 contains the
main properties of the moduli of smoothness of functions in BP, 0 < p < oco. In Section 3 we give a
proof of first and second-type Jackson’s direct theorems for BP, 0 < p < oco. In Section 4 we prove
simultaneous theorems of polynomial approximation in BP, 1 < p < co. In Section 5 using Szego
composition we prove a Nikolskii— Stechkin inequality in BP, 0 < p < oo. Then we obtain converse
theorems of polynomial approximation in B, 0 < p < oco. Throughout the work we will denote
by ¢ and C positive constants which are different in different occurrences. Let N = {1,2,3,...},
No={0}UN, Z ={0,+1,+2,43,...}. By j =0, m we will mean j = 0,1,2,3,...,m.
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2. Moduli of smoothness. Let z,v € C and let f be a function defined on the points z; € C,

J € Np. The divided difference of function f at the points z;, j € No, is defined as

(20521, -« -y Zm f —Zf 2 H zl)fl.

i#£]

Choosing z; = zv/, j € Ny, we define finite difference operator for m € N

010 = £ (), [ 1= (220,20 [ (2 = 20)
7j=1
From (1) we can see that
Z 1) P (v71) f (207)
7=0

where
G2 (1) (1)

(z—=1)...(zm7 —1) ’
Prm (Z) = Zm(m—l)/2'
We give the basic properties of finite difference operator: Let z,v € C and m,n € N. Then

[z, 10 = [z f1 = o™ ) [, 0T

Pjm () = j=0m-—1,

e I =30 S (TR T D (R

[z, flon = > ... nzzl o= S (=10 [szﬁljljf}m

. . v
Jj1=0 Jm=0

If f is analytic in D, and |z| < 1, |[v] < 1,47 =0,m — 1, we have

1 1

(2

1
[z, floh = zmi/uT_i_ldul /ugn_i_szQ / {zul .. .um_i,f(m*i)}Z AUpy—i .-

v v

, d
Here f() (2) = CJ; z(f) is the ith derivative of f(z).
We define generalized finite difference operator [z, f];"° by
B O R A R o e e I 0
By (2) we have [z, f]T’O = [z, f],". On the other hand

— i i Zl 171 *Z}Zﬂsﬂfl)ﬁf <ZUZ§11 jl> )

§j1=0  jm=0
If k,m € Ny and s € Z, then
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m,s—1
i B A I ©

All these properties can be proved by induction (see [7, 8, 15]). We define the moduli of smoothness
as the following: Let f € BP, 0 < p < oo and > 0. The moduli of smoothness of order m € N is
defined as
Wm (57 f)p ‘= sup ”[‘Jf]:}th7 0<t<2m. (7
0<t<8

This moduli was first defined, on the unit circle T, by Storozhenko [15] with z = ¢ and then
Kryakin [7] proved its above properties on ID. Letting m = 1 and z = € in (7) this moduli
coincides, on T, with ordinary boundary moduli of continuity. If m > 1, then @, (-, f)p and
ordinary boundary moduli of smoothness are different.

It is easy to see that if f,g € BP, 0 < p < oo and 0 < § < 7, then, there exists a constant ¢ > 0,
depending only on m and p, such that

G (), S clfl, and 0= Gy (0, ), < G (8. £), < G (0. F), -

wm(-,f+g)pSoﬁm(-,f)p-l-@m(‘,f)p.

Let 0 < p < oo and r € N. We denote by BY the class of functions f € BP having the property
f) e Bp,

Theorem 1. Let f € BP, 0 <p <oo,m,n €N, 0 >0and s :=min{l,p}. Then there exists
a constant ¢ > 0, depending only on p, such that

m (n6, f), < en™ g, (5, ),
Proof. Using (4) we have

P 1/p
do (z) = [P,

[z, F1l, < /] 55 et )

it
71=0 Jm=0

For p > 1, s = 1 we obtain

IYr < ol=1)/p nz:l nz:l ’

Jj1=0 Jm=0

p

[zez‘t@:zm), f]m

eit

n—1 n—1
=200 S ST [, A1, < 20 [z, A1,

— 2D/ | 12

and hence @y, (nd, f), < en™" A9, (6, f),, for p > 1. Now we suppose 0 < p < 1 and s = p

Then ) )
Iz, kel <2270 0>z, Skl -

=0 jm=0
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Therefore
m (nd, f), <™ I71G,, (5, 1),

Theorem 1 is proved.
Theorem 2. Let 0 < p < 1,k € Nand f € By. Then there exist a constant ¢ > 0 and a
number ty > 0, depending only on p, k, such that

([0

holds for all 0 < t < tgy, where the constant c depends only on p.
Proof. We set 0 < r < R < 1 and define ¢ty := (R —r) /Ak, where A > 1 is some constant
depending only on p. Then for all 0 < ¢ < ¢ty we have [7] (Lemma 1)

<t s
P P

My (73 [,f]];z) < Cptkng (R7 f(k)> _

Then

/1 My <r, g f]’;t> rdr < Pt MP (R, f<k>) R
0

‘ [ ezt
Theorem 2 is proved.

Theorem 3. Letk € N, 0 <p < oo, f € BY, m € Ny and § > 0. Then there exist a constant
¢ > 0 and a number 5y > 0, depending only on p, k, such that

1
< cptkp/M R f’“) RdR = cptkaf(k H
0

G (0.1), < 8" (5,50)

holds for all 0 < § < dq, where the constant ¢ depends only on p.
Proof. Let p > 1. Using (5) and the generalized Minkowski inequality for |z| < 1 we get

1 1
H I;{mH / /zu1 LUk, f )} _tu]ffl...zkduk...dul <

p
1 1
S
et ett
1 1
[l

and hence @1k (6, ), < 6" (6, f(k))p for p > 1. Now let 0 < p < 1, & := 1/ (4Ak)
and 0 < t < §p. Then using the second equality of (6), Theorem 2 and the first equality of (6),

duy ...du; =
P

ZUp ... U, f(k)} .

codup <t H {z, f(k)}:t
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respectively, we have

p

/@) (5 117)

< cth
- dzF

p

(221 =)

and O,k (0, f)p < c6F @, (5, f(k))p for0<p<1.

Theorem 3 is proved.

Corollary 1. Let0 <p< oo, k€N, f € Bz and § > 0. Then there exist a constant ¢ > 0 and
a number &y > 0, depending only on p, k, such that

1| = H [ 1Azt

= ctF

,

aeti < 0],

holds for all 0 < 6 < g, where the constant ¢ depends only on p.

3. Direct theorems. In this section we will prove Jackson’s fist- and second-type direct theorems
in BP, 0 < p < oo. Let B, (f), := inf{”f — P, : Pn € Pn} forn e N0 <p<ooand f € BP.
Here P, is the set of the algebraic polynomials of degree at most n.

Lemma 1 [14]. Let 0 < p < 1, F be an analytic function in Q. Then there exists a constant
c > 0, depending only on p, such that

p

] | (re'?)| de

<C(p—rP / I3 (pe'?) ’p dp

hold for 0 < r < p < R. Furthermore, if f € HP, then the values p = R = 1 are assumed.
Jackson’s fist-type direct theorem is the following theorem.
Theorem 4. Let 0 < p < oo, f € BP, m,n € Nandn > m. Then there exists a constant ¢ > 0
independent of n such that

En (f), < com (1/n, f),. ®)
Proof. Let0 <r <1,a>0and
1 AN
Ky (Te”) = (re ) TTa
< a+n > (1 —rett)
n

be the kernels of (C' — a)-means of f € BP, 0 < p < oo. In this case

1 f o' )
27T/K” (ret)dtzl.

We set

m 1 T o o .
P, (z) =: jz; (—1)]Jrl o / Pj ((rezt) 1) I (zr]e”t) el (7‘6”) dt.
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The expression P,, (z) is a polynomial [8] of degree at most n. We will prove that

||f_Pn||p < cm (1/n, f)p' )

2
This implies (8). Let0 <p < 1, a > mte_ 1 and n; :=n —m + 1. Then

s

1) = Pu ] < o | [ () K3, () | =
I T N O 2 S T A
_< o+ n )27T [([zvf]reit) (7"6 ) ( 1—7”6“ ) dt §
ni

()

< /| re“’
( a+ng )27T

1— n+1
Since the function F (<) := [z, f]" (1§> is analytic and belong to HP, from Lemma 1
-9
we obtain
(I4a)p
Cp—mp 1 — (eit ni+1
f (2) =P (1) < r / [z, fleiel” ( ) dt.
o+ ny . 1 —p
ni
Integrating the last inequality with respect to z we get
7r (14a)p
Cr—mp - sinnit/2
-P,|P < Po(t —_— dt.
I =Pulf < — [#en, 5
T -0t
—p
Taking r = 1 — (1/n1) we have (1 — )P~ = (n;)"? and < “ :L_ " > < c¢(ny)”*". Hence
1
7T . t/2 (I+a)p
_pp (et [ sin ny _
e e E AN
0
1/m (1+e)p
. inngt/2
=C 1—(a+1)p / P (t Smny dt
0
g (14a)p
- sinnqt/2
bo(t —_— dt
+ / i (& Dy | e/

1/n1
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Therefore using the property & (A, f), < (A + 1) &P (s, f)p» Ay 6 >0, of moduli we obtain

1/m
1f = Pally < € (n0) =P GE (1/n1, ), § ()@ / dt +

—(1+a)p

; / (it +1)" <;) dt b < e (1/n1, 1), < ciom (1/n, f), .

1/n1

Let p > 1 and a > m. Using generalized Minkowski’s inequality we get

sinngt/2
- it <
Is Pnup_< >/ 1l s ' it <
1/m1 ™ y —(1+a)
SC(nl)_adJm(l/nl,f)p (n1)1+a/dt+(n1)m/ <7‘r) dt » <
0 1/n1

< o (11, £), < ciom (1/m, f),

and (9) follows.

Theorem 4 is proved.

We note that the last theorem is a generalization of the results of Storozhenko [14, p. 207]
(Theorem 1), Kryakin [7, p. 26] (Theorem 1), Xing and Su [23] (1 < p < o0) and X. C. Shen and
F. Ch. Xing [13] (0 < p < 1), Kryakin and Trebels [8] (Theorem 2.3) (0 < p < o©), Ren and Wang
[11] (Theorem 3.5) (0 < p < o0), Ren and Wang [19] (Theorem 3.4) (0 < p < o0).

From Theorem 4 we have the following Jackson’s second-type direct theorem.

Theorem 5. Letm,n,k e NNn>m+k 0<p<ooandf e Bz. Then there exists a constant
¢ > 0 independent of n such that

E,(f), <en” K om (l/n f(k)

holds.

This theorem generalizes Theorem 3 of [7].

Corollary 2. Let k,n € N, 0 < p < oo and f € Bz. Then there exists a constant ¢ > 0
independent of n such that

B (1) < e+ |9

holds for n > k.
4. Simultaneous approximation. We suppose that f € BP, 0 < p < oo, has Taylor expansion

ch (f) 2", (10)
k=0
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Let T, (f) = Tn(f,2) == Yp_ock (f) 2" be the nth partial sum of (10). The operator T, :
BP — BP. f — T, (f,-) will be called the nth partial sum operator for f € BP. We note that if
1 < p < o0, then the operator T,, is bounded [5] on BP. Hence there exists a constant ¢ > 0 such
that

ITo (f5 ), < eI, (11)
holds for f € BP.
Leta) :==1/(n(n—1)(n—2) (n —r+1)).
Theorem 6. Letn,r € N, 1 <p < oo and f € BE. Then

1 =Ta (DIl < @ |70 = Tuera (£0)

P
holds for r < n.

Proof. Let p € [0,1) and f, () := f (pz) be dilation operator. Since f € BP, 1 < p < oo, then
f» € HP. Hence [20, p. 158]

2
irf H

() T) = 5 (7)o (1.000) 5

0

where ¢ (t) = a], + 23 77, af, 4ncoskt > 0. Using generalized Minkowski inequality we get
2
p 1 i0 o\ |P
M (o, f = Tu () = 5= | |fo () = Tu (£ ) [ a0 =
0
2| . 2T P

:% / 62: /<f’§r) (eiwm) T, ( p(r)’ei(e—i-t)))e—i(n—r)tsp(t) at| 4 <

0 0

27
< MICI’) (pa f(?") - Tnfrfl (f(r)))

0

<ap My (p, 0 =Tt (1))

and hence the required result

If = Tu ()], < o)

<o (1)

p

follows.
Theorem 6 is proved.
From Theorem 6 and (11) we have the following corollary.
Corollary 3. Letn,r € N, 1 < p < oo and f € BY. Then

Ey (f), <en"Epy (f(?"))

p

holds for r < n.
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Bernstein inequality for BP, 0 < p < oco.
Lemma 2. Letn € Nand P, € P, and 0 < p < oo. Then there exists a constant ¢ > 0,
depending only on p, such that
HPT/LHP <ecn ||Pn||p.

When p > 1 the constant ¢ can be chosen to be 4.
This lemma was proved for p > 1 in [23], for p > 0 in [21, p. 432] (the main theorem).
Theorem 7. Letn,r € N, 1 <p < oo, f € By, P; € Py and E,, (f), = ||f — P, Then for
allk =0,r

-, e (),

p
holds for r < n.
Proof. Let gn—t, € Py, Eni (f*), = ||f*) = ga—r]|,- Then using Corollary 3

- ] =k (), -

< £ = ], e = Tucs (FO)], im0 = 2] <

<5 (19),

Tt (@) = T (JO) | en® 1T (1) = P, <
< (140) Bk (F9) +en* T () = Ta (B, <

<ent B, ( f<’“>)p +en By (f), < e B ( fm)p

and the theorem is proved.
Theorem 8. Letn,r € N, 1 < p < oo and f € BE. Then there exists a ®,, € P, such that for
all k=0,r

e YD)

p
holds for r < n.
Proof. Let P; € Py, Ey (f), = |If — P;ll, and ®,, = P,,. From (9) and Theorem 5 we have

1f = Pall, <en™ @ <1/n,f(”))p and [|f — Py, < en™ "y (1/n, f(r)>p.

On the other hand we get
1Py = Pyll, < 200Gy (1/m, £7))
P

Hence by Bernstein inequality in Lemma 2 we obtain

Hf(k) _P;k)H < Hf(k) _p;(k)H N ’ P _ pelh
p p

n

|,
p

<ent"E,_, (f(r))p L (1/n, f(r))p < en® T on_y (1/n, f(’")>p.

Theorem 8 is proved.
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5. Converse theorems. Bernstein inequalities are play the central role in the proof of converse
approximation theorems in Approximation Theory. For the spaces BP these inequalities was estab-
lished by [23] (1 < p) and [21] (p > 0). But in some cases Bernstein inequalities are improved
to Nikolskii— Stechkin inequalities. In the present section we prove a Nikolskii— Stechkin-type in-
equality in B?, 0 < p < oo. For this purpose we use a Szego composition theorem for polynomials
in H?, 0 < p < oo. Let P,, A, € P, and we write them of the form P, (z) = > }_, Chey2t,
Ay (2) = Y7o CFA2". Here CF are the Binom coefficients. The Szego composition of P, and A,,
will be defined as the polynomial P, ® A,, := > _}_, CFepAg2”.

Theorem 9 [2]. Letn € N, P, A,, € P, and P, ® A, be the Szego composition of Py, and A,,.
Then

1Pu @ Aullzs < Anllo 1 Pall . 0<p < oc.

We prove a Nikolskii — Stechkin-type inequality.
Theorem 10. Letn,m € N,n >m, P, € P, and 0 <t < (2w/n). Then

|7t

Proof. Letm = 1 and g = €. Since the polynomials P/, (z) and [z, P, ] are independent of the
constant term of P, (z), we may take P, (z) of the form

n—1
z) =z Z CF 2",
k=0

m n—m+j—1)/2

n—m—i—j 2( m
P
H J[Il sin(n —m+ j)t/2 Iz, Palell,

0<p<oc

Then
Z _1ax (k+1) 2" and [z, P, —zZCn 1ak< ‘(k+1)t> Sk
Now taking
Qui ( Z B
we get

1
PL) = 22 Pl © Quoi (2).
Using Theorem 9

125 e < 1@n-t Gligo |12, P |-
From [16] (inequalities (8) and (10)) we have

n2(n—1/2
_ < —
Q01 Gl < "7

and hence (n—1)/2

/ n2\"" 1‘
< —— .
12 ) < sinnt/2 H nly HP

ISSN 1027-3190.  Vkp. mam. ocypn., 2016, m. 68, Ne 4



446 R. AKGUN

By the dilation function method (see, for example, [26]) we conclude for m = 1
n2(n—1)/2

_ 0<p<oo. 12
smnt/2 ’ =P=00 (12)

P/
2], < p

s Pl

For m > 1 using (12) and inequalities in (6) we find

n—m+ 1) 20=m)/2
sin(n—m+1)t/2

ol <

A,
q

n—m)/2 -
_(n=m+1) o(n—m)/ d "qum_mr,l -
sin(n—m+1)t/2 |dz \L a /ll,
2 _ N o(n—m+j-1)/2 || T 1,17}
i sin(n —m+ j)t/2 v Jq,
2 ; n—m-+j—1)/2
:H (n —m+])2( .+] )/ “:.’Prgm_2):|2 <.
i sin(n —m+ j)t/2 all,
T sin(n —m+j)t/2 M,

Theorem 10 is proved.
As a corollary we get the following Bernstein-type inequality:
Corollary 4. Let n,m € N, P, € P,, 0 <t < (2r/n) and n > m. Then

’Pém)(z H <cH (n
holds for 0 < p < cc.

From Theorem 5.1 of [4, p. 216, 217] and Lemma 2 we have the following corollary.
Corollary 5. Let r,n € N, 0 < p < oo and f € BP. Then there exists a constant ¢ > 0
independent of n such that

—m 4 j) 2(n—mti=1)/2 .
sin(n —m+j)t/2 12l

n

1/p
K, (f,1/n) < = {Z w B (f),]" ,1{;}

k=1
hold where p := min{1,p} and K, (f,6) := inf {Hf —gll, +d" Hg(r)Hp}, d > 0 is the Peetre
gEBr

K-functional.
Theorem 11. Let m € N, 0 < p < oo and f € BP. Then there exists a constant ¢ > 0
independent of n such that

" 1/p
Om (1/n, ), < % {Z [kTEk (f)p}u i}

k=1

hold where 1 := min {1, p} .
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Proof. Using Corollary 1 we have

0/ 1)y < (15 = ally + @y o)) < et 1/m 1),

and the estimate W, (1/n, f),, < Ky, (1/n, f), fulfilled. By Corollary 5 we conclude the required
result.
Theorem 11 is proved.
This theorem is a generalization of converse theorem of [13] (0 < p < 1).
As an application of Theorems 11 and 4 we get the Marchaud inequality for 0 < p < 1.
Corollary 6. Letr,m e N;r >m,0<p<1land f € BP. Then forall 0 < 6 < 1/r

1/r v 1/p
. m ) [ e ()
Wm ((57 f)p <cd / tT—i-lpdt

0

holds.
Definition 1. Let ¢ (t) be a positive function for t > 0 and lim;_,o @(t) = 0. We suppose that
0<p<oo,meN,

@

ngm;:{feBp:@m(t,f)p:m(p(t»,t—m} and  Lip(a,p) = H® . a > 0.

p7m7

Corollary 1. Letn € N and f € BP. In this case
(A) Suppose that 0 < p < 1. Then:
(i) for 0 < a <1 the conditions Ey, (f), = O (n™%) and f € Lip (a, p) are equivalent;

(ii) for a =1 the condition Ey (f), = O (n™1) implies @y, (4, f,=0 ((5 In 6]1/p>;
(iii) for o > 1 the condition Ey, (f), = O (n™%) implies [ € Lip (1,p) .

(B) Suppose that 1 < p < oco. Then:

(i) for 0 < a <1 the conditions Ey, (f), = O (n™%) and [ € Lip (c, p) are equivalent;
(i) for a =1 the condition E, (f), = O (n™1) implies @y, (4, ), =0(0|Ind).
Corollary 8. Letn.m e N 0<p<land f € BP. If

1
)P . (o)
/tmpﬂdt_O T L
)

then, the conditions f € Hp, and Eon (f),=0(p(2™")), n — oo, are equivalent.
6. Concluding remarks. Theorems 7 and 8 for 0 < p < 1 and for p = co, remain open. It may
be interesting to investigate above problems in B® or B () for general domains 2.
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