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A NOTE ON DEGREE OF APPROXIMATION BY MATRIX MEANS
IN GENERALIZED HOLDER METRIC

PO CTYIIHb ATPOKCUMAIIl MATPUYHUMMU CEPEJHIMUA
B Y3ATAJIBHEHIA METPUIII I'EJILJIEPA

The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a
new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other
results by weakening the monotonicity conditions in results obtained by Singh and Sonker for some classes of numerical
sequences introduced by Mohapatra and Szal and present new results by using matrix means.

Bu3HaueHO CTyMiHb anpoKkcuMaliii pyHKIIH MaTpUYHUME CepeaHiMu iX psaaiB Dyp’e B HOBOMY mpocTopi QYHKIIH, yBeae-
Hux [lacom, Hacom ta Peem. 3okpema, po3mmpeHo aesiki pesynsraru JleiHuiepa, a TaKoX AesIKi 1HII pe3yabTaTH HIIIX0M
mocIabIeHHs YMOB MOHOTOHHOCTI B pe3ynbTarax, oTpuManux CiHrxom ta COHKEpOM IS AESKUX KIIAaciB YHCIOBUX MOCIHTi-
JOBHOCTeH, mo Oynu BBeneHi Moramarpa Ta CanoM, Ta HaBeIeHO HOBI Pe3yJIbTaTH, OTPHMaHi 33 JJONOMOTOI0 MaTPHYHUX
cepenHix.

1. Notations and background. Let f be a 2r-periodic function and f € L, := L,, (0, 27) for p > 1.
Then we write

n

sn(fix) = 1ao + Z(akcoslm + b sinkx) = EUk(f;l')

2
k=1 k=0

partial sum of the first (n + 1) terms of the Fourier series of f € L,, p > 1, at a point . There
are numerous papers devoted to the approximations by partial sums of Fourier series by many
mathematicians, as Quade [8], Chandra [1], Das, Nath and Ray [2], Leindler [4, 5].

Throughout this work |[.[[,, will denote L;-norm with respect to « and will be defined by

1/p

2m
1
I91,:= 4 5 [ 1f@P da
0

Moreover, modulus of continuity of f € Co, is defined by

w(fv 6) ‘= sup |f('ilj + h) - f(l‘)’,
|h|<é
where Cy, is space of all 2m-periodic and continuous functions defined on R with the supremum
norm. The class of functions H“ is defined as the following:

HY :={f € Car: w(f,8) = O(w(d))},

where w(d) is a modulus of continuity. The degree of approximation of functions from classes H*
in various spaces has been studied by Leindler [5], Mazhar and Totik [6], Das, Nath and Ray [2]. A
further generalization of H“ space has been given by Das, Nath and Ray in [2]. They defined the
following notations: If f € L,(0,27), p > 1, then denote
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486 U. DEGER
H) = {f € Ly(0,27),p > 11 A(f,w) < 00},
where w is a modulus of continuity and

D=0l
A @)= ™=

The norm in the space HI(,W) is defined by

A1) = 11 £lp + A(f,w).

In [2] they proved the following theorem.

w(t
Theorem 1.1. Let v and w be moduli of continuity such that Q is nondecreasing. Moreover,

v(t)

if f € H p>1, then

SR (.70 IV B ()
s — fII) = 0 Mﬂm1g+n/?%®ﬁ

w/n

In [5], Leindler has established the following result improving Theorem 1.1.

w(t)

Theorem 1.2. Let v and w be moduli of continuity such that W is nondecreasing. Moreover,
v
let the function
(t)
t)

S

n(t) :=n(v,w,&;t) :==17°

<
—~

be nonincreasing for some 0 < e < 1. If f € HI(,w), p > 1, then

s — fIS) < c:((;r;:z)) logn (1.1)

foralln > 2.
w(t)

v(t)
nonincreasing, then in Theorem 1.1 the second term can be omitted. In this paper of Leindler, he

Due to this theorem, Leindler showed that if there exists € > 0 such that ¢t—¢ is also

also considered the degree of approximation of f € HI(;W) by Nérlund!, Riesz and generalized de la
Vallée Poussin means defined as follows:

Nn(f;z) = % > Po-msm(f @),
" m=0

Rn(f,x) = Pi Z pmsm(f§ $)>
™ m=0

where P, = pg + p1 + p2 + --- + pn # 0, n > 0, and by convention p_; = P_; = 0; and

!Called the "Woronoi’s transformations" instead of "Nérlund’s transformations (or Nérlund means)" by Russian math-
ematicians. See [10] for more detailed information.
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n

Vala) = Vah fiz) o= —— 3 sulfia),

)\n+1

m=n—>An

where ()\,,) is a nondecreasing sequence of positive integers with A\g = 1 and A\, 11 < A, + 1. In
this studying, we shall consider the degree of approximation of f € H;(;w) with the norm in the space
H) by tri ical polynomials 7,,(f;

p ~ by trigonometrical polynomials 7, (f;z), where

To(fi2) = T (f, T ) := Z anmsm(f;2) Yn > 0.
m=0

Throughout 7" = (ay, ) is a lower triangular infinite matrix of nonnegative real numbers such that:

>0, m<n,
An.m = n,m=20,1,2,..., (1.2)
07 m>n,
n
> tpm=1 n=012,.... (1.3)
m=0

The Fourier series of signal f is called to be T'-summable to s, if 7,,(f;z) — s as n — co. On the
other hand, we know that a summability method is regular, if for every convergent sequence (sy,),
limg, oo S = 8 = limy, oo T = 5. If we take

1

) m S n;
an,m = n+1 n,m:O,l,Q,...,
0, m > n,
Tn(f; ) gives us
1 n
oulfi) = —= D smlfiw) Yn20.

m=0

Throughout this studying, we shall use notations D < R (R < D) in inequalities if there exists
a positive constant K such that D < KR (R < KD) where D and R are depend on n. However,
K may be different in different occurrences of 7 < 7.

Now, let’s recall the definitions of some classes of numerical sequences discussed in detail in [5]

1
and [7]. Let u := (u,,) be a nonnegative infinite sequence and C' := (C),) = —— Zn U
A sequence u is called almost monotone decreasing (briefly u € AM DJS) (increasing (briefly
u € AMIS)), if there exists a constant K := K (u) which only depends on u such that

for all n > m.

If C € AMDS (C € AMIS), then we say that the sequence u is almost monotone decreasing
(increasing) mean sequence and denoted by C € AMDMS (C € AMIMS).

A sequence u tending to zero is called a rest bounded variation sequence (RBV'S) (rest bounded
variation mean sequence (RBV M .5)), if it has the property
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D Auy| < K (u)uy, (Z IAC,,| < K(u)C’k>

for all natural numbers k, where Awu, = Uy, — Up11-
A sequence u is called a head bounded variation sequence (H BV S) (head bounded variation
mean sequence (H BV M Y5)), if it has the property

k—1 k—1
Z | Ay, | < K (u)ug (Z |AC),| < K(u)Ck>
m=0 m=0

for all natural numbers k, or only for all £ < N if the sequence « has only finite nonzero terms and
the last nonzero term u .

When a matrix 7" = (ay,,,) belongs to one of the above classes, it means that it satisfies the
required conditions from the above definitions with respecttom = 0,1, 2, ..., n for all n. Accordingly
if (anm)oe—o belongs to RBV'S (RBVMS) or HBV'S (HBV MS), respectively then

oo 00
Z ’Aman,m| < Kan,k (Z |AmAn,m‘ < KAn,k) 5
m=k m=k
k—1 k—1
’Aman,m| S Kan,k (Z ‘AmAn,m’ S KAn,k) )
m=0 m=0
where
1 m
An,m = — Qn k
m—+1 Pt

foralln (0 <k <n)and Apanm = Gnm — Gnm+1-
It is clear that the following inclusions are true for the above classes of numerical sequences:

RBVS C AMDS, RBVMSCAMDMS
and
HBVS C AMIS, HBVMS C AMIMS.
Moreover, Mohapatra and Szal in [7] showed that the following embedding relations are true:
AMDS c AMDMS
and
AMIS Cc AMIMS.

Taking into these inclusions, we will extend the some results given in [9] by weakening the
monotonicity conditions. Furthermore we shall give the degree of approximation of functions by
matrix means of their Fourier series under the new conditions. We see that the results obtained in
this paper generalize the some results in [3, 5, 9].
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2. Main result. The following theorem shall extend the some results of Leindler in [5] and the
some of the their results by weakening the monotonicity conditions in results of Singh and Sonker [9]
for some classes of numerical sequences that given by Mohapatra and Szal in [7]. Also it includes
some result under a new condition. Accordingly, the main result is as follows:

w(t)

Theorem 2.1. Let v and w be moduli of continuity such that W is nondecreasing. Moreover,
v

let the function

S

(t)
t)
be nonincreasing for some 0 < ¢ <1 and T := (anm) be a lower triangular infinite regular matrix.
If one of the following additional conditions is satisfied:

(i) (anm) € AMIMS,

(i) (anm) € AMDMS and (n+1)a,o < 1,

n—1 _

(iii) Zmlo |Ap (Anm)| < n L

(iv) Z" A (anm)| € 7 | An(anm)| < 1(m = 0,1) and (n+ 1an, < 1,
then for f € H,()w), p>1

—&

n(t) :=n(v,w,e;t) ==t

<
—~

w(i/n)

z) — 7, (f: )| ogn

(2.1)
foralln > 2.

3. Known results. In this section we will give some known results to use in proof of the
Theorem 2.1.

Lemma 3.1 [7]. Let (1.2) and (1.3) hold. If (anm) € AMIMS or (anm) € AMDMS and
(n+1)ano < 1, then

n
D (M), < (n+1)7°
m=0
holds for 0 < a < 1.
Lemma 3.2 [5]. [f the conditions of Theorem 1.2 are satisfied with 0 < € < 1,

» 1
low = 1) < 20 togn, 022, G
and
w(1/n)

o — snll{ < logn, n>2. (3.2)

v(1l/n)

4. Proof of Theorem 2.1. First of all, let us give the following inequalities will be used in proof
of Theorem 2.1. Since 7(t) is nonincreasing, the sequence

. (1> _ ewd/n) @1

n v(1/n)

is nondecreasing. Accordingly,
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w(l/n) 1 1

—>—, 0 <1 4.2
v(1/n) P Esw VSf=h (42)

: , w(1/n)

and based on the knowledge of nonincreasing of sequence (1/n) we have
v(l/n
1/n 1

w(l/i) _ w(l/n) w3

v(l/n)  e(l/n)’

where 7 denotes integer part of g The method of proof will be similar with some parts in [9].

Proof Theorem 2.1. Let us prove the theorem for all the cases, respectively.
Case 1. Let (anr) € AMIMS. By the definition of 7,,(f, ), we have

(fa Zanm{smfv ) ()}

So, from hypothesis and (1.1) we obtain

I7a(f32) — F(2)IS) < (Z+ 3 )an,m||8m(f;x)—f”1(f)

m=0 m=n+1

< {ano [50(f32) = F@) + an [Is1(f32) = F(@)]|8 1+

+Z =

Now let’s estimate /1, I5 and I3, respectively: since (a, ;) € AMIMS, we get

1m
m+ Z (1/ ))logm::ll—FIQ—FIg.
m=n+1

n

1 1 1
n_i_lZan,m—?«n

ano = Co < Cy, =

and ) )
C1 = 5{%,0 +an1} = 5{00 +an1} = any < n
1 k
where Cy, := A, 1 = Pl Zm:O ap,m- Therefore, we have
w(l/n)
I
P (i)

in view of (4.2) for all n > 2

" (m + 1) w(1/m) LW
= n,m 1 c
Tnz::la Tim+1 1/m ogm < (7) v
From Lemma 3.1 and (4.3), we obtain

w(l/n)
o(1/n) logn
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for all n > 2. With a simple analysis, we get

= Y a w(l/m) ogm w(l/ﬁ) ogn Y a w(l/ﬁ) ogn Y a
I3 —m;+1 n,m v(l/m) 1 g < U(l/ﬁ) 1 g mgﬁ:—i_l n,m < U(I/TNL) 1 g n;] n,m

by considering (4.3) for all n > 2. Therefore, we obtain (2.1) for the case (i).
Case 2. Let (ap ) € AMDMS and (n+ 1)a,o < 1. As the first case, we have

I7n(fi2) = F@S < <Z+ 2. )an,m||sm<f;x>—f|r;”><<

=0 m=n+1

(f32) = F@)I + an lls1(f32) — F@)]|& 3+
+ (Z + Z ) an,mMIOgm =:J1 + Jo.

m=2 m=n+1

. 1
Taking into account (4.3) and ano = Cp > C; = f{ano +an1}t = ano > an1, we get J; <K

w(l/n)
v(1/n)

similarly to the case (i). Therefore, (2.1) is proved.

< logn for all n > 2. By using Lemma 3.1 and (4.3), the evaluation of .J, is obtained

Case 3. By applying two times Abel’s transformation and using Zn o Gnm = 1, we have
m=

n

m(fiz) — f(z) = Z an,m {sm(f;2) — f(z)} =

m=0
n—1 m
=D (smlf52) = sme1(f32)) Y ang + {snlfi2) = f(2)} =
m=0 k=0
n—1
= {Sn(fvx) - f(x)} - Z (m + 1)Um+1(f; $)An,m =
m=0
n—2 m
= (sl F0) = F@Y = 3 Anm — Anns1) S+ DU (f52)—
m=0 k=0

n—1
—% Z Ak Z m 4+ 1)Upy1(f52).
m=0

Here

m+1 (v)

> kUk(f;2)
k=1

n—2
7 (f52) = F@IS < Mlsm(f52) = FIS + > [Anm — Anant] +
m=0

(v)
<

- Z mUn, ([ )
m=1
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< Nsm(f;2) = FIS + [Anp — Apal + |[Ap1 — Anal+

m—+1 (v) (v)

> kUk(f;x)
k=1

+ Z ’An,m_ An,m+1|

p p
Since .
sn(fi2) —on(fi2) = n—lu > kUK(f;)
k=1
by (3.2) we get
(v)
= 0+ ) [salf52) — onl i)l < 0t g

So, combining (1.1), (4.4) and (4.5), we get that

logn + Z |Apm — Anm1|+

m=0

Il i) - SIS < 2100

v(1/n)

n—1
w(l/n)
1/n) lognmzz ’An,m An,m+1|'

Taking into account (4.2), (4.6) and the condition (iii) of Theorem 2.1, then

o o o Wi/,
I i) = F)IS < o

holds for all n > 2.
Case 4. By applying Abel’s transformation, we obtain

n

Tn(f§x) - f(ﬂ?) = Z Gn,m {Sm(fa$) - f(q;)} =

m=0
= 3 At S k(5 2) — F@) + nn 3 {x(f52) — F(@)} =
m=0 k=0

k=0

n—1
Z m + 1 man,m)(am(f§x) - f(x)) + (n + 1>an,n(an(f; 1’) - f(l‘))

Thus, owing to (3.1), (4.1), (4.2) and the condition (iv) of Theorem 2.1, we have

n—1
17 (f32) = F@IY < [(Amanm)|(m + Do (f;2) — f(2)]|5+

m=0

+(n+1) (fiz) - f(2)| <

< |(Amano)llloo(f;z) = f(2)]§+

U. DEGER

(4.4)

(4.5)

(4.6)

ISSN 1027-3190.  Ykp. mam. scypn., 2016, m. 68, Ne 4



A NOTE ON DEGREE OF APPROXIMATION BY MATRIX MEANS IN GENERALIZED HOLDER METRIC 493

+2|(Aman,)llo1(f;2) = f(2) 57+

w(1/n)
+ 3 ml(Amanm)l llom(f;2) — f@)|8 + logn <
P v(1/n)
N S S cw(1/m) w(1/n)
< E + n;ml |(Aman,m>’ m v(l/m) logm + v(l/n) logn <

cw(l/n) n"j TN (¢ Vi DU
Sy B 2 Sty o <
(1/n)
€ ojn) B

Therefore, Theorem 2.1 is proved.

5. Corollaries and remarks. Theorem 2.1 gives us some corollaries and remarks which related
with the results in [3, 5, 9].

Corollary 5.1. If the conditions of Theorem 2.1 and the following additional conditions are
satisfied:

(i) (anm) € HBVMS,
(i) (anm) € RBVMS and (n+1)ayo < 1,
then for f € H,S“), p>1,

) < w(L/n)
1£(@) = mulfi2)lly” < T 75 logm

foralln > 2.

Proof. Since HBVMS C AMIMS and RBVMS C AM DM S, the proof is obvious.

Since AMDS C AMDMS and AMI1S C AMIMS, we can write the following result which
coincide with the conditions (i) and (ii) of Theorem 6 in [9].

Corollary 5.2. If the conditions of Theorem 2.1 and the following additional conditions are
satisfied:

(i) (anm) € AMIS,
(i) (anm) € AMDS and (n+1)ano < 1,
then for f € HISW), p>1,

) w(l/n)
I (@) = 7 f32)[|) < o) 8"

foralln > 2.

Remark 5.1. Theorem 2.1 generalizes Theorem 6 in [9] under the conditions (i) and (ii).

Remark 5.2. In addition, the above corollary is also true for the classes of sequence H BV S and
RBYV S owing to the inclusions HBV S C AMIS and RBVS C AMDS.

Remark 5.3. If T = (ap ) is a Norlund matrix, then the conditions (i) and (ii) of Corollary 5.2
is reduced to the conditions of Theorem 2 in [5] and to more general case of Theorem 3.1 in [3],
respectively. Moreover, Corollary 5.1 generalizes Theorem 2 in [5].
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Remark 5.4. 1f we take a,, ,, = M, where r,, = Zn o Pr—mm; then the condition (iv)
m=

r
of Theorem 2.1 in this studying is reduced the conditions of Theorem 3.2 in [3]. Therefore, Theorem
2.1 generalizes Theorem 3.2 in [3] under the condition (iv). Here, if p,_,, = ——, 0 < m < n, and
n+1
)0, 0Sm<n— A,
= 1, n—X\, <m <n,
then it gives us generalized de la Vallée Poussin means where (),) is a nondecreasing sequence of
positive integers with \g = 1 and A\, 11 < A, + 1.
(e

Remark 5.5. If we take a, , = p}:lm, where P = 2:1:0 po; Pl = Z:O A% p, and

n

AL = @ :L_ n) ,a > —1,n=1,23,..., then the conditions of Corollary 5.2 is reduced the
conditions (i) and (ii) of Theorem 3.3 in [3]. Furthermore, Corollary 5.1 and Corollary 5.2 generalize
Theorem 3.3 and Theorem 3.4 in [3] by taking into account Remark 5.2 under the conditions (i) and
(i1).

Remark 5.6. The condition (iv) of Theorem 2.1 is different from the condition (iv) of Theorem
6 in [9] with the additional condition n|A,,(anm)| < 1, m =0, 1.
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