M. H. M. Rashid, T. Prasad (Mu'tah Univ., Al-Karak, Jordan)

STABILITY OF VERSIONS OF THE WEYL-TYPE THEOREMS UNDER TENSOR PRODUCT

СТАБІЛЬНІСТЬ РІЗНИХ ВЕРСІЙ ТЕОРЕМ ТИПУ ВЕЙЛЯ ДЛЯ ТЕНЗОРНОГО ДОБУТКУ

We study the transformation versions of the Weyl-type theorems from operators T and S for their tensor product $T \otimes S$ in the infinite-dimensional space setting.

Вивчаються трансформовані версії теорем типу Вейля для операторів T і S та їх тензорного добутку $T\otimes S$ у нескінченновимірній постановці.

1. Introduction. Given Banach spaces \mathcal{X} and \mathcal{Y} , let $\mathcal{X} \otimes \mathcal{Y}$ denote the completion (in some reasonable uniform cross norm) of the tensor product of \mathcal{X} and \mathcal{Y} . For Banach space operators $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$, let $A \otimes B \in \mathcal{B}(\mathcal{X} \otimes \mathcal{Y})$ denote the *tensor product* of A and B. Recall that for an operator S, the *Browder spectrum* $\sigma_b(S)$ and the *Weyl spectrum* $\sigma_w(S)$ of S are the sets

$$\sigma_b(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is not Fredholm or } \operatorname{asc}(S - \lambda) \neq \operatorname{dsc}(S - \lambda)\},$$
$$\sigma_w(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is not Fredholm or } \operatorname{ind}(S - \lambda) \neq 0\}.$$

In the case in which $\mathcal X$ and $\mathcal Y$ are Hilbert spaces, Kubrusly and Duggal [13] proved that

if
$$\sigma_b(A) = \sigma_w(A)$$
 and $\sigma_b(B) = \sigma_w(B)$, then $\sigma_b(A \otimes B) = \sigma_w(A \otimes B)$
if and only if $\sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$.

In other words, if A and B satisfy Browder's theorem, then their tensor product satisfies Browder's theorem if and only if the Weyl spectrum identity holds true. The same proof still holds in a Banach space setting. Recently, Rashid and Prasad studied property (Sw): a Banach space operator T, $T \in \mathcal{B}(\mathcal{X})$, satisfies property (Sw) if $\sigma(T) \setminus \sigma_{SBF_+^-}(T) = E^0(T)$, where σ denote the usual spectrum, $\sigma_{SBF_+^-}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not an upper } B\text{-Fredholm or ind } (T - \lambda) > 0\}$ denotes the upper B-Weyl spectrum and $E^0(T) = \{\lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty\}$ is the set of finite multiplicity isolated eigenvalues of T and that $T \in \mathcal{B}(\mathcal{X})$ obeys property (Sb) if $\sigma(T) \setminus \sigma_{SBF_+^-}(T) = \pi^0(T)$, where $\pi^0(T)$ is the set of all poles of finite rank. This paper intents to discuss the stability of property (Sb) and property (Sw) under tensor product $T \otimes S$ of Banach space operators T and S.

2. Notation and complementary results. For a bounded linear operator $S \in \mathcal{B}(\mathcal{X})$, let $\sigma(S)$, $\sigma_p(S)$ and $\sigma_a(S)$ denote, respectively, the *spectrum*, the *point spectrum* and the *approximate point spectrum* of S and if $G \subseteq \mathbb{C}$, then iso G denote the *isolated points* of G. Let $\alpha(S)$ and $\beta(S)$ denote the *nullity* and the *deficiency* of S, defined by $\alpha(S) = \dim \ker(S)$ and $\beta(S) = \dim \Re(S)$. If the range $\Re(S)$ of S is closed and $\alpha(S) < \infty$ (resp. $\beta(S) < \infty$), then S is called an *upper semi-Fredholm* (resp. a *lower semi-Fredholm*) operator. If $S \in \mathcal{B}(\mathcal{X})$ is either upper or lower semi-Fredholm, then S is called a *semi-Fredholm* operator, and $\inf(S)$, the index of S, is then defined by $\inf(S) = \alpha(S) - \beta(S)$. If both $\alpha(S)$ and $\beta(S)$ are finite, then S is a *Fredholm* operator. The

ascent, denoted asc (S), and the descent, denoted dsc (S), of S are given by asc $(S) = \inf\{n \in \mathbb{N} : \ker(S^n) = \ker(S^{n+1})\}$, dsc $(S) = \inf\{n \in \mathbb{N} : \Re(S^n) = \Re(S^{n+1})\}$ (where the infimum is taken over the set of nonnegative integers; if no such integer n exists, then asc $(S) = \infty$, respectively dsc $(S) = \infty$).

According to Coburn [7], Weyl's theorem holds for S if $\Delta(S) = \sigma(S) \setminus \sigma_w(S) = E^0(S)$, and that Browder's theorem holds for $S(S \in \mathcal{B})$ if $\Delta(S) = \sigma(S) \setminus \sigma_w(S) = \pi^0(S)$, or equivalently $\sigma_b(S) = \sigma_w(T)$.

$$\sigma_{LD}(S) = \{ \lambda \in \mathbb{C} : S - \lambda \notin LD(\mathcal{X}) \}.$$

Following [2], an operator $S \in \mathcal{B}(\mathcal{X})$ is said to be left Drazin invertible if $S \in LD(\mathcal{X})$. We say that $\lambda \in \sigma_a(S)$ is a left pole of S if $S - \lambda I \in LD(X)$, and that $\lambda \in \sigma_a(S)$ is a left pole of S of finite rank if λ is a left pole of S and $\alpha(S - \lambda I) < \infty$. Let $\pi_a(S)$ denotes the set of all left poles of S and let $\pi_a^0(S)$ denotes the set of all left poles of S of finite rank. From [2] (Theorem 2.8) it follows that if $S \in \mathcal{B}(\mathcal{X})$ is left Drazin invertible, then S is an upper semi-S-Fredholm operator of index less than or equal to S. Note that $\pi_a(S) = \sigma(S) \setminus \sigma_{LD}(S)$ and hence S if and only if S if and only if S if S if and only if S is an upper semi-S if and only if S is an upper semi-S if and only if S if and only if S if and only if S if an an upper semi-S if an upper semi-S if an upper semi-S if and only if S if an upper semi-S if an upper semi-S

According to [17], $T \in \mathcal{B}(\mathcal{X})$ satisfies property (Bw) if $\sigma(T) \setminus \sigma_{BW}(T) = E^0(T)$. We say that T satisfies property (Bb) if $\sigma(T) \setminus \sigma_{BW}(T) = \pi^0(T)$ [18]. Property (Bw) implies Weyl's theorem but converse is not true also property (Bw) implies property (Bb) but converse is not true [18]. Let $\mathcal{SBF}_+^-(\mathcal{X})$ denote the class of all upper B-Fredholm operators such that $\operatorname{ind}(T) \leq 0$. The upper B-Weyl spectrum $\sigma_{SBF_+^-}(T)$ of T is defined by $\sigma_{SBF_+^-}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \mathcal{SBF}_+^-(\mathcal{X})\}$.

Rashid and Prasad [20] introduced and studied new versions of the Weyl-type theorems property (Sw) and property (Sb).

Definition 2.1. A bounded linear operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy

- (i) property (Sw) if $\sigma(T) \setminus \sigma_{SBF_{\perp}^{-}}(T) = E^{0}(T)$ [20],
- (ii) property (Sb) if $\sigma(T) \setminus \sigma_{SBF_+}^{-}(T) = \pi^0(T)$ [20],
- (iii) property(Bgw) if $\sigma_a(T) \setminus \sigma_{SBF_{\perp}^-}(T) = E^0(T)$ [18].

The operator $T \in \mathcal{B}(\mathcal{X})$ is said to have the *single valued extension property* at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0) if for every open disc \mathbb{D} centred at λ_0 , the only analytic function $f: \mathbb{D} \to \mathcal{X}$ which satisfies the equation $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in \mathbb{D}$ is the function $f \equiv 0$. An operator $T \in \mathcal{B}(\mathcal{X})$ is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$. Obviously, every $T \in \mathcal{B}(\mathcal{X})$ has SVEP at the points of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$. Moreover, from the identity theorem for analytic function, it easily follows that $T \in \mathcal{B}(\mathcal{X})$, as well as its dual T^* , has SVEP at every point of the

boundary $\partial \sigma(T) = \partial \sigma(T^*)$ of the spectrum $\sigma(T)$. In particular, both T and T^* have SVEP at every isolated point of the spectrum, see [1]. Let $T \in \mathcal{B}(\mathcal{X})$ and let $s \in \mathbb{N}$ then T has uniform descent for $n \geq s$ if $\Re(T) + \ker(T^n) = \Re(T) + \ker(T^s)$ for all $n \geq s$. If in addition $\Re(T) + \ker(T^s)$ is closed, then T is said to have topological descent for $n \geq s$ [10]. Let

$$\mathcal{SF}_{+}(S) = \{\lambda \in \mathbb{C} : S - \lambda \quad \text{is upper semi-Fredholm} \},$$

$$\mathcal{F}(S) = \{\lambda \in \mathbb{C} : S - \lambda \quad \text{is Fredholm} \},$$

$$\sigma_{SF_{+}}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \notin \mathcal{SF}_{+}(S) \},$$

$$\sigma_{SF_{+}^{-}}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \in \sigma_{SF_{+}}(S) \text{ or ind } (S - \lambda) > 0 \},$$

$$\sigma_{ub}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \in \sigma_{SF_{+}}(S) \text{ or asc } (S - \lambda) = \infty \},$$

$$\pi_{a}^{0}(S) = \{\lambda \in \text{iso } \sigma_{a}(S) : \lambda \in \mathcal{SF}_{+}(S), \text{ asc } (S - \lambda) < \infty \},$$

$$E_{a}^{0}(S) = \{\lambda \in \text{iso } \sigma_{a}(S) : 0 < \alpha(S - \lambda) < \infty \},$$

$$\mathcal{SBF}_{+}(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is upper semi-}B\text{-Fredholm} \},$$

$$\mathcal{SBF}(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is }B\text{-Fredholm} \},$$

$$\sigma_{SBF_{+}}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \notin \mathcal{SBF}_{+}(S) \},$$

$$\sigma_{SBF_{+}^{-}}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \in \sigma_{SBF_{+}}(S) \text{ or ind } (S - \lambda) > 0 \},$$

$$H_{0}(S) = \{x \in \mathcal{X} : \lim_{n \to \infty} \|S^{n}x\|^{1/n} = 0 \},$$

$$\Delta^{g}(S) = \{\lambda \in \mathbb{C} : \lambda \in \sigma(S) \setminus \sigma_{BW}(S) \},$$

$$\Delta^{g}(S) = \{\lambda \in \mathbb{C} : \lambda \in \sigma_{a}(S) \setminus \sigma_{SBF_{+}^{-}}(S) \}.$$

Recall that $\sigma_{SF_{+}^{-}}(S)$ is the Weyl approximate point spectrum of S, $\sigma_{ub}(S)$ is the Browder approximate point spectrum of S, and $H_0(S)$ is the quasinilpotent of S [1].

We say that $S \in \mathcal{B}(\mathcal{X})$ satisfies a-Browder's theorem $(S \in a\mathcal{B})$ if $\sigma_{SF_+^-}(S) = \sigma_{ub}(S)$ or equivalently, $\Delta_a(S) = \sigma_a(S) \setminus \sigma_{SF_+^-}(S) = \pi_a^0(S)$ and that $S \in \mathcal{B}(\mathcal{X})$ satisfies a-Weyl's theorem $(S \in a\mathcal{W})$ if $\Delta_a(S) = E_0^a(S)$ [21].

Lemma 2.1. Let $T \in \mathcal{B}(\mathcal{X})$ and $S \in \mathcal{B}(\mathcal{Y})$. Then

- (i) $\sigma_x(T \otimes S) = \sigma_x(T)\sigma_x(S)$, where $\sigma_x = \sigma$ or σ_a [5, 22],
- (ii) $\sigma_{SF_+}(T \otimes S) = \sigma_{SF_+}(T)\sigma_a(S) \cup \sigma_a(T)\sigma_{SF_+}(S)$ [8].

Recall that an operator T is said to be isoloid if $\lambda \in \text{iso } \sigma(T)$ implies $\lambda \in \sigma_p(T)$ and that $T \in \mathcal{B}(\mathcal{X})$ is said to be a-isoloid if $\lambda \in \text{iso } \sigma_a(T)$ implies $\lambda \in \sigma_p(T)$. It is well-known that if T is a-isoloid, then T is isoloid but not conversely.

Lemma 2.2. Let $T \in \mathcal{B}(\mathcal{X})$ and $S \in \mathcal{B}(\mathcal{Y})$. If T and S are isoloid, then

- (i) $T \otimes S$ is isoloid [11],
- (ii) $E^0(T \otimes S) \subseteq E^0(T)E^0(S)$ [14].

Lemma 2.3 ([9], Theorem 3). If T and S satisfy Browder's theorem, then the following conditions are equivalent:

(i) $T \otimes S \in \mathcal{B}$,

- (ii) $\sigma_w(T \otimes S) = \sigma(T)\sigma_w(S) \cup \sigma_w(T)\sigma(S)$,
- (iii) T has SVEP at points $\mu \in \mathcal{F}(T)$ and S has SVEP at points $\nu \in \mathcal{F}(S)$ such that $(0 \neq) \lambda = \mu \nu \notin \sigma_w(T \otimes S)$.
 - 3. Property (Sw) and tensor product. We first give some useful lemmas.

Lemma 3.1. Let $T \in \mathcal{B}(\mathcal{X})$. If T obeys property (Sb) or satisfy any one of the following two conditions:

- (i) $\sigma_{SBF_{\perp}^{-}}(T) = \sigma_b(T)$,
- (ii) $\sigma_{SBF}(T) \cup E^0(T) = \sigma(T)$.

Then the following statements are equivalent:

- (i) T obeys property (Sw),
- $\text{(ii)} \ \ \sigma_{SBF_{-}^{-}}(T)\cap E^{0}(T)=\varnothing,$
- (iii) $E_0(T) = \pi^0(T)$.

Let $H_0(T)=\{x\in\mathcal{X}: \lim_{n\to\infty}\|T^nx\|^{\frac{1}{n}}=0\}$ and $K(T)=\{x\in\mathcal{X}: \text{ there exists a sequence } \{x_n\}\subset\mathcal{X} \text{ and } \delta>0 \text{ for which } x=x_0,\, T(x_{n+1})=x_n \text{ and } \|x_n\|\leq \delta^n\|x\| \text{ for all } n=1,2,\ldots\}$ denotes the quasinilpotent part and the analytic core of $T\in\mathcal{B}(\mathcal{X})$. It is well known that $H_0(T)$ and K(T) are nonclosed hyperinvariant subspace of \mathcal{X} such that $T^{-q}(0)\subseteq H_0(T)$ for all $q=0,1,2,\ldots$ and TK(T)=K(T) [15].

Lemma 3.2. Let $T \in \mathcal{B}(\mathcal{X})$ and $S \in \mathcal{B}(\mathcal{Y})$ obey property (Sb). Then $T \otimes S$ obeys property (Sb) if and only if $\sigma_{SBF_{+}^{-}}(T \otimes S) = \sigma_{SBF_{+}^{-}}(T)\sigma(S) \cup \sigma_{SBF_{+}^{-}}(S)\sigma(T)$.

Proof. First, we have to show that $\sigma_{SBF_+^-}(T \otimes S) \subseteq \sigma_{SBF_+^-}(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T)$. Let $\lambda \notin \sigma_{SBF_+^-}(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T)$. For every factorization $\lambda = \mu\nu$ such that $\mu \in \sigma(T)$ and $\nu \in \sigma(S)$ we have that $\mu \in \sigma(T) \setminus \sigma_{SBF_+^-}(T)$ and $\mu \in \sigma(S) \setminus \sigma_{SBF_+^-}(S)$. That is, $T - \mu I$ and $S - \nu I$ are upper semi-B- Fredholm operators. In particular $\lambda \notin \sigma_{SBF_+}(T \otimes S)$. Now we obtain to prove that $\operatorname{ind}(T \otimes S - \lambda) \leq 0$. If $\operatorname{ind}(T \otimes S - \lambda) > 0$, then it follows that $(T \otimes S - \lambda) \leq \infty$ have finite indices and so $(T \otimes S - \lambda) \in \mathcal{F}$. Let $E = \{(\mu_i, \nu_i) \in \sigma(T)\sigma(S) : 1 \leq i \leq p, \mu_i\nu_i = \lambda\}$. Then from [12] (Theorem 3.5) $\operatorname{ind}(T \otimes S - \lambda) = \sum_{j=n+1}^p \operatorname{ind}(T - \mu_j) \operatorname{dim} H_0(S - \nu_j) + \sum_{j=1}^n \operatorname{ind}(S - \nu_j) \operatorname{dim} H_0(T - \nu_j)$. Since $\operatorname{ind}(T - \mu_i) < 0$ and $\operatorname{ind}(S - \nu_i) < 0$, we get a contradiction. Consequently, $\lambda \notin \sigma_{SBF_+^-}(T \otimes S)$ is true and since $\sigma_{SBF_+^-}(T) \subseteq \sigma_w(T)$ and $\sigma_{SBF_+^-}(S) \subseteq \sigma_w(S)$, we have $\sigma_{SBF_+^-}(T \otimes S) \subseteq \sigma_{SBF_+^-}(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T) \subseteq \sigma_w(T)\sigma(S) \cup \sigma_w(S)\sigma(T) \subseteq \sigma_b(T)\sigma(S) \cup \sigma_b(S)\sigma(T) = \sigma_b(T \otimes S)$. Then the equality $\sigma_{SBF_+^-}(T \otimes S) = \sigma_{SBF_+^-}(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T) \subseteq \sigma_w(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T)$ follows from Lemma 3.1. Conversely, suppose the equality $\sigma_{SBF_+^-}(T \otimes S) = \sigma_{SBF_+^-}(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T)$ holds. Since T and S satisfy property (Sb), it follows that

$$\sigma_{SBF_{+}^{-}}(T \otimes S) = \sigma_{SBF_{+}^{-}}(T)\sigma(S) \cup \sigma_{SBF_{+}^{-}}(S)\sigma(T) =$$
$$= \sigma_{b}(T)\sigma(S) \cup \sigma_{b}(S)\sigma(T) = \sigma_{b}(T \otimes S).$$

That is, $T \otimes S$ obeys property (Sb).

Lemma 3.2 is proved.

In [14], Kubrusly and Duggal studied the stability of Weyl's theorem under tensor product in the infinite dimensional space setting. Rashid [19] studied the stability of generalized Weyl's theorem under tensor product in the infinite dimensional Banach space. The following main theorem shows if

isoloid operators T and S satisfies property (Sw) and the equality $\sigma_{SBF_+^-}(T\otimes S)=\sigma_{SBF_+^-}(T)\sigma(S)\cup \sigma_{SBF_+^-}(S)\sigma(T)$ holds, then $T\otimes S$ satisfies property (Sw) in the infinite dimensional space setting. Let $\sigma_{PF}(T)=\{\lambda\in\sigma_p(T):\alpha(T-\lambda)<\infty\}=\{\lambda\in\mathbb{C}:0<\alpha(T-\lambda)<\infty\}.$

Theorem 3.1. If isoloid operators T and S satisfies property (Sw) and the equality $\sigma_{SBF_+^-}(T \otimes S) = \sigma_{SBF_+^-}(T)\sigma(S) \cup \sigma_{SBF_+^-}(S)\sigma(T)$ holds, then $T \otimes S$ satisfies property (Sw).

Proof. Since T and S satisfies property (Sw), T and S satisfies property (Sb) by [20] (Theorem 2.7). Then by the equality hypothesis $\sigma_{SBF_+^-}(T\otimes S)=\sigma_{SBF_+^-}(T)\sigma(S)\cup\sigma_{SBF_+^-}(S)\sigma(T)$, $T\otimes S$ satisfies property (Sb) (see Lemma 3.2). Suppose $T\otimes S$ does not satisfies property (Sw). Then we have the result $\sigma_{SBF_+^-}(T\otimes S)\cap E^0(T\otimes S)\neq\varnothing$.

Since $\sigma_{SBF_{+}^{-}}(T \otimes S) = \sigma_{SBF_{+}^{-}}(T)\sigma(S) \cup \sigma_{SBF_{+}^{-}}(S)\sigma(T)$, we get $\lambda = \mu v \in \sigma_{SBF_{+}^{-}}(T \otimes S)$ if and only if $(\mu, v) \in \sigma_{SBF_{+}^{-}}(T)\sigma(S)$ or $(\mu, v) \in \sigma_{SBF_{+}^{-}}(S)\sigma(T)$. If $\lambda \in E^{0}(T \otimes S)$, then by applying [14] (Lemma 3), $\lambda \in E^{0}(T)E^{0}(S)$. Thus if, $\lambda = \mu v \in \sigma_{SBF_{+}^{-}}(T \otimes S) \cap E^{0}(T \otimes S)$, then it follows that $0 \neq \lambda = \mu v = \mu' v'$ with $\mu = \frac{\lambda}{\nu} \in \sigma_{SBF_{+}^{-}}(T)$, $\mu' = \frac{\lambda}{\nu'} \in E^{0}(S)$, $\nu = \frac{\lambda}{\mu} \in \sigma_{SBF_{+}^{-}}(S)$, $\nu' = \frac{\lambda}{\nu'} \in E^{0}(T)$. Thus, $E^{0}(T) \neq \emptyset$ and $E^{0}(S) \neq \emptyset$. Since $\lambda = \mu v \in E^{0}(T \otimes S)$, it follows by [14] (Lemma 5) that $\mu \in \sigma_{\rm iso}(T)$ and $\nu \in \sigma_{\rm iso}(S)$. Since T and T are isoloid, and since T and T are isoloid, and since T and T are isoloid, and T are isoloid in T and T are isoloid in T and T are isoloid. This isolows that T and T are isoloid in T and T are isoloid. This isologous that T and T are isoloid in T and T are isoloid. This isologous that T and T are isoloid. This isologous that T and T are isologou

Theorem 3.1 is proved.

4. Perturbations. Let [T,S] = TS - ST denote the commutator of the operators T and S. If $Q_1 \in \mathcal{B}(\mathcal{X})$ and $Q_2 \in \mathcal{B}(\mathcal{Y})$ are quasinilpotent operators such that $[Q_1,T] = [Q_2,S] = 0$ for some operators $T \in \mathcal{B}(\mathcal{X})$ and $S \in \mathcal{B}(\mathcal{Y})$, then

$$(T+Q_1)\otimes (S+Q_2)=(T\otimes S)+Q,$$

where $Q = Q_1 \otimes S + T \otimes Q_2 + Q_1 \otimes Q_2 \in \mathcal{B}(\mathcal{X} \otimes \mathcal{Y})$ is quasinilpotent operator.

Recall that $T \in \mathcal{B}(\mathcal{X})$ is finitely isoloid if $\lambda \in \text{iso } \sigma(T)$ implies $\lambda \in E^0(T)$.

Theorem 4.1. Let $T \in \mathcal{B}(\mathcal{X})$ and $S \in \mathcal{B}(\mathcal{Y})$ having SVEP and let $Q_1 \in \mathcal{B}(\mathcal{X})$ and $Q_2 \in \mathcal{B}(\mathcal{Y})$ be quasinilpotent operators such that $[Q_1, T] = [Q_2, S] = 0$. If $T \otimes S$ is finitely isoloid, then $T \otimes S$ satisfies property (Sw) implies $(T + Q_1) \otimes (S + Q_2)$ satisfies property (Sw).

Proof. Recall that $\sigma((T+Q_1)\otimes (S+Q_2))=\sigma(T\otimes S), \ \sigma_a((T+Q_1)\otimes (S+Q_2))=\sigma_a(T\otimes S), \ \sigma_{SBF_+^-}((T+Q_1)\otimes (S+Q_2))=\sigma_{SBF_+^-}(T\otimes S)$ and that the perturbation of an operator by a commuting quasinilpotent has SVEP if and only if the operator has SVEP. If $T\otimes S$ satisfies property (Sw), then

$$E^{0}(T \otimes S) = \sigma(T \otimes S) \setminus \sigma_{SBF_{+}^{-}}(T \otimes S) =$$

$$= \sigma((T + Q_{1}) \otimes (S + Q_{2})) \setminus \sigma_{SBF_{+}^{-}}((T + Q_{1}) \otimes (S + Q_{2})).$$

We prove $E^0(T \otimes S) = E^0((T + Q_1) \otimes (S + Q_2))$. Observe that if $\lambda \in \text{iso } \sigma(T \otimes S)$, then $T^* \otimes S^*$ has SVEP at λ ; equivalently, $(T^* + Q_1^*) \otimes (S^* + Q_2^*)$ has SVEP at λ . Let $\lambda \in E^0(T \otimes S)$. Then

 $\lambda \in \sigma((T+Q_1) \otimes (S+Q_2)) \setminus \sigma_{SBF^-_+}((T+Q_1) \otimes (S+Q_2)). \text{ Since } (T+Q_1)^* \otimes (S+Q_2)^* \text{ has SVEP at } \lambda, \text{ it follows that } \lambda \notin \sigma_w((T+Q_1) \otimes (S+Q_2)) \text{ and } \lambda \in \text{iso } ((T+Q_1) \otimes (S+Q_2)). \text{ Thus } \lambda \in E^0((T+Q_1) \otimes (S+Q_2)). \text{ Hence } E^0(T \otimes S) \subseteq E^0((T+Q_1) \otimes (S+Q_2)). \text{ Conversely, if } \lambda \in E^0((T+Q_1) \otimes (S+Q_2)), \text{ then } \lambda \in \text{iso } (T \otimes S), \text{ and this, since } T \otimes S \text{ is finitely isoloid, implies that } \lambda \in E^0(T \otimes S). \text{ Hence } E^0((T+Q_1) \otimes (S+Q_2)) \subseteq E^0(T \otimes S).$

Theorem 4.1 is proved.

From [6], we recall that an operator $R \in \mathcal{B}(\mathcal{X})$ is said to be Riesz if $R - \lambda I$ is Fredholm for every non-zero complex number λ .

For a bounded operator T on \mathcal{X} , we denote by $E_{0f}(T)$ the set of isolated points λ of $\sigma(T)$ such that $\ker(T - \lambda I)$ is finite-dimensional. Evidently, $E_0(T) \subseteq E_{0f}(T)$.

Lemma 4.1. Let T be a bounded operator on \mathcal{X} . If R is a Riesz operator that commutes with T, then

$$E^0(T+R) \cap \sigma(T) \subseteq \text{iso } \sigma(T).$$

Proof. Clearly,

$$E^0(T+R) \cap \sigma(T) \subseteq E_{0f}(T+R) \cap \sigma(T)$$

and by Lemma 2.3 of [16] the last set contained in iso $\sigma(T)$.

Lemma 4.1 is proved.

Now we consider the perturbations by commuting Riesz operators. Let $T,R\in\mathcal{B}(\mathcal{X})$ be such that R is Riesz and [T,R]=0. The tensor product $T\otimes R$ is not a Riesz operator (the Fredholm spectrum $\sigma_F(T\otimes R)=\sigma(T)\sigma_F(R)\cup\sigma_F(T)\sigma(R)=\sigma_F(T)\sigma(R)=\{0\}$ for a particular choice of T only). However, σ_w (also, σ_b) is stable under perturbation by commuting Riesz operators [23], and so T satisfies Browder's theorem if and only if T+R satisfies Browder's theorem. Thus, if $\sigma(T)=\sigma(T+R)$ for a certain choice of operators $T,R\in\mathcal{B}(\mathcal{X})$ (such that R is Riesz and [T,R]=0), then

$$\pi^0(T) = \sigma(T) \setminus \sigma_w(T) = \sigma(T+R) \setminus \sigma_w(T+R) = \pi^0(T+R),$$

where $\pi^0(T)$ is the set of $\lambda \in \text{iso } \sigma(T)$ which are finite rank poles of the resolvent of T. If we now suppose additionally that T satisfies property (Sw), then

$$E^{0}(T) = \sigma(T) \setminus \sigma_{SBF_{\perp}^{-}}(T) = \sigma(T) \setminus \sigma_{w}(T) = \sigma(T+R) \setminus \sigma_{w}(T+R), \tag{4.1}$$

and a necessary and sufficient condition for T+R to satisfy property (Sw) is that $E_a^0(T+R)=E_a^0(T)$. One such condition, namely T is finitely isoloid.

Proposition 4.1. Let $T, R \in \mathcal{B}(\mathcal{X})$, where R is Riesz, [T, R] = 0 and T is finitely isoloid. Then T satisfies property (Sw) implies T + R satisfies property (Sw).

Proof. Observe that if T obeys property (Sw), then identity (4.1) holds. Let $\lambda \in E^0(T)$. Then it follows from Lemma 4.1 that $\lambda \in E^0(T) \cap \sigma(T) = E^0(T+R-R) \subseteq \operatorname{iso} \sigma(T+R)$ and so $T^* + R^*$ has SVEP at λ . Since $\lambda \in \sigma(T+R) \setminus \sigma_w(T+R)$, $T^* + R^*$ has SVEP at λ implies $T + R - \lambda$ is Fredholm of index 0 and so $\lambda \in E^0(T+R)$. Thus $E^0(T) \subseteq E^0(T+R)$. Now let $\lambda \in E^0(T+R)$. Then $\lambda \in E^0(T+R) \cap \sigma(T+R) = E^0(T+R) \cap \sigma(T) \subseteq \operatorname{iso} \sigma(T)$, which by the finite isoloid property of T implies $\lambda \in E^0(T)$. Hence $E^0(T+R) \subseteq E^0(T)$.

Proposition 4.1 is proved.

Theorem 4.2. Let $T \in \mathcal{B}(\mathcal{X})$ and $S \in \mathcal{B}(\mathcal{X})$ be finitely isoloid operators which satisfy property (Sw). If $R_1 \in \mathcal{B}(\mathcal{X})$ and $R_2 \in \mathcal{B}(\mathcal{Y})$ are Riesz operators such that $[T, R_1] = [S, R_2] = 0$, $\sigma(T + R_1) = \sigma(T)$ and $\sigma(S + R_2) = \sigma(S)$, then $T \otimes S$ satisfies property (Sw) implies $(T + R_1) \otimes (S + R_2)$ satisfies property (Sw) if and only if Browder's theorem transforms from $T + R_1$ and $S + R_2$ to their tensor product.

Proof. The hypotheses imply (by Proposition 4.1) that both $T+R_1$ and $S+R_2$ satisfy property (Sw). Suppose that $T\otimes B$ satisfies property (Sw). Then $\sigma(T\otimes B)\setminus \sigma_{SBF_+^-}(T\otimes S)=E^0(T\otimes S)$. Evidently $T\otimes B$ satisfies Browder's theorem, and so the hypothesis T and B satisfy property (Sw) implies that Browder's theorem transfers from T and S to $T\otimes S$. Furthermore, since, $\sigma(T+R_1)==\sigma(T), \ \sigma(S+R_2)=\sigma(S), \ \text{and} \ \sigma_w$ is stable under perturbations by commuting Riesz operators,

$$\sigma_{SBF_{+}^{-}}(T \otimes S) = \sigma_{w}(T \otimes S) = \sigma(T)\sigma_{w}(S) \cup \sigma_{w}(T)\sigma(S) =$$

$$= \sigma(T + R_{1})\sigma_{w}(S + R_{2}) \cup \sigma_{w}(T + R_{1})\sigma(S + R_{2}) =$$

$$= \sigma(T + R_{1})\sigma_{SBF_{+}^{-}}(S + R_{2}) \cup \sigma_{SBF_{+}^{-}}(T + R_{1})\sigma(S + R_{2}).$$

Suppose now that Browder's theorem transfers from $T + R_1$ and $S + R_2$ to $(T + R_1) \otimes (S + R_2)$. Then

$$\sigma_w(T \otimes S) = \sigma_w((T + R_1) \otimes (S + R_2))$$

and

$$E^{0}(T \otimes S) = \sigma((T + R_{1}) \otimes (S + R_{2})) \setminus \sigma_{w}((T + R_{1}) \otimes (S + R_{2})).$$

Let $\lambda \in E^0(T \otimes S)$. Then $\lambda \neq 0$, and hence there exist $\mu \in \sigma(T+R_1) \setminus \sigma_w(T+R_1)$ and $\nu \in \sigma(S+R_2) \setminus \sigma_w(S+R_2)$ such that $\lambda = \mu\nu$. As observed above, both $T+R_1$ and $S+R_2$ satisfy property (Sw); hence $\mu \in E^0(S+R_1)$ and $\nu \in E^0(S+R_2)$. This, since $\lambda \in \sigma(T \otimes S) = \sigma((T+R_1) \otimes (S+R_2))$, implies $\lambda \in E^0((T+R_1) \otimes (S+R_2))$. Conversely, if $\lambda \in E^0((T+R_1) \otimes (S+R_2))$, then $\lambda \neq 0$ and there exist $\mu \in E^0(T+R_1) \subseteq \text{iso } \sigma(T)$ and $\nu \in E^0(S+R_2) \subseteq \text{iso } \sigma(S)$ such that $\lambda = \mu\nu$. Recall that $E^0((T+R_1) \otimes (S+R_2)) \subseteq E^0(T+R_1)E^0(S+R_2)$. Since T and S are finite isoloid, $\mu \in E^0(T)$ and $\nu \in E^0(S)$. Hence, since $\sigma((T+R_1) \otimes (S+R_2)) = \sigma(T \otimes S)$, $\lambda = \mu\nu \in E^0(T \otimes S)$. To complete the proof, we observe that if the implication of the statement of the theorem holds, then (necessarily) $(T+R_1) \otimes (S+R_2)$ satisfies Browder's theorem. This, since $T+R_1$ and $T+R_2$ satisfy Browder's theorem, implies Browder's theorem transfers from $T+R_1$ and $T+R_2$ satisfy Browder's theorem, implies Browder's theorem transfers from $T+R_1$ and $T+R_2$ to $T+R_2$ satisfy Browder's theorem, implies Browder's theorem transfers from $T+R_1$ and $T+R_2$ to $T+R_2$ satisfy Browder's theorem, implies Browder's theorem transfers from $T+R_1$

Theorem 4.2 is proved.

5. Property (Sw) for direct sum. Let \mathcal{H} and \mathcal{K} be infinite-dimensional Hilbert spaces. In this section we show that if T and S are two operators on \mathcal{H} and \mathcal{K} respectively and at least one of them satisfies property (Sw) then their direct sum $T \oplus S$ obeys property (Sw). We also explore various conditions on T and S to ensure that $T \oplus S$ satisfies property (Sw).

Theorem 5.1. Suppose that property (Sw) holds for $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$. If T and S are isoloid and $\sigma_{SBF_+^-}(T \oplus S) = \sigma_{SBF_+^-}(T) \cup \sigma_{SBF_+^-}(S)$, then property (Sw) holds for $T \oplus S$.

Proof. We know that $\sigma(T \oplus S) = \sigma(T) \cup \sigma(S)$ for any pairs of operators. If T and S are isoloid, then

$$E^{0}(T \oplus S) = \left[E^{0}(T) \cap \rho(S) \right] \cup \left[\rho(T) \cap E^{0}(S) \right] \cup \left[E^{0}(T) \cap E^{0}(S) \right],$$

where $\rho(.) = \mathbb{C} \setminus \sigma(.)$.

If property (Sw) holds for T and S, then

$$\begin{split} & \left[\sigma(T)\cup\sigma(S)\right] \setminus \left[\sigma_{SBF_+^-}(T)\cup\sigma_{SBF_+^-}(S)\right] = \\ & = \left[E^0(T)\cap\rho(S)\right] \cup \left[\rho(T)\cap E^0(S)\right] \cup \left[E^0(T)\cap E^0(S)\right]. \end{split}$$

Thus,
$$E^0(T\oplus S)=[\sigma(T)\cup\sigma(S)]\setminus\left[\sigma_{SBF_+^-}(T)\cup\sigma_{SBF_+^-}(S)\right]$$
. If $\sigma_{SBF_+^-}(T\oplus S)=\sigma_{SBF_+^-}(T)\cup\sigma_{SBF_+^-}(S)$, then

$$E^0(T \oplus S) = \sigma(T \oplus S) \setminus \sigma_{SBF_+^-}(T \oplus S).$$

Hence property (Sw) holds for $T \oplus S$.

Theorem 5.1 is proved.

Theorem 5.2. Suppose that $T \in \mathcal{B}(\mathcal{H})$ such that iso $\sigma(T) = \emptyset$ and $S \in \mathcal{B}(\mathcal{K})$ satisfies property (Sw). If $\sigma_{SBF_{-}}(T \oplus S) = \sigma(T) \cup \sigma_{SBF_{-}}(S)$, then property (Sw) holds for $T \oplus S$.

Proof. We know that $\sigma(T \oplus S) = \sigma(T) \cup \sigma(S)$ for any pairs of operators. Then

$$\sigma(T \oplus S) \setminus \sigma_{SBF_{+}^{-}}(T \oplus S) = [\sigma(T) \cup \sigma(S)] \setminus [\sigma(T) \cup \sigma_{SBF_{+}^{-}}(S)] =$$

$$= \sigma(S) \setminus [\sigma(T) \cup \sigma_{SBF_{+}^{-}}(S)] =$$

$$= [\sigma(S) \setminus \sigma_{SBF_{+}^{-}}(S)] \setminus \sigma(T) = E^{0}(S) \cap \rho(T).$$

If iso $\sigma(T) = \emptyset$ it implies that $\sigma(T) = \operatorname{acc} \sigma(T)$, where $\operatorname{acc} \sigma(T) = \sigma(T) \setminus \operatorname{iso} \sigma(T)$ is the set of all accumulation points of $\sigma(T)$. Thus we have

$$iso \sigma(T \oplus S) = [iso \sigma(T) \cup iso \sigma(S)] \setminus [(iso \sigma(T) \cap acc \sigma(S)) \cup (acc \sigma(T) \cap iso \sigma(S))] =$$

$$= [iso \sigma(T) \setminus acc \sigma(S)] \cup [iso \sigma(S) \setminus acc \sigma(T)] = iso \sigma(S) \setminus \sigma(T) = iso \sigma(S) \cap \rho(T).$$

We know that $\sigma_p(T \oplus S) = \sigma_p(T) \cup \sigma_p(S)$ and $\alpha(T \oplus S) = \alpha(T) + \alpha(S)$ for any pairs of operators T and S, so that

$$\sigma_{PF}(T \oplus S) = \{ \lambda \in \sigma_{PF}(T) \cup \sigma_{PF}(S) \alpha(T - \lambda I) + \alpha(S - \lambda I) < \infty \}.$$

Therefore,

$$E^{0}(T \oplus S) = \operatorname{iso} \sigma(T \oplus S) \cap \sigma_{PF}(T \oplus S) = \operatorname{iso} \sigma(S) \cap \rho(T) \cap \sigma_{PF}(S) = E^{0}(S) \cap \rho(T).$$

Thus $\sigma(T \oplus S) \setminus \sigma_{SBF^-_+}(T \oplus S) = E^0(T \oplus S)$. Hence $T \oplus S$ satisfies property (Sw).

Theorem 5.2 is proved.

Corollary 5.1. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is such that iso $\sigma(T) = \emptyset$ and $S \in \mathcal{B}(\mathcal{H})$ satisfies property (Sw) with iso $\sigma(S) \cap \sigma_p(S) = \emptyset$, and $\Delta_a^g(T \oplus S) = \emptyset$, then $T \oplus S$ satisfies property (Sw).

Proof. Since S satisfies property (Sw), therefore given condition iso $\sigma(S) \cap \sigma_p(S) = \varnothing$ implies that $\sigma(S) = \sigma_{SBF_+^-}(S)$. Now $\Delta_a^g(T \oplus S) = \varnothing$ gives that $\sigma_{SBF_+^-}(T \oplus S) = \sigma(T \oplus S) = \sigma(T) \cup \sigma_{SBF_+^-}(S)$. Thus from Theorem 5.2, we have that $T \oplus S$ satisfies property (Sw).

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 4

Corollary 5.2. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is such that iso $\sigma(T) \cup \Delta_a^g(T) = \emptyset$ and $S \in \mathcal{B}(\mathcal{K})$ satisfies property (Sw). If $\sigma_{SBF_+^-}(T \oplus S) = \sigma_{SBF_+^-}(T) \cup \sigma_{SBF_+^-}(S)$, then $T \oplus S$ satisfies property (Sw).

Theorem 5.3. Let $T \in \mathcal{B}(\mathcal{H})$ be an isoloid operator that satisfies property (Sw). If $S \in \mathcal{B}(\mathcal{K})$ is a normal operator satisfies property (Sw), then property (Sw) holds for $T \oplus S$.

Proof. If S is normal, then both S and S^* have SVEP, and $\operatorname{ind}(S-\lambda I)=0$ for every λ such that $S-\lambda I$ is a B-Fredholm. Observe that $\lambda\notin\sigma_{SBF_+^-}(T\oplus S)$ if and only if $S-\lambda I\in SBF_+(K)$ and $T-\lambda I\in SBF_+(H)$ and $\operatorname{ind}(T-\lambda I)+\operatorname{ind}(S-\lambda I)=\operatorname{ind}(T-\lambda I)\leq 0$ if and only if $\lambda\notin\Delta_a^g(T)\cap\Delta_a^g(S)$. Hence $\sigma_{SBF_+^-}(T\oplus S)=\sigma_{SBF_+^-}(T)\cup\sigma_{SBF_+^-}(S)$. It is well known that the isolated points of the approximate point spectrum of a normal operator are simple poles of the resolvent of the operator implies that S is isoloid. So the result follows now from Theorem 5.1.

Theorem 5.3 is proved.

References

- 1. Aiena P. Fredhlom and local specral theory, with application to multipliers. Dordrecht: Kluwer Acad. Publ., 2004.
- Berkani M., Koliha J. Weyl type theorems for bounded linear operators // Acta Sci. Math. (Szeged). 2003. 69. P. 359 – 376.
- 3. *Berkani M.* Index of *B*-Fredholm operators and generalisation of Weyls theorem // Proc. Amer. Math. Soc. 2002. 130. P. 1717 1723.
- 4. Berkani M., Sarih M. On semi B-Fredholm operators // Glasgow Math. J. 2001. 43. P. 457 465.
- 5. Brown A., Pearcy C. Spectra of tensor products of operators // Proc. Amer. Math. Soc. 1966. 17. P. 162 166.
- 6. Caradus S. R., Pfaffenberger W. E., Bertram Y. Calkin algebras and algebras of operators on Banach spaces. New York: Marcel Dekker, 1974.
- 7. Coburn L. A. Weyl's theorem for non-normal operators // Mich. Math. J. 1966. 13. P. 285 288.
- 8. Duggal B. P. Tensor product and property (w) // Rend. Circ. mat. Palermo. 2011. 60. P. 23 30.
- 9. Duggal B. P., Djordjevic S. V., Kubrusly C. S. On a-Browder and a-Weyl spectra of tensor products // Rend. Circ. mat. Palermo. 2010. 59. P. 473 481.
- 10. Grabiner S. Uniform ascent and descent of bounded operators // J. Math. Soc. Jap. 1982. 34. P. 317 337.
- 11. *Harte R.*, *An-Hyun Kim*. Weyl's theorem, tensor products and multilpication operators // J. Math. Anal. and Appl. 2007. **336**. P. 1124–1131.
- 12. Ichinose T. Spectral properties of linear operators I // Trans. Amer. Math. Soc. 1978. 235. P. 75 113.
- 13. Kubrusly C. S., Duggal B. P. On Weyl and Browder spectra of tensor product // Glasgow Math. J. 2008. 50. P. 289 302.
- 14. Kubrusly C. S., Duggal B. P. On Weyl's theorem for tensor products // Glasgow Math. J. 2013. 55. P. 139 144.
- Mbekhta M. Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux // Glasgow Math. J. – 1987. – 29. – P. 159–175.
- 16. Oudghiri M. Weyl's Theorem and perturbations // Integral Equat. Oper. Theory. 2005. 53. P. 535 545.
- 17. Gupta A., Kashyap N. Property (Bw) and Weyl type theorems // Bull. Math. Anal. and Appl. 2011. 3. P. 1–7.
- 18. Rashid M. H. M., Prasad T. Variations of Weyl type theorems // Ann. Funct. Anal. 2013. 4, № 1. P. 40 52.
- 19. Rashid M. H. M. Generalized Weyl's theorem and tensor product // Ukr. Math. J. 2013. 64, № 9. P. 1289 1296.
- 20. Rashid M. H. M., Prasad T. Property (Sw) for bounded linear operator // Asian-Eur. J. Math. 2015. 08. 14 p.
- 21. *Rakočević V.* On a class of operators // Mat. Vesnik. 1985. 37. P. 423 426.
- 22. Schechter M. On the spectra of operators on tensor product // J. Funct. Anal. 1969. 4. P. 95 99.
- 23. Schechter M., Whitley R. Best Fredholm perturbation theorems // Stud. Math. 1988. 90. P. 175 190.

Received 16.03.13, after revision — 18.11.15