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STABILITY OF VERSIONS OF THE WEYL-TYPE THEOREMS
UNDER TENSOR PRODUCT

CTABLJIBHICTH PI3HUX BEPCIi TEOPEM THUITY BEIJIS
JJIsA TEH30PHOI'O JOBYTKY

We study the transformation versions of the Weyl-type theorems from operators 7" and .S for their tensor product 7" ® S in
the infinite-dimensional space setting.

Buuatotecs TpaHcdopmoBaHi Bepcii TeopeM Tumy Beiins mis omeparopiB 7' i1 S Ta ix TeH3opHOro nodytky 77 ® Sy
HECKIHYCHHOBHUMIpHIH TIOCTaHOBIII.

1. Introduction. Given Banach spaces X and ), let ¥ ® ) denote the completion (in some reasonable
uniform cross norm) of the tensor product of X" and ). For Banach space operators A € B(X') and
B e B(Y),let A® B € B(X ®Y) denote the tensor product of A and B. Recall that for an operator
S, the Browder spectrum oy(S) and the Weyl spectrum o,,(S) of S are the sets

op(S) ={A € C: S — X isnotFredholm or asc(S— ) #dsc(S—N)},
ow(S)={A e C:S— X isnotFredholm or ind (S — \)#0}.
In the case in which X and ) are Hilbert spaces, Kubrusly and Duggal [13] proved that
if op(A) =0uw(A) and oy(B) =0y(B), then o4(A® B)=o0,(AR® B)
if and only if 0,(A® B) =0(A)ow(B)Uoyw(A)o(B).

In other words, if A and B satisfy Browder’s theorem, then their tensor product satisfies Brow-
der’s theorem if and only if the Weyl spectrum identity holds true. The same proof still holds in a
Banach space setting. Recently, Rashid and Prasad studied property (Sw): a Banach space operator 7',
T € B(X), satisfies property (Sw) if o(T)\o g5 Fr (T) = E°(T), where o denote the usual spectrum,
TSBE; (T) = {\ € C: T — X is not an upper B-Fredholm or ind (T" — A\) > 0} denotes the upper
B-Weyl spectrum and EY(T) = {\ € isoc(T): 0 < a(T — \) < oo} is the set of finite multiplicity
isolated eigenvalues of 7" and that 7' € B(X) obeys property (Sb) if o(T") \ Tspr: (T) = 7%(T),
where 70(T) is the set of all poles of finite rank. This paper intents to discuss the stability of property
(Sb) and property (Sw) under tensor product 7' ® S of Banach space operators 7" and S.

2. Notation and complementary results. For a bounded linear operator S € B(X), let o(5),
op(S) and 0, (S) denote, respectively, the spectrum, the point spectrum and the approximate point
spectrum of S and if G C C, then isoG denote the isolated points of G. Let a(S) and 5(5)
denote the nullity and the deficiency of S, defined by «(S) = dim ker(.S) and 3(S) = codim R(S).
If the range R(S) of S is closed and «a(S) < oo (resp. B(S) < o0), then S is called an upper
semi-Fredholm (resp. a lower semi-Fredholm) operator. If S € B(X) is either upper or lower semi-
Fredholm, then S is called a semi-Fredholm operator, and ind (S), the index of S, is then defined
by ind (S) = «(S) — B(S). If both «(S) and B(S) are finite, then S is a Fredholm operator. The
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ascent, denoted asc (5), and the descent, denoted dsc (S), of S are given by asc (S) = inf{n € N:
ker (S™) = ker (S"T1)}, dsc (S) = inf{n € N: R(S") = R(S"*!)} (where the infimum is taken
over the set of nonnegative integers; if no such integer n exists, then asc (S) = oo, respectively
dsc (S) = o0).

According to Coburn [7], Weyl’s theorem holds for S if A(S) = o(S) \ 0,(S) = E(S), and
that Browders theorem holds for S(S € B) if A(S) = o(9) \ 0w (S) = 7°(S), or equivalently
op(S) = ou(T).

For S € B(X) and a nonnegative integer n define Sp, to be the restriction of S to R(S™)
viewed as a map from R(S") into R(S™) (in particular, S = S). If for some integer n the
range space J(S") is closed and Sj, is an upper (a lower) semi-Fredholm operator, then S is
called an upper (a lower) semi-B-Fredholm operator. In this case the index of S is defined as the
index of the semi-B-Fredholm operator S}, see [4]. Moreover, if S}, is a Fredholm operator,
then S is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower
semi-B-Fredholm operator. An operator S is said to be a B-Weyl operator [3] (Definition 1.1)
if it is a B-Fredholm operator of index zero. The B-Weyl spectrum opgy (S) of S is defined by
opw(S) ={A € C: S — Al isnot a B— Weyl operator}. An operator S € B(X) is called Drazin
invertible if it has a finite ascent and descent. The Drazin spectrum op(S) of an operator S is
defined by op(S) = {\ € C: S — Al is not Drazin invertible}. Define also the set LD(X) by
LD(X) = {S € B(X): a(S) < oo and R(S4*1) is closed} and

ULD(S) = {)\E(CZ S—)\¢LD(X)}

Following [2], an operator S € B(X) is said to be left Drazin invertible if S € LD(X). We say that
A € 04(S) is a left pole of S if S — A\ € LD(X), and that A € 0,(S) is a left pole of S of finite
rank if A is a left pole of S and (S — AI) < oo. Let 7,(S) denotes the set of all left poles of S and
let 70(S) denotes the set of all left poles of .S of finite rank. From [2] (Theorem 2.8) it follows that if
S € B(X) is left Drazin invertible, then .S is an upper semi-B-Fredholm operator of index less than
or equal to 0. Note that 7,(S) = o(S) \ orp(S) and hence A € 7,(S) if and only if A ¢ o1p(.5).

According to [17], T € B(X) satisfies property (Bw) if o(T) \ opw (T) = E°(T). We say that
T satisfies property (Bb) if o(T) \ opw (T) = 7°(T) [18]. Property (Bw) implies Weyl’s theorem
but converse is not true also property (Bw) implies property (Bb) but converse is not true [18]. Let
SBF(X) denote the class of all upper B-Fredholm operators such that ind(7") < 0. The upper
B-Weyl spectrum TsBE; (T') of T is defined by TsBE; (T)={ eC: T -X¢ SBF (X)}.

Rashid and Prasad [20] introduced and studied new versions of the Weyl-type theorems property
(Sw) and property (Sb).

Definition 2.1. A4 bounded linear operator T € B(X) is said to satisfy

(i) property (Sw) if o(T) \ 05y (T) = E(T) 20,

(ii) property (Sb) if o(T) \ TSBE; (T) = 7%(T) [20],

(ii) property(Bgw) if 0a(T) \ 7= (T) = EY(T) [18].

The operator T' € B(X') is said to have the single valued extension property at Aoy € C (abbreviated
SVEP at \g) if for every open disc D centred at Ay, the only analytic function f: D — X which
satisfies the equation (7" — X\) f(A) = 0 for all A € D is the function f = 0. An operator T' € B(X)
is said to have SVEP if 7" has SVEP at every point A € C. Obviously, every 7' € B(X) has SVEP
at the points of the resolvent p(7T") := C \ o(T'). Moreover, from the identity theorem for analytic
function, it easily follows that T € B(X), as well as its dual 7™, has SVEP at every point of the
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boundary 0o (T') = do(T*) of the spectrum o (7). In particular, both 7" and 7™ have SVEP at every
isolated point of the spectrum, see [1]. Let T € B(X') and let s € N then 7" has uniform descent for
n > s if R(T) + ker(T") = R(T) + ker(T*) for all n > s. If in addition R(7T") + ker(7*) is closed,
then T’ is said to have topological descent for n > s [10]. Let

SF+(S)={reC:S— X isupper semi-Fredholm},
F(S)={AeC:S—\ isFredholm},
osr, (S) ={A € 0a(5): A ¢ SFL(5)},
Tsp: (S)={r€0.(S): A€ osp (S) orind (S —A) > 0},
ouw(S) ={A € 0,(S): A€ osp, (S) or asc (S — A) = oo},
79(S) = {\ € is004(S): A € SF(S), asc (S — \) < oo},
EY%(S) = {)\ € i5004(5): 0 < a(S — \) < oo},
SBF(S)={A e C: S — \is upper semi-B-Fredholm},
SBF(S)={A € C: S — \is B-Fredholm},
osBr, (S) = {A € 0a(5): A & SBF(5)},
USBF;(S) ={X € 04(S): A€ ogpr, (S) orind (S — \) > 0},

Ho(S)={z e X: lim [|S"z|*" =0},
n—oo

AI(S) = {A e C: A€ a(S)\ opw(S))
AY(S) = {A € C: A € 00(8) \ g (S)}-

Recall that o o (S) is the Weyl approximate point spectrum of S, o,,4(S) is the Browder approximate
point spectrum of S, and Hy(S) is the quasinilpotent of S [1].

We say that S € B(X) satisfies a-Browder’s theorem (S € aB3) if O'SF;(S) = ow(S) or
equivalently, A,(S) = 04(S5) \ Tsr- (S) = 72(9) and that S € B(X) satisfies a-Weyl’s theorem
(S € aW) if Ag(S) = EZ(S) [21].

Lemma 2.1. Let T € B(X) and S € B()). Then

(1) 0,(T®S) =0,(T)o,(S), where 0, = o or o, [5, 22],

(i) osp, (T ®S) =0o5r, (T)0.(S)Uoa(T)osrk, (S) [8]

Recall that an operator 7" is said to be isoloid if A € isoo(7") implies A € 0,(T") and that
T € B(X) is said to be a-isoloid if X € iso 0, (T") implies A € 0,(T). It is well-known that if 7" is
a-isoloid, then T is isoloid but not conversely.

Lemma 2.2. Let T € B(X) and S € B(Y). If T and S are isoloid, then

(i) T ® S is isoloid [11],

(i) EYT ® S) C EY(T)E"(S) [14].

Lemma 2.3 ([9], Theorem 3). If'T and S satisfy Browder’s theorem, then the following condi-
tions are equivalent:

() T®S ek,
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(if) ow(T®S) =0(T)ow(S)Uaw(T)o(S),

(iii) T has SVEP at points pu € F(T') and S has SVEP at points v € F(S) such that (0 #)\ =
= ¢ o,(T®S).

3. Property (Sw) and tensor product. We first give some useful lemmas.

Lemma 3.1. Let T € B(X). If T obeys property (Sb) or satisfy any one of the following two
conditions:

) 9SBF; (T) = ou(T),

(i) ogpp- (T)U E%T) = o(T).

Then the following statements are equivalent:

(i) T obeys property (Sw),

(i) ogpp- (T)NEYT) = 2,

(iii)y Eo(T) = 7°(T).

Let Hy(T) = {z € X: limy 00 ||T"a;\|71L = 0} and K(T)={x € X: there exists a sequence
{zn} C X and 6 > 0 for which z = zg, T(xp41) = @, and ||zy| < 6"||z| forall n = 1,2,...}
denotes the quasinilpotent part and the analytic core of 7" € B(X). It is well known that Hy(7") and
K(T) are nonclosed hyperinvariant subspace of X’ such that 7%(0) C Hy(T) for all ¢ =0, 1,2, ...
and TK(T) = K(T) [15].

Lemma 3.2. LetT € B(X) and S € B(Y) obey property (Sb). Then T ® S obeys property (Sb)
if and only ifUSBF; (T®S)= TsBr; (T)o(S) U TsBr; (S)o(T).

Proof. First, we have to show that TsBr; (T'®S) C TsBr; (T)o(S) U O'SBF;(S)O'(T). Let
A ¢ TSBE; (T)o(S) U TSBE; (S)o(T). For every factorization A = uv such that y € o(7T) and
v € o(S) we have that u € o(T) \O'SBF; (T)and pu € U(S)\O’SBF;(S). That is, T'— pf and S —v1
are upper semi-B- Fredholm operators. In particular A ¢ ogpr, (T'®.S). Now we obtain to prove that
ind(T®S—A) <0.Ifind (T®S—X) > 0, then it follows that (7T'®.S— ) < oo have finite indices and
so (T®S—\) € F.Let E = {(ui,v;) € o(T)o(S): 1 <i < p,uv; =A}. Then from [12] (Theorem
3.5)ind(T®S—\) = Zi’:nﬂ ind (T — 1;)dim Ho (S — ;) +Z::1 ind (S — v;)dim Ho(T — ;).
Since ind (7" — p;) < 0 and ind (S —v;) < 0, we get a contradiction. Consequently, A ¢ 045 Py (T®
®.5). Since the inclusion 0, (T")o (S)Uoy, (S)o(T) C op(T)o(S)Uop(S)o(T') = op(T®S) is true and
since TsBr; (T) C 0y(T) and USBF;(S) C 0y(S), we have TsBr; (T'®S) C TsBr; (T)o(S)uU
U O'SBFJ:(S)O'(T) Cow(T)o(S)Uaw(S)o(T) C op(T)o(S) Uop(S)o(T) = op(T ® S). Then the
equality TsBE; T'®S)= TsBE; (T)o(S)U TsBE; (S)o(T) follows from Lemma 3.1. Conversely,
suppose the equality TsBF; (T'®?S) = TsBr; (T)o(S) U O'SBFJ:(S)O'(T) holds. Since 7" and S
satisfy property (Sb), it follows that

USBF; (T®S)= USBF; (T)o(S)U USBF; (S)o(T) =
= 03(T)o(8) Uan(S)o(T) = (T & S).

That is, T'® S obeys property (Sb).

Lemma 3.2 is proved.

In [14], Kubrusly and Duggal studied the stability of Weyl’s theorem under tensor product in the
infinite dimensional space setting. Rashid [19] studied the stability of generalized Weyl’s theorem
under tensor product in the infinite dimensional Banach space. The following main theorem shows if
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isoloid operators 7" and S satisfies property (Sw) and the equality TsBE; (T®S) = TsBE; (T)o(S)u
Uospp- (S)o(T) holds, then T'® S satisfies property (Sw) in the infinite dimensional space setting.
Let opp(T) ={A € 0p(T): a(T — ) <oo}={AeC: 0 < a(T — ) < oo}.

Theorem 3.1. Ifisoloid operators T and S satisfies property (Sw) and the equality o ¢ Py (T®
®S) = TSBE; (T)o(S)U TsBE; (S)o(T) holds, then T ® S satisfies property (Sw).

Proof. Since T and S satisfies property (Sw), T' and S satisfies property (Sb) by [20] (Theorem
2.7). Then by the equality hypothesis TSBEL (T®S) = TSBEL (T)o(S)U JSBF;(S>O'(T), T®S
satisfies property (Sb) (see Lemma 3.2). Suppose 7' ® S does not satisfies property (Sw). Then we
have the result o5 - (T S)NEYNT®S)+ 2.

Since TsBE; (T'®S) = O'SBF;(T)O'(S) Uospr; (S)o(T), we get A = pov € TsBE; (T'® S)
if and only if (u,v) € TsBr; (T)o(S) or (p,v) € TsBr; (8)o(T). If A € E%T ® S), then by
applying [14] (Lemma 3), A € E%(T)E°(S). Thus if, A = v € TsBr; (TS)NEY(T®S), then it
follows that 0 # X\ = uv = p/v/ with u = % € Tspr; (1), i = % € E°9),v = 2 € Tspr; (9),
Vo= 3 € E%T). Thus, E%(T) # @ and E°(S) # @. Since A = uv € E%(T ® S), it follows
by [14] (Lemma 5) that p € 0i50(T") and v € 0350(S). Since T and S are isoloid, and since
A= puv € EXT®S), it follows that y € opp(T) and v € opp(S). Since T and S satisfies property
(Sw), u € TsBF; (T) N oiso(T) Nopp(T) and v € O'SBF;(S) N 0iso(S) N opp(S) which implies
that both o ¢ Fr (T) N E%T) and o4 Fr (S) N E°(S) are nonempty. This contradicts the fact that
T and S satisfies property (Sw) (see Lemma 3.1).

Theorem 3.1 is proved.

4. Perturbations. Let [T, S] =TS — ST denote the commutator of the operators 7" and S. If
Q1 € B(X) and Q5 € B()) are quasinilpotent operators such that [Q1,7] = [Q2, S] = 0 for some
operators 7' € B(X) and S € B()), then

(T+Q1)®(S+Q2)=(T®S)+Q,

where Q = Q1 ® S+ T ® Q2+ Q1 ® Q2 € B(X ® Y) is quasinilpotent operator.

Recall that T € B(X) is finitely isoloid if A € iso o(T) implies A\ € E°(T).

Theorem 4.1. Let T € B(X) and S € B(Y) having SVEP and let Q1 € B(X) and Q2 € B(Y)
be quasinilpotent operators such that [Q1,T] = [Q2, 5] = 0. If T ® S is finitely isoloid, then T ® S
satisfies property (Sw) implies (T + Q1) ® (S + Q2) satisfies property (Sw).

Proof. Recall that 0 (T 4+ Q1) ® (S+Q2)) = (T ®S), 0,(T+ Q1)@ (S+Q2)) =0, (T®S),
USBF;((T + Q1) ®(S+Q2) = TsBr; (T'® S) and that the perturbation of an operator by a
commuting quasinilpotent has SVEP if and only if the operator has SVEP. If T'® S satisfies property
(Sw), then

ENT®8)=0(T®8)\ogpp-(I'®S) =
=0((T+Q1) @ (5+Q2)) \ogpp-((T'+ Q1) ® (5 + Q2)).

We prove EX(T® S) = E°((T + Q1) ® (S + Q2)). Observe that if A € isoo(T' ® S), then T* @ S*
has SVEP at \; equivalently, (T* + Q}) ® (S* + Q3) has SVEP at \. Let A € E°(T ® S). Then
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Aeoa(T+Q1)®(S+Q2))\ USBF;((T + Q1) ® (S + Q2)). Since (T + Q1)* @ (S + Q2)* has
SVEP at ), it follows that A ¢ 0, (T + Q1) ® (S+ Q2)) and X € iso ((T'+ Q1) ® (S + Q2)). Thus
A€ EY(T + Q1) ® (S + Q2)). Hence E%(T ® S) C E°((T + Q1) ® (S + @Q2)). Conversely, if
A€ EY((T+Q1)®(S+Q2)), then A € iso (T'® S), and this, since T’ ® S is finitely isoloid, implies
that A € E%(T ® S). Hence E°((T + Q1) ® (S + Q2)) € E°(T ® S).

Theorem 4.1 is proved.

From [6], we recall that an operator R € B(X) is said to be Riesz if R — Al is Fredholm for
every non-zero complex number A.

For a bounded operator 7" on X', we denote by Ey¢(T") the set of isolated points A of (7") such
that ker(T" — AI) is finite-dimensional. Evidently, Eo(T") € Eos(T).

Lemma 4.1. Let T be a bounded operator on X. If R is a Riesz operator that commutes with
T, then

E%T + R)No(T) Cisoo(T).

Proof. Clearly,
EYT+ R)No(T) C Egy (T + R)No(T)

and by Lemma 2.3 of [16] the last set contained in iso o (7).

Lemma 4.1 is proved.

Now we consider the perturbations by commuting Riesz operators. Let T, R € B(X) be such
that R is Riesz and [T, R] = 0. The tensor product 7' ® R is not a Riesz operator (the Fredholm
spectrum o (T ® R) = o(T)op(R) Uop(T)o(R) = op(T)o(R) = {0} for a particular choice of
T only). However, o, (also, o3) is stable under perturbation by commuting Riesz operators [23],
and so T satisfies Browder’s theorem if and only if 7" + R satisfies Browder’s theorem. Thus,
if 0(T) = o(T + R) for a certain choice of operators T, R € B(X) (such that R is Riesz and
[T, R] = 0), then

7(T) = o(T) \ 0u(T) = o(T + R) \ 0u(T + R) = n°(T + R),

where 70(T) is the set of A € isoo(T) which are finite rank poles of the resolvent of T'. If we now
suppose additionally that 7" satisfies property (Sw), then

ET) = o(T) \ 0gpp— (1) = o(T) \ 0u(T) = o(T + R) \ ou(T + R), (“.1)

and a necessary and sufficient condition for 7+ R to satisfy property (Sw) is that EX(T+R) = E%(T).
One such condition, namely 7" is finitely isoloid.

Proposition 4.1. Let T, R € B(X), where R is Riesz, [T, R] = 0 and T is finitely isoloid. Then
T satisfies property (Sw) implies T + R satisfies property (Sw).

Proof. Observe that if T obeys property (Sw), then identity (4.1) holds. Let A € E°(T). Then it
follows from Lemma 4.1 that A € E®(T)No(T) = EY(T+ R— R) Cisoo(T + R) and so T* + R*
has SVEP at \. Since A € o(T' + R) \ 0y(T + R), T* + R* has SVEP at X implies 7'+ R — A is
Fredholm of index 0 and so A € E°(T + R). Thus E%(T) C E°(T + R). Now let A € E°(T + R).
Then A € EY(T + R)No(T + R) = E°(T + R) No(T) C isoo(T), which by the finite isoloid
property of 7" implies A € E°(T). Hence E°(T + R) C E°(T).

Proposition 4.1 is proved.
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Theorem 4.2. Let T € B(X) and S € B(X) be finitely isoloid operators which satisfy property
(Sw). If Ry € B(X) and Ry € B(Y) are Riesz operators such that [T, R;] = [S, Rz = 0, o(T +
+Ry) =0(T)and o(S+R2) = o(S), then T®S satisfies property (Sw) implies (T + R1)®(S+ Ra)
satisfies property (Sw) if and only if Browder s theorem transforms from T + Ry and S + Ry to their
tensor product.

Proof. The hypotheses imply (by Proposition 4.1) that both 1"+ Ry and S + Ry satisfy property
(Sw). Suppose that T'® B satisfies property (Sw). Then o(T ® B) \JSBF; (T®S)=E"(T®S).
Evidently 7' ® B satisfies Browder’s theorem, and so the hypothesis 7" and B satisfy property (Sw)
implies that Browder’s theorem transfers from 7" and S to 7' ® S. Furthermore, since, o (T + R;) =
=o(T), o(S+ Ra) = 0(S), and o, is stable under perturbations by commuting Riesz operators,

OSBF; (T®S)=0,(T®S)=0(T)ow(S)Uow(T)o(S) =

=0(T + Ry)ow(S + R2) Uoy(T + Ry)o(S + Re) =
=o(T + Rl)USBF; (S+ Ry) U TsBr; (T'+ R1)o(S + Rs).

Suppose now that Browder’s theorem transfers from 7"+ Ry and S + Ra to (T' + R1) @ (S + Ra).
Then
ouw(T ® S) = 0w((T+ R1) ® (S + Rz))

and
EO(T® S)=0c(T+ R1)®(S+ R2)) \ow((T+ R1) ® (S + R2)).

Let A € E%T ® S). Then A\ # 0, and hence there exist u € o(T + Ry) \ 0w(T + R;) and
v € o(S+ Rs)\ 0w(S+ Rz) such that A\ = uv. As observed above, both T+ Ry and S + Ry satisfy
property (Sw); hence n € E°(S + Ry) and v € E°(S + Ry). This, since A € o(T ® S) = o((T +
+R1)®(S+Ry)), implies A € E°((T+R;1)®(S+Rz)). Conversely, if A € EY((T+R1)®(S+Rz)),
then A\ # 0 and there exist 4 € E°(T + R;) C isoo(T) and v € E°(S + Rz) C isoo(S) such
that A = pv. Recall that E°((T + Ry) ® (S + Rg)) € E%T + R1)E®(S + Ry). Since T and S
are finite isoloid, 1 € E°(T) and v € E°(S). Hence, since o((T'+ R1) ® (S + R2)) = o(T ® 9),
A=puv € EY(T ® S). To complete the proof, we observe that if the implication of the statement of
the theorem holds, then (necessarily) (T'+ R1) ® (S + Rs2) satisfies Browder’s theorem. This, since
T + Ry and S + R» satisfy Browder’s theorem, implies Browder’s theorem transfers from T+ R;
and S+ Ry to (T + R1) ® (S + Ra).

Theorem 4.2 is proved.

5. Property (Sw) for direct sum. Let H and K be infinite-dimensional Hilbert spaces. In this
section we show that if 7" and S are two operators on H and K respectively and at least one of them
satisfies property (Sw) then their direct sum 7" & S obeys property (Sw). We also explore various
conditions on 7" and S to ensure that 7' @ S satisfies property (Sw).

Theorem 5.1. Suppose that property (Sw) holds for T € B(H) and S € B(K). If T and S are
isoloid and TsBr; (Tes) = TsBE; (T)u TsBr; (S), then property (Sw) holds for T & S.

Proof. We know that o(T' & S) = o(T) Uc(S) for any pairs of operators. If 7" and S are isoloid,
then

EYT & S) = [E%T)Np(S)] U [p(T) N E°(S)] U [E%(T) N E°(S)],

where p(.) =C\ o(.).
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If property (Sw) holds for 7" and S, then

(D) U\ [ospp (1) Uogpp (S)] =
= [E%(T) N p(S)] U [p(T) N E°(S)] U [E°(T) N E°(S)] .

Thus, E%(T @ S) = [o(T) U o (S)] \ [USBF; (T) Uogppp- (5)] .
IfUSBF; (TeS)= TsBr; (T)u TsBr; (S), then

ENT®S)=a(T®S)\ ospp- (T ®S).
Hence property (Sw) holds for '@ S.
Theorem 5.1 is proved.

Theorem 5.2. Suppose that T' € B(H) such that isoo(T) = @ and S € B(K) satisfies property
(Sw). IfaSBF; (TeS)=0(T)U TsBE; (S), then property (Sw) holds for T @ S.
Proof. We know that o(T' @ S) = o(T') U o(S) for any pairs of operators. Then

(T @ 8)\ 05y (T D S) = [o(T) V() [o(T) Uogy ()] =

= o(8)\ [am U USBF;(S)} -

[0\ Tgpp ()] \ o (T) = E°(S) N p(T).

Ifisoo(T) = @ it implies that o(T") = acco(T'), where acco(T') = o(T) \ iso o (T) is the set of all
accumulation points of o (7). Thus we have

isoo(T & S) = lisoo(T)Uisoo(S)]\ [(isoc(T) Nacco(S)) U (acca(T) Nisoa(9))] =

= [isoo(T) \ acco(S)] U [isoo(S) \ acco(T)] =isoo(S)\ o(T) =isoo(S) N p(T).

We know that 0,,(T'® S) = 0,(T) Uop(S) and a(T @ S) = o(T") + () for any pairs of operators
T and S, so that

O’pF(TEB S) = {)\ € UPF(T) U O'pF(S)Oé(T - )\I) + a(S — )\I) < OO}

Therefore,

ENT®S)=isoo(T®S)Nopp(T®S) =isoo(S)Np(T)Nopr(S) = E°(S) N p(T).

Thus o(T @ S) \ TsBE; (T®S)=EYT®S). Hence T @ S satisfies property (Sw).

Theorem 5.2 is proved.

Corollary 5.1. Suppose that T € B(H) is such that isoo(T) = @ and S € B(H) satisfies
property (Sw) with isoo(S)Nop(S) = @, and AL(T ® S) = &, then T @ S satisfies property (Sw).

Proof. Since S satisfies property (Sw), therefore given condition iso o(S) N 0, (S) = @ implies
that o(S) = O'SBF;(S). Now AJ(T @ S) = @ gives that OSBr- (T®S)=0c(T®S)=0o(T)U
Uogp Fr (S). Thus from Theorem 5.2, we have that 7' @ S satisfies property (Sw).
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Corollary 5.2. Suppose that T € B(H) is such that isoo(T) U AY(T) = @ and S € B(K)
satisfies property (Sw). IfaSBFJ: TeS) = TsBr; (T)u TsBr; (S), then T & S satisfies proper-

ty (Sw).

Theorem 5.3. Let T' € B(H) be an isoloid operator that satisfies property (Sw). If S € B(K)
is a normal operator satisfies property (Sw), then property (Sw) holds for T @ S.

Proof. 1f S is normal, then both S and S* have SVEP, and ind (S — AI) = 0 for every A such
that S — \I is a B-Fredholm. Observe that \ ¢ TsBE; (T'® S) ifand only if S — A\I € SBF, (K)
and T'— A € SBF,(H) and ind (T — A\I) +ind (S — Al) = ind (" — AI) < 0 if and only if
A ¢ AY(T) N AZ(S). Hence OsBr- (T®S) = OsBr- (T) U O'SBFJ:(S). It is well known that
the isolated points of the approximate point spectrum of a normal operator are simple poles of the
resolvent of the operator implies that S is isoloid. So the result follows now from Theorem 5.1.

Theorem 5.3 is proved.
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