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TRIANGULAR MODELS OF COMMUTATIVE SYSTEMS
OF LINEAR OPERATORS CLOSE TO UNITARY ONES

TPUKYTHI MOJEJII KOMYTATUBHUX CUCTEM JIHIHHUX OITEPATOPIB,
BJIM3BKUX 10 YHITAPHUX

Triangular models are constructed for commutative systems of linear bounded operators close to unitary operators. The
construction of these models is based on the continuation of basic relations for the characteristic function along the general
chain of invariant subspaces.

[ToOynoBaHO TPUKYTHI MOJEII KOMyTaTUBHUX CUCTEM JIIHIHHUX OOMEKXEHHUX ONeparopiB, OMM3bKUX 10 yHiTapHHX. [To0yno-
BY LIMX MOJieJieil 3aCHOBAHO Ha MOJIOBKEHHI OCHOBHUX CHIBBIJHOLICHD /IS XapaKTEPHUCTUYHOI (DYHKIIIT B3OBXK 3arajibHOrO
JIAHITFO)KKA 1HBapiaHTHUX MPOCTOPIB.

Introduction. It is common to consider [2, 3, 5] triangular or functional model as an analogue of
spectral decomposition for nonself-adjoint and nonunitary operators. For the first time, a triangular
model for nonself-adjoint operator has been built by M. S. LivSic, for nonunitary operator — by
V. T. Polyatsky [2]. Triangular models for commutative systems of linear bounded nonself-adjoint
operators has been built by V. A. Zolotarev [4], V. Vinnikov (part IV of [5]). These models are
based on the basic idea of M. S. LivSic [5] of the spectral analysis of this class of operator systems.
Reasonable constructions for the commutative systems of the nonunitary operators were built in [6, 7].
These constructions are the development of the method of M. S. LivSic [5]. This paper is dedicated
to the construction of triangular models for commutative systems {7}, 7, } of linear operators close
to unitary ones. Note that some results stated in this paper were announced in [1]. An analogue of
the Hamilton — Cayley theorem is an important corollary of the constructed model representations,
namely, it is proved that the polynomial P(z1, z2) with antiholomorphic involution with respect to
the unit circle is such that (77, 7%) = 0. This result for commutative systems of nonself-adjoint

operators has been obtained earlier by M. S. Livsic [5].
1. Let T be a linear bounded operator in a Hilbert space H. Let us recall that the set

T o _—
A:(a,H@E,V:[\II K},H@E,a), (1)

is called a unitary colligation [2, 3, 6] if the operator V : H ® E — H @ E has properties

I 0 I 0
V* V= ) (21)
0 o 0 o
I I 0
Vv V= ; (22)
0 ot 0 &1t

where ¢ and & are self-adjoint invertible operators acting in the Hilbert spaces E and E respectively.
As it is known [2, 3, 6], for every bounded operator there always exists such unitary colligation A
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(1), of which T is the main operator. The characteristic function S (z) of a colligation A,
Sa(z) =K+ (2] —T) ' ®, (3)

is the main analytic object in terms of which the spectral analysis of a operator 7’ is realized [2, 3, 6].

Let dimF = dim F = r < oo, then it is p0551b1e to suppose that £ = E; suppose also that
o = o = J where J is an involution (J = J = J~!). The well-known result of V. P. Potapov in this
case (see [2, 3]) gives us the multiplicative decomposition of the characteristic function. Namely, the
characteristic function Sa(z) (3) has a representation

)

N

)
’LLpt
U/exp{ +szFt} H
0

k=1

(Rk ek (21 —ag) " Jdk;) : (4)

Moreover, U is a J-unitary matrix, ¢; is a nondecreasing function on [0,], 0 < ¢, <27 (0 <[ <
< o0), Fy is a nondecreasing matrix-function for which tr F; = ¢, and the matrices oy, Ry and d
are such that

1) «y are J-normal matrices, akaz = ag Qg (oz;r =jo;j);

2) dk:J—a,’:Jak:j(I—R,%) > 0;

3) Ry, is a J-module of a matrix ay, Ry = o ou;

4) ag, az and Ry act on di E” (E" is a Euclidean space with dimension r) as a multiplication
by fk, ik, and |u| respectively,

(o — pid) diy = (of — fid) djp = (Ry, — |pse| I) di, = 0,

where py ¢ T, and ¢ = arg py (N < 00).
An arrow in (4) signifies multiplicativity [2] of the integral and product

A
N
H ap =ayanN—-1...041,

7
[ (NP @)} = Jim exp {(NE)FA)} .. exp {N(E)F(A1)},

dn~>0

0
where ay, N(t), F(t) are matrices-functions and 0 = zo < 21 < ... < z, = |, Axp = xp — Tg_1,
Tpo1 <& ST, dpy = ml?xAxk.

Hereinafter, we consider the case when the characteristic function Sa(z) is given by

7 .
l(pt
:/exp{e. +ZJdFt}, )
errt — z
0

which means that the spectrum of 7' lies on the unit circle T. We introduce the space

12,(F) = 4 f(2) = (fu(0). ... fo(z) € B / F(@)dF, f*(2) < 00 b | ©)
0
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696 R. HATAMLEH, V. A. ZOLOTAREV

assuming that the respective factorization by the kernel of the metric has been done. Specify the
operator T in L? (F),

l
(7)) = fla)eies -2 / f()AF®;%  Jeie, (7)

where the matrix-function @, is the solution of the equation

xT

D, + / OdF,J = 1. (8)
0

Define now the operators

l
VL2(F) S B (@) = V2 [ [,
0

(9)
O E" — L2)(Fy);  g(x) = gV2V,e',
K:E — E"; K = S(0),
in this case the matrix-function ¥, satisfies the equation
l
v, +/\IltdFtJ =J. (10)
x
It is easy to see [2] that the collection
2 r. Y, j.—‘ (i) 2 T
Ac=(Ji LY(F) @B Vo= |5 2|5 LB @ E5 ), (1)

is a unitary colligation, the characteristic function of which coincides with S(z) (5), and T, ®, ¥,
K have the form of (7), (9).

Let us recall that the colligation A (1) is said to be simple [2, 3] if H; = H,
H; = span {T"@E LT E: nm e Z+} . (12)

It is easy to show that the subspace Hy = H & H; reduces 1" and that the restriction 7" on Hy induces
the unitary operator [2, 3].

Theorem 1 [2]. When the spectrum of the operator T lies on the circle T, the simple unitary
colligation A (1) is unitarily equivalent to the simple part of the unitary colligation A. (11).

2. Following [6], we define an analogue of the unitary operator A (1) for the commutative
system of linear bounded operators {77, 7>}, [11,7>] = 0
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Definition. T7he collection
A= (F;{Ns}f;{as}f {7} H @ E; {Vs,{}s}f;H@ B {7315 {6:)5 {Ns}f;f> , (13)
is said to be the commutative unitary colligation of the operator system {T1, T>} in H ([T1,T] = 0)

if in the Hilbert spaces E and FE there exist such operators o, Ts, Ng, I and G5, Ts, Ng, I respectively
(0s,7s and 04,75 are self-adjoint, s = 1,2), such that the mappings

T, ®N, N
V, = HOFE - HODE,
v K
] . (14)
+ [Tr  W*N? ~
V, = - HOFE—- HODE,
o K|
satisfy the following relations:
1 0 [T 0
‘/s* ‘/:9: ) 521527 (151)
_O 6—3 _0 Os
+ [I 0] «+ I 0
V;* VYS: ’ 821727 (152)
0 7 0 7
Ty®N; — T} &N, = OT, N1 UTy — NoUTy =T, (153)
NyUON; — NyUON, = KI' - TK, (154)
KN, = N,K, s=1,2. (155)

It is easy to show [6] that for an arbitrary commutative system of bounded operators {7}, 75}

+
there always exists such an isometric expansion {VS, VS} (14) (the colligation A (13)) that conditions
(15) hold. Denote by S(z) the characteristic function of the colligation A (13) corresponding to the
operator 711,

Si(z) = K+ (2 —T)) "' ®Ny. (16)
It is shown in [6] that in the case of invertibility of the operators N7 and N the totality
{Sl(z);as§Ts;Ns;F§53§7N_s§Ns§f} 12’ (17)
S§= b

is the total set of invariants of the commutative operator system {77, 75} . The condition of invertibility
of Ny and Nj is the additional restriction on the system of commutative operators 77 and 75. The
last fact means that in the case of the simplicity of the colligation A (13) (H = H; (12)) set (17)
defines the operator system {77, 7%} up to the unitary equivalency [6].

We suppose that the operators o1 and &, coincide with the involution .J. Denote by N, N, v, 7,
o, &, T, T the operators corresponding to Nl_lNg, ]\71_1]%, Nl_lf, Nl_lf, 092, 09, N1_17~'2 (Nf)_l,
]\71_ 17 (]\71* )_1 respectively. Then the characteristic function S(z) of the operator 77 (16) satisfies
the following relations describing the commutative property of 77 and 7% in terms of the external
parameters (17) [6, 7],
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698 R. HATAMLEH, V. A. ZOLOTAREV

S(2) (N2 +7) = (N2 +9) S(2), (181)
S(z)JS* (w) —J = (Nz+7){S(2)JS* (w) — J} (N*w +~*) =
= (I —zw) {5(2)75" (w) — o}, (182)

§*(2) IS () = T — (N*2 +57) {87 (2) IS () — J} (Nw +7) =
= (I — 2) {S"(5)7S (i) — 7} (185)

Simultaneous reduction of the commutative operator system {77, 7>} to the triangular type means
continuation and conservation of the main relations (18) along some chain of joint invariant subspaces
for T and T5.

There is no corresponding parallel to the material of book [5] in the work. It is proposed to study
the properties of the characteristic function S (z) (16) in the presence of the colligation relations (15).

The main point is that the conditions (18) express the fact that the operator 75 commutes with
the operator 77, this imposes the additional conditions on the characteristic function S;(z) (16) of
the operator 77.

3. Suppose that the characteristic function of the operator 7} is given by (5),

A

SG)=si), .= [ eXp{eerszFt}, (19)
0

et — 2

where = € [0;1] and ¢, F; have corresponding properties (see Section 1). First, let us study
continuation of the condition (18;) assuming that dF, = a,dx, where a, is a nonnegative matrix-
function on [0, /] such that tra, = 1.

Theorem 2. S,(z) (19), where dF, = a,dz, satisfies the intertwining condition

So(2) (N2 +7) = (Noz +72) Sa(2), 0)

then and only then when N, and ~y, are the solutions of the equations

N;:_[Jaazva]y NOZNa (211)
Ve = [Jaz, Vs , Y =7, (217)

moreover, '
[Jax, (Nxewz + ’yx)] =0, (22)

which means that v, = ¢?= N! Yz € [0,1].
Proof. Differentiate equality (20) assuming that dF, = a,dx, then

eitpz + z - ~ eiﬂoz + 5
oive _ zJa;pr(Z)(NZ + '7) = {ZN;, + ')’; + (ZN:E + 'Y;p) (M—ZJG:E} Sx(z)
Again taking into account (20) and the invertibility of S, (c0), we obtain
e 4+ 2
ciPs _ 5 [Jaz, (2Nz +72)] = 2N, + 7, (23)
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which, after equating the corresponding coefficients by z*, k = 0,1, 2), gives us (217), (215), and
(22). And the initial conditions of the Cauchy problems (21) follow from (20) when x = 0.

To prove the sufficiency, we use (23), which is equivalent to (21;), (21;), and (22), and the
equation for S;(z), then we have
eiPr 4 7

ZJax (2Ng 4+ 72) Sz(2). (24)

eiﬂoz _

% {(ZNw + ’Y:v) Sx(z)} =

Taking into account that the function S, (z) (zN + i) satisfies similar equation, we get

% {Sf”(z) (ZN+7) — (2Ng +%)Sz(z)} —
st s,

which proves (20) in view of the uniqueness of the solution of the Cauchy problem since
{S’x(z) (zN + 7) — (2Nz + 72) Sm(z)} =0, when x=0.

Theorem 2 is proved.

Now let us consider similar continuation of relation (18;) along the given chain of the invariant
subspaces.

Theorem 3. The matrix-function S;(z) (19) where dF, = a,dx satisfies the relation

Sa(2)JSg(w) = J — (2Ng + 72) {Sa(2) I Sz (w) — T} (Nyw + ;) =
= (I — 2w) {Sx(2)6 S (w) — 05}, (25)

under conditions (211), (21,) and (22), if and only if the relations

o, = 2N, Ja,JN} — Jayo, — 0za,J, o9 =3, (261)
{NJ (N: + e y%) — o, ay =0, (265)
JayJ + NyJag JN; — ypJazJy, = opazd + Jaz0,, (263)

hold for all = € [0;1].
Proof.- To prove the necessity, we differentiate relation (25) and use the equalities (20)—(24),
then we get

e¥r +z e T 4
€%z — 7z e Wa —

) {Jaud = (:Ny + %) Japd (0N} +73)} =

1Pz —ipg —
= (I — zw) {WJaxaw + axawa — 0;}.

eir — 2 e~ e —

Now equating the coefficients by equal powers z*w *, k, s = 0, 1, we obtain relations (26,)—(263).
To prove the sufficiency, we consider the following function:

U, (z,w) = Sp(2)JSH(w) — J—
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700 R. HATAMLEH, V. A. ZOLOTAREV
— (2Ng + 72) {Se(2) J Sz (w) — J} (Ny© + ;) +
+ (zw — I){Sz(2)a S (w) — 05} .
From (23), (26) it follows that ¥, (z, w) satisfies the equation

1P —ipg _
et zJaz\Ifx(z, w) + \Ifx(z,w)asz

d
%\I’z(zv w) =

9

eipr — 2 e~r —

and, taking into account that ¥o(z, w) = 0, we obtain ¥V, (z,w) = 0 Vx € [0, ], this fact proves (25).
Theorem 3 is proved.

Continuation of relation (183) along the given chain of the invariant subspaces leads us to the
following statement.

Theorem 4. Suppose that the matrix-function S,(z) (19), where dF, = aydx, satisfies the
intertwining condition (20), then

S:(2)J Sy (@) — J — (N*z n ﬁ*) (S5(2)J Sy (@) — J} (Nw + @) _

= (I — 2w) {S;(2)TxSz (W) — T}, 27)
is true then and only then, when
7 =1pJag + agJry — 2Nfay Ny, 70 =T, (281)
{N;J (Ny + e %y,) — 12} Jay = 0, (285)
az + Nypaz Ny — V30572 = ToJag + ag J 7y, (283)

Sorall z € [0,1] .
Proof. Difterentiating (27) and using (20), we have

e W +z e'Pz +w
e e — z  eWe —qp

){ax (N 442 4 (8N + 1)) =

—— taz )T,
—w

elPx

_ e 4w eWr 2,
= (I — zw) {TxJax e_wm_z—l-rx}.

Now in order to obtain (28;)—(283) it is necessary to equate the corresponding coefficients by powers
kw5, k, s = 0,1. Now, if we consider the function
W, (2,0) = S3(2)Su(@) = T — (Npz+7°) {S3(2)Su(@) — T} x
x (N +7) (z0 = 1) {8} (2) 725, (w) - 7},

then in view of the last equation and taking into account the intertwining relation (20) it is easy to
verify that d—\Ilm(z,w) = 0, and using the initial data U¢(z, w) = 0, we obtain ¥, (z,w) = 0, this
x
proves the sufficiency of the statement.
Theorem 4 is proved.
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4. Substituting equality (26,) in relation (263) and using (223), we see that
(N€% 4 ~y) Jagd (Npes +,)" = JagJ.

Thus the operator J (N;e_i% + ’y;) J is isometric in the metric given by the operator a,. Therefore,
this equality and relation (26,) on the subspace E!, = a;E" we can write in the following form:

{(Na€™" +7,) J (NZeT5 +4,) = J} fo =0,

. (29)
{No (N} + e %2y2) — 04} fo =0,
where f, € E7. Similarly, it follows from relations (28) that
(N +72) " ag (Npe + ;) = aq,
this means that N,e’?* + , is isometric in the metric a,., thus
{(Nl,e“"z ) T (Npei 4 7,) T — I} fo =0, 0

{N;J (Nz + e_icpw')/x) J — TwJ} f:E = 07

where f, € E7 in view of (28;).
Let us turn to the solvability of the equation system (21), (22) which we can write in the form
of (23),

d e 4
dz (ZNx + 'Yx) = [ei%ﬁ—zt]am (ZNI + 'Yx):| . 31
Following P. Lax [8], in order to integrate the equation L, = [A,, L,] it is necessary to find an

“isometric” operator-function V;;, such that V, = A, V., where in this case V,, realizes the equivalency
between L, and L. In our case, V, = S,(z) and the given equation L/, = [A,, L,] leads us to the
intertwining condition (20),

oNe + 7 = Su(2) (N2 +7) 87(2),

since, by our supposition, the matrix S, (z) is invertible when |z| > 1 (for example). Hence,
eigenvalues of the matrices NV, and ~y, do not depend on z, and the root subspaces L, of the bundle
Nz + 4 corresponding to the number z5 under the action of the matrix-function S, (z) passes into
the root subspace L,(z) = S, (z)L, of the linear pencil N,z + ;.

Theorem 5. Suppose that S,(z) (19) is invertible at some point zy € C, then the solutions N
and v, of the Cauchy problems (21,), (21,) exist, moreover, equality (22) holds.

Invertibility of S, (zg) for all = € [0,!] follows from the J-theory of V. P. Potapov [2] with the
condition that S(zp) is an invertible matrix. Furthermore, since relations (26;)—(263) and (28;)-
(283) are equivalent to the equalities (25) and (27) correspondingly with the condition that N, and
v, satisfy (211) and (21,), then the existence of the matrix-functions o, and 7, is obvious.

Theorem 6. Suppose that N, and vy, are the solutions of the Cauchy problems (211), (21;) for
which (22) holds and the matrix-function S, (z) is invertible at one point zy € C at least, then the
solutions o, of the relations (26) and 1, of (28) respectively exist and are unique.
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5. Now we turn to the construction of the triangular models of the systems of operators 17, 15.
To do this, we consider in the Hilbert space L2 ,(F,) (6) the system of linear operators

(121) (@) = Fa)eie —2 / FOARDID 1 Jeier,
’ (32)

(Tzf) (z) = f(z)J (Nge™* + ;) J — 2 / f(t)dF,®;®r 1t gelee,

where @, is the solution of the integral equation (7) and N, v, are the solutions of the Cauchy
problems (21) respectively. Note that the operator T in (32) coincides with T (6). First of all, we
make sure that the operators (32) are commutative. To do this, we consider

F(.T)eiwz = |:T1,T2 = —2/f Nteupt + ’Yt) Jatdtq):(p;iljei(’%‘k

l l
+4 / dt / f(5)asds®:®F "IN, Jelt a0 %1 Je¥r 4
T t
l
+2 / f(t)apdt®®: 1y, TP + 2 / f(t)etadt®; O N, TP —
z

l
—4 / dt / f(5)asds®i®; Je ¥t 051N, Jetve.

Using the equations (211), (21,) and the fact that (CIJ;_I), = ®*~1Ja,, as a result of the elementary
calculations using the equality (22), it is easy to see that the function F), satisfies the differential
equation F, = F,a,J, and, since F; = 0, then F,, = 0, which proves the commutative properties of
the operators i”l, T (32).

Using equality (22), it is easy to show that

(70“1* f) (z) = f(z)e?s —2 f f(t)e #tdF, Jo; 1o,
’ (33)

(f; f) (@) = f(x) (Nu€® +75)" =2 f F()e #tdF, JN; O, 1D,
0

+ . .
To construct the expansions V; and V; (14), we have to calculate the defect operators I — 7,7 and
I —-T,Tr, s =1,2. First of all, note the well-known fact [2] that

l
(I T1T1 =2 / F()dF,®} T,
0
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We consider

+2 / F)T (Nt + ) Je ¥la, JAtN* O, 1 @, +
0

l
+ 2/f )aydt®; ®5 N, J e (Nye 7 + ) —

z l
_4/dt/f(s)asdsszq):_thJatJ‘I);l‘I)a:'
0t

From equation (26,) and the fact that (<I>; 1)/ = a,J®,; !, we conclude

d
dx
Using relation (26;), the equalities (29), and integration by parts, we obtain

(@2 o, @) =205 N,y Ja, JNR,

!
(I 3 T2 —2 / F(O)dF®50,.
0
Hence, if we define the operator W : LE,Z(FI) — E",
!
V2 [ fine;,  re— Vi, (34)
0

where £ € E” and f(z) € L2;(Fy), then we get TeTy + U*JU = I and T5T5 4+ U*60 = 1.
Let us calculate other defect operators I — fsf;, s = 1,2, then [2],

l
(I T1T1 =2 / ft)e PtdE,WF TV et
0

where U, is the solution of the integral equation (9) and ¥, = ®;®*~1.J. Next we consider

(1= ToT3) f(2) = f2) {1 = (Noe™? +73,)" T (Noe™? +7,) T} +
+2 / F() (N +3)" @7t N, T 4
0

i / ft)e Pt dtIN; @, @, J (Nier + ;) J—

ISSN 1027-3190.  Ykp. mam. ocypn., 2016, m. 68, Ne 5



704 R. HATAMLEH, V. A. ZOLOTAREV
—4 / dt / f(s)e " asds NI O Dy, @705 1D, Je'Pm

since (®,J®*)" = —2®,a,®P,, then after the integration by parts in the last integral and taking into
account (22) and (30), we obtain

l
(1 TQT2 =2 / F()e ¥t a,dt N} JUE JU . J Ny J et +
0

+2 / ft)ag Jy; J®Fdtd: N, T 42 / ft)e ta JN; & dtd, T, J.
Representing the first integral as the sum of the integrals on the segments [0, ] and [z, (], we have

<I - j’“ﬂ‘*;) flz) =2 / Ft)e #a I NF O dt { @, J0; F LN, T + By, d b +

+2 / ft)e #oa { v, + IN; @ @ Dfe " } dtdE I N, JePe. (35)

Since the above integrals are adjoint one to each other in terms of the metric Lg ,(F%), it is sufficient

to calculate one of them, for example, the first. It follows from (21;) that (N;®; 1)/ = ay JN; O
therefore taking into account the initial data we get

N/® =0, 'N* = JU;®; 'N*,

and hence the first of the integrals in (35) is equal to
2 / ft)e ¥ aqUrdt®; ' N* { @, J ;L N, Je™* + Oy Jy, T}

Lemma. Suppose that 7, satisfies the relations (28) and the matrices N, and 7y, are such that
the equalities (21) are true and, moreover, (29) takes place, then

O N { BT BL T IN, T + e D, T} = 1Ty, (36)
where T is the value of the solution T, of problem (28)) at the point x = [.
Sum of the integrals (35) with (36) can be represented in the form of

l
(I TQT2 =2 / f(t)e Pt dF U W, et
0

So, if we define the operator ® from E” into Lz ;(F3) by the formula coinciding with (8),
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l
b6 = VaEUP,(8F) (@) = VE [ f)e ey at (37)
0

where ¢ € E”, then we get 3T} + ®.J&* = I and ToT3 + &7d* = 1.
Proof. 1t follows from the Cauchy problem for N, (21,) that N, = PEND, ! or PrIN, =
= N®: ! and so

o N O] N®, T + e N D, Iy, b = T

Taking the limit as z, @ — oo in equality (27) and assuming that z = [, we obtain that N (@7 TP —
— J)N + 7 = 7. Therefore

o7 {(NIN = 7) 0371 + e N D, T, =0,
and taking into account again that N*®, = &, N7 we find that
N*JN®: ! — 70! 4 7%=, N*Jv, = 0.
And using (30) N;‘J%e_% =1, — N} JN, we have
N*JN®: 1 — 70571 4 &, (1, — N}JN,) = 0.

Thus
N*JN — 7+ &,7,9; — N* @, JOIN = 0.

Now to complete the proof of the lemma, it is to be noted that the last equality follows from (27)
after taking the limit as z, w — oo, with fixed = € [0, ].

Lemma is proved.

Now we can construct the mappings

o Tl (i) o TQ (i)Nl o+ [¢] o+ j’j2* \i/*N*
Vi=|. .| Vo=, .| Vi=V, Vo=, e (38)
v K v K P* K*

in Lz,l(Fx)@ E" where N, is the value of the solution N,, (21) at the point z = [; K= Si(00) = @
and the operators <i>, U are defined by the formulas (37) and (34) respectively. It is not difficult to

see [2] that
I 0 o I 0
3 Vl .
0o J

0o J
o o+
In order to verify that the analogous relations are valid for V5 and V53, it is necessary to show that

I 0
0o J

o]

Vit =

(o]

Vi =

TON, + V6K =0,  TyU*N* + dnK* = 0. (39)

To prove the first relation in (39), we consider

xT
THEN, T €% = ENJU,, (NZ 4 e'Pmyt) — 2 / ENa N} @ L dt D,
0
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where £ € E". Then taking into account that (\I/tNt*<I>l_1)/ = 2War JNY <I>l_1 we obtain that
THEN, U €% = ENJU e’ + ENUON* B,
Since ¥, = ®;®*~1.J and N, P} = ®*N, we have
THEN U9 = U, N Jy e + ENUON* D,
and in view of (29) we obtain the equality
T;le\Ilmei‘Pz =&V, J (0, — Ny JJN}) + ENUGN* .

Using the relation N, (®3J®, — J)N; = ®36®, — 0, that follows from (25) as a result by taking
the limit as z, w — oo and the fact that N, ®; = &7 N, Vo = ¥} J, we finally get

T3EN U e = D5 D,

this proves the necessity in view of the definition of the operators 0 (34), d (37) and K= ;.
Let us prove the second equality in (39),

l
T3EN* D, = EN* BT (Npe'#s 4 ;) J — 2 / EN* 0, PFdt DN, JelPe
x

where ¢ € E", and since (®;J®})" = 2®;a,®}, then
THEN*®, = EN* @ Jrypd + EN* O JF O TIN, Je've,

To prove the necessary equality Tz*f N*®, = £&;7; 0, we have to prove that

N*®, Jvy,Je ¥z 4 N*®, JU,JN,J = &;70,.
Now using the fact that N*®, = &, N7 and in view of (30), we obtain

@, (12 — N)JN,) J + N*®,JU, JN,J = &0,

As a result of the multiplication from the right by J®, we get

D, (1, — NIJN,) @5 + N* @, BN = &7y 07
Taking the limit as z, w — oo in equality (27), we have

7~ N*JN = &,7,0% — N*®,JO:N.

This means that ) ) ) .
7 —N*JN + N*®7;®N = &;7;P].

This relation coincides with the same relation when x = [. . )
Simple test shows that N;®*®N; + K*6K = 0y and NVV*N* + K7 K* = 7, therefore (151),

o o+
(15,) are holding for the expansion Vs, V5 (38).
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+ 52
Theorem 7. Suppose that the simple isometric commutative expansion {Vs, Vs} (14) corre-
1

sponding to the commutative system of operators T and Ty is such that:

1) dimE = dim E =< oo, the operators o1, 61, N1, N are invertible, and the spectrum of the
operator 11 lies on the unit circle T;

2) the characteristic function Si(z) (19) of the operator Tj is invertible at least at one point
z € C, the matrix-valued measure a; and the function @, from the multiplicative representation of
S (2) (19) are such that the operators N, and , exist as the solutions of (21), (22), and there exist
Oz, Tz, for which the relations (26) and (28) respectively are true.

+32
Then the expansion {Vs, Vs} is unitarily equivalent to the simple part of the isometric commu-
1

o o+fy2 ° °
tative expansion {Vs, Vs}l (38) of the commutative operator system (33) where V and ® are defined
by the formulas (34) and (37) respectively.
o o+
Proof. To prove that the relations (153)—(15s) are true for the expansions V;, Vi (38), we note
that equality (155), NK = K N, follows from the equality N, ®F = ®X N in an obvious manner when
x =1lsince N = N;, Ny = N and K= 7. Moreover, relation (154) follows from the intertwining

condition (20) when z = [ after proceedmg to limit as z — oco. To prove the first of the relations in
(153), we consider

T30, e — THENW,e% = € {0, T (Nye'?e 4 v,) Je'o — Ny, e?ee ) —
—2¢ / W0, W)~ dt®; "IN, JePs  2¢ / NyWia, @ e~ dt®; " Je'#e.

It is obvious that A A
T3V e — TIEN U e'¥e = EFe'?e

where the function F), is given by

l
F, = xpr%J—z/\lftatcb* Ws dtdrIN, J+2/Nt\1’tatq)* edt oy,

T

since N}V, = ¥, J N, J. Elementary calculations using (21), (21,), and (22) show that F, = F,a,.J.
Taking into account that F; = ~;.J, we obtain that F,, = ~;W¥,. This proves the necessity.
To prove the second of the relations in (153), T3W* — TyW*N* = W*5*, in view of (34), we
denote T5¢P, — TTEN*®, = G, where the operator-function G, equals to
T X
Go = By’ — 2 / e P a, JNF O dt D, + 2 / Oy Nje Pea, J B dtD,.
0 0
As in the previous case, it is easy to verify that G, satisfies the equation G/, + G a,J = 0, and since
Gy = 77, it is obvious that G, = ¥*®,. So both of relations (153) are proved.

To use the theorem of the un1tar1y equivalence [1], it is necessary to verify that the characteristic
function S (2) = K+ \I'(ZI T1) <I> of the expansion V1 (38) coincides with Si1(2) (19). Consider

the vector-function f = (zI — Tl) <I>§ which, obviously, is a solution of the equation
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l
(z —€"%*) f(z) +2 / F(t)a; @ dtd: L et = /26 W, e1P= (40)

The function F(z) = (ze~%= — 1) f(x).J satisfies the following equation:

l

1 *

It is obvious that F'(x) satisfies the Cauchy problem

1Pz
Fla)="F —F(z)Jas,
z— e e (41)
F() = V2,
whose solution is well-known [2] as
7 .
ip
F(z) = \@f/exp {e, + ZJdFt} . (42)
et — 2z
Now it follows from (34) that
) !
b (=1 -1) bg=—va / F(O)and? dt,
o o f— o ].
then from equation (40), when x = 0, we have \I/(ZI — T1) 1<I>§ = EF(O) — &UqJ and since

1

V2

Theorem 7 is proved.

In the case when the spectrum of the operator 77 lies outside the unit circle T (this means that
in representation (4) there are no multiplier of the form (5)), it’s also possible to use the methods
presented above to construct the triangular model of the commutative operator system {77, 75} .

6. Since the simple component of the triangular model {10}, T 2} (32) in LE,Z(Fw) (6) is given by
(6, 7]

WoJ = & = K we finally obtain S(2)¢ F(0) and so S(z) = S(z) (19).

ﬁ[l = span {ézi)g + R;‘I’*f g, feEz,we (C} ) (43)

where z and w are points of regularity of the resolvent R, = (zI — T1) of the operator Ty, consider
the vector-function g(z, z) € L?,(Fy),

9(@,2) = R. Py, (44)
where g € E" and z ¢ 0(10“1). Then it follows from the triangular model (32) that
{1"“2 — JN,JTy — J%J} g(z,2) = 0. 45)
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Moreover, we suppose that the matrices-functions JN,J and J~,J acting as multiplication from the
right by every function f(z) € L?,(F},).
Denote by f(z,z) the following vector-function from L? (F;):
flz,w) = B, V™ f, (46)

where f € E" and w ¢ o (T1). It is easy to see that

flaw) = ————fS;(w), (47)
where the operator-function S, (w) is given by (19).
Now we calculate how the model operators 77 and 7% (32) act on f(z,w) (46). Since Ty R}, =
= wR;, — I, then
oo o o 1 o o o . 1 oo, o N
TrRA b =Ty~ {T1 R+ I} ¥ = — {Rw\y - Q)JSA(w)} ,
w w
in view of T1T1* + dJD* = 1, T1\IJ* + ®JK = 0. Therefore
wT R = R U — dJSK (w). (48)
Now using the colligation relation (see (153), we obtain
o o, o ~ 1 o o o ~ o ~
TRION* = — T {R;‘;foy*N* + \IIN*} -
w
N (e —i57) Loricr = Lo i — Lipe 757 — Lonsi(w)
_u—JQwQ v u—}Tl _U—}w 11—]211)7 ,u—}Tlva
since TQTQ* + &)Tl&)* =1, TQ\I/*N* + <i>7'llo(* = 0. Hence
TR (N*\I/ + :y*) = RED* — drSh (w). (49)
Subtracting (49) from (48), we get
W R~ TR0 (N0 +57) [ =& (n1 = J) Sa(w) . (50)

where f € E". It follows from (46), (47) and the intertwining condition (20) that

V2 (o) Saw) = flaw) (N +77).

Therefore we can write (50) in the form
wflf(x.w) — (N*\I' + ’T‘) i”gf(w, w) = o (1 —J)SA(w)f,
and in view of (46), (48) we finally obtain

(& (n =) SA(w) + 7 TadI S (w)f] . (5D

S

{iﬁ ~ NiT, — ’7*7071722} flz,w) =
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Let us show that the right-hand side of equality (51) belongs to the closed linear span generated by
the functions g(x, z) (44). From the equality 75® = T7PN; + $; (see (153)) it follows that it is
sufficient to prove that the functions

FTHONJISA(w)f, 7 PnJSA(w)f,

have this property.

These functions belong to the subspace generated by g(x, z). The proofs are analogous. So, we
exhibit the proof of the second only.

Really,

%&)'leS*A(w)f = \@fS*A(w)J’n\I/x'y;ewz = \@fSZ(w)J'yl’yf\I/zei%,

in view of (37) and the fact that ¥~} = 7/ ¥,.
Since the right-hand side of equality (51) belongs to the subspace generated by the functions
g(z, z) (44), then it follows from (45) that

fg - JNIin‘l - J’ny} [Tl - N;fg - ’yzji‘lfg} f(CL‘) = 0,
for all f(x) € H; (42). From this it easily follows that P, (IOH, T2) f(x) = 0 where

P, (21, 22) = det {[Nzz1 — 22l + V2] [21 — Njzo — vp2z122]} -

It follows from the intertwining relation (20) that

det [Ny21 — 2ol + 7] = det [Nggzl — 2ol + ﬂ = Q(z1, 22),
det [Ny zo — 211 + 3 2122] = det [N*zz -zl + 1*21,22} = Q" (21, 22),

so the polynomial P, (21, 22) = P (21, 22) = Q (21, 22) Q* (21, 22) do not depend on x. Thus, the
following theorem shows.

+
Theorem 8. Suppose that the simple commutative isometric expansion {VS, Vs}f(lél) corre-
sponding to the commutative operator system {T1,T>} is such that the suppositions of Theorem 6 are
true. Then the Ty, Ty operators annul the polynomial P(z1, z3),

P(Th,T») =0,
where P (21, 22) = Q(21, 22)Q" (21, 22).

This theorem represents an analogue of the Hamilton—Cayley theorem for the system of the
commuting operators {77, 7>} close to the unitary ones and contains several fundamental distinctions
from the well-known result of M. S. Livsic [5] for the nonself-adjoint commutative operator systems.
Note that the polynomial P(z1, z2) has the following symmetry relatively to the unit circle T:

P (1 1) = (2120) 2 P (21, 20).

Z172’2
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