UDC 512.5

A. Wang (Northwest Univ., China and Chongqing Univ. Technology, China),

L. Wang (Chongqing Univ. Technology, China)

CONGRUENCES ON REGULAR SEMIGROUPS WITH Q-INVERSE TRANSVERSALS*

КОНГРУЕНЦІЇ НА РЕГУЛЯРНИХ НАПІВГРУПАХ 3 Q-ОБЕРНЕНИМИ ТРАНСВЕРСАЛЯМИ

We give congruences on a regular semigroup with a Q-inverse transversal S^o by the congruence pair (abstractly), which consists of congruences on the structural component parts R and Λ . We prove that the set of all congruences for this kind of semigroups is a complete lattice.

Наведено конгруенції на регулярних напівгрупах з Q-оберненою трансверсаллю S^o щодо пари конгруенцій (абстрактно), сформованої з конгруенцій на частинах структурних компонент R і Λ . Доведено, що множина всіх конгруенцій для такого типу напівгруп ε повною граткою.

1. Introduction and preliminaries. The multiplicative inverse transversals of a regular semigroup were first introduced by Blyth and McFadden in 1982 [1]. An inverse subsemigroup S° of a regular semigroup S is an *inverse transversal* if $|V(x) \cap S^{\circ}| = 1$ for any $x \in S$, where V(x) denoted the set of inverses of x. In this case, the unique element of $V(x) \cap S^{\circ}$ is denoted by x° and $(x^{\circ})^{\circ}$ is denoted by x° . Throughout this paper S denotes a regular semigroup with an inverse transversal S° and $E(S^{\circ}) = E^{\circ}$ denotes the semilattice of idempotents of S° . An inverse transversal if $S^{\circ}SS^{\circ} \subseteq S^{\circ}$.

Let S° be a Q-inverse transversal, and let

$$R = \{x \in S \mid x^{\circ}x = x^{\circ}x^{\circ\circ}\}, L = \{a \in S \mid aa^{\circ} = a^{\circ\circ}a^{\circ}\},$$

and

$$I = \{e \in E(S) \mid ee^{\circ} = e\}, \ \Lambda = \{f \in E(S) \mid f^{\circ}f = f\},$$

where $E(S)=\{x\in S\mid x^2=x\}$ which is the set of idempotents of S. It was shown in [6] that R and L are orthodox subsemigroups of S with transversal S° which is a right ideal of R and a left ideal of L and that $E(R)=I,\ E(L)=\Lambda.$ Moreover, E° is a multiplicative inverse transversal of I and Λ . In [3], McAlister and McFadden show that I and Λ are R-unipotent and L-unipotent subbands respectively of S. Saito gave the structure theory of a regular semigroup with a Q-inverse transversal in [6]. The congruences on regular semigroups with inverse transversals were studied using the congruence triple by Wang and Tang (see [5,9,10]). In this paper, we give the congruences on regular semigroups with Q-inverse transversals by the congruence pair and prove that the set of all congruences on this kind of semigroups is a complete lattice.

We list already obtained results in [3-6], which will be used in this paper.

^{*} Research was supported by the Project Foundation of Chongqing Municipal Education Committee (KJ1500925).

854 A. WANG, L. WANG

Lemma 1.1. Let S° be a Q-inverse transversal. Then, for $e \in E^{\circ}$, $f \in I$ [resp. $g \in \Lambda$], $e^{\circ}f = e^{\circ}f^{\circ}[resp. ge^{\circ} = g^{\circ}e^{\circ}].$

Lemma 1.2. Let S° be a Q-inverse transversal. Then $(xy)^{\circ} = (x^{\circ}xy)^{\circ}x^{\circ} = y^{\circ}(xyy^{\circ})^{\circ}$ for every $x, y \in S$.

Lemma 1.3. S° is a Q-inverse transversal if and only if for any $s, t \in S^{\circ}$, $x \in S$, $(sxt)^{\circ} = t^{\circ}x^{\circ}s^{\circ}$.

Lemma 1.4. Let S be a band with an inverse transversal S° . If S° is a left ideal of S, then $e^{\circ}e = e$ for every $e \in S$. In this case, S is an \mathcal{L} -unipotent band.

For a regular semigroup S, $\operatorname{Con}(S)$ denotes the complete lattice of congruences on S. For $\rho \in \operatorname{Con}(S)$, let $\rho^{\circ} = \rho|_{S^{\circ}}$, $\rho_I = \rho|_I$, $\rho_{\Lambda} = \rho|_{\Lambda}$.

Lemma 1.5. Let S° be a Q-inverse transversal. For any $\rho \in \text{Con}(S)$ and for $x, y \in S$, $x \rho y$ implies $x^{\circ} \rho^{\circ} y^{\circ}$.

Lemma 1.6. Let R be a regular semigroup with a right ideal inverse transversal S° . Suppose that Λ is a band with a left ideal inverse transversal E° . Let $\Lambda \times R \longrightarrow S^{\circ}$ described by $(\lambda, x) \longrightarrow \lambda * x$ be a mapping, such that for any $x, y \in R$ and for any $\lambda, \mu \in \Lambda$:

$$(Q_1)$$
 $(\lambda * x)y = \lambda * (xy)$ and $\mu(\lambda * x) = (\mu\lambda) * x;$

$$(Q_2)$$
 if $x \in E^{\circ}$ or $\lambda \in E^{\circ}$, then $\lambda * x = \lambda x$.

Define a multiplication on the set

$$\Gamma \equiv R| \times |\Lambda = \{(x, \lambda) \in R \times \Lambda : x^{\circ}x = \lambda^{\circ}\}$$

by

$$(x,\lambda)(y,\mu) = (x(\lambda * y), (\lambda * y)^{\circ}(\lambda * y)\mu).$$

Then Γ is a regular semigroup with a Q-inverse transversal which is isomorphic to S° .

Conversely, every regular semigroup with a Q-inverse transversal can be constructed in this way.

2. Main results. In this section, we first establish a characterization of congruences abstractly by congruence pair. We describe a congruence pair of the form (ρ^R, ρ^{Λ}) with $\rho^R \in \text{Con}(R)$ and $\rho^{\Lambda} \in \text{Con}(\Lambda)$ satisfying some conditions in order that they produce a congruence on S naturally.

Let S° be a Q-inverse transversal. For $\rho \in \text{Con}(S)$, let $\rho_R = \rho|_R$. The following lemma shows that ρ_R is determined uniquely by its restrictions to S° and I.

Lemma 2.1. For $\rho, \sigma \in \text{Con}(S)$, $\rho_R \subseteq \sigma_R \Leftrightarrow \rho^{\circ} \subseteq \sigma^{\circ}$, $\rho_I \subseteq \sigma_I$. Therefore,

$$\rho_R = \sigma_R \Leftrightarrow \rho^{\circ} = \sigma^{\circ}, \ \rho_I = \sigma_I.$$

Proof. Suppose that $\rho^{\circ} \subseteq \sigma^{\circ}$, $\rho_I \subseteq \sigma_I$. Then for any $x, y \in S$, by Lemma 1.5,

$$x\rho_R y \Longrightarrow x^{\circ}\rho^{\circ}y^{\circ}, \ x, y \in R \Longrightarrow$$

$$\Longrightarrow x^{\circ\circ}\rho^{\circ}y^{\circ\circ}, \ x^{\circ}x^{\circ\circ}\rho^{\circ}y^{\circ}y^{\circ\circ}, \ xx^{\circ}\rho_I yy^{\circ}, \ x, y \in R \Longrightarrow$$

$$\Longrightarrow x^{\circ\circ}\rho^{\circ}y^{\circ\circ}, \ x^{\circ}x\rho^{\circ}y^{\circ}y, \ xx^{\circ}\rho_I yy^{\circ}, \ x, y \in R \Longrightarrow$$

$$\Longrightarrow x^{\circ\circ}\sigma^{\circ}y^{\circ\circ}, \ x^{\circ}x\sigma^{\circ}y^{\circ}y, \ xx^{\circ}\sigma_I yy^{\circ}, \ x, y \in R \Longrightarrow$$

$$\Longrightarrow x = xx^{\circ}x^{\circ\circ}x^{\circ}x\sigma yy^{\circ}y^{\circ}y^{\circ}y = y, \ x, y \in R \Longrightarrow x\sigma_R y.$$

So $\rho_R \subseteq \sigma_R$. The reverse implication is obvious.

Lemma 2.1 is proved.

Suppose ρ^R and ρ^{Λ} are congruences on R and Λ , respectively. Then (ρ^R, ρ^{Λ}) is called a *congruence pair* for Γ if the following conditions hold:

 $(C_1) \rho^R|_{E^{\circ}} = \rho^{\Lambda}|_{E^{\circ}};$

 $(\mathsf{C}_2) \ (\forall \ z \in R)(\forall \ \lambda, \mu \in \Lambda) \ \lambda \rho^\Lambda \mu \Rightarrow (\lambda * z) \rho^R (\mu * z);$

 $(C_3) \ (\forall \nu \in \Lambda)(\forall x, y \in R) \ x\rho^R y \Rightarrow (\nu * x)\rho^R (\nu * y).$

Define $\rho^{(\rho^R,\rho^{\Lambda})}$ on Γ by

$$(x,\lambda)\rho^{(\rho^R,\rho^\Lambda)}(y,\mu) \Leftrightarrow x\rho^R y, \ \lambda\rho^\Lambda \mu.$$

Theorem 2.1. Let Γ be a regular semigroup having a Q-inverse transversal as in Lemma 1.6, and (ρ^R, ρ^{Λ}) be a congruence pair on Γ . Then $\rho^{(\rho^R, \rho^{\Lambda})}$ is a congruence on Γ .

Conversely, every congruence on Γ can be constructed in the above manner.

Proof. Let (ρ^R, ρ^{Λ}) be a congruence pair on Γ . Obviously, $\rho^{(\rho^R, \rho^{\Lambda})}$ is an equivalence on Γ . For $(x, \lambda), (y, \mu) \in \Gamma$, with $(x, \lambda)\rho^{(\rho^R, \rho^{\Lambda})}(y, \mu)$, we have $x\rho^R y$, $\lambda\rho^{\Lambda}\mu$. Let $z \in R$ and $\nu \in \Lambda$ be such that $(z, \nu) \in \Gamma$. By Lemmas 1.2, 1.3 and condition (C_2) , we have

$$(x(\lambda*z))^{\circ} = (x^{\circ}x(\lambda*z))^{\circ}x^{\circ} =$$

$$= (\lambda*z)^{\circ}(x^{\circ}x(\lambda*z)(\lambda*z)^{\circ})^{\circ}x^{\circ}\rho^{\circ}(\mu*z)^{\circ}(y^{\circ}y(\mu*z)(\mu*z)^{\circ})^{\circ}y^{\circ} =$$

$$= (y(\mu*z))^{\circ}$$

and

$$(x(\lambda * z))(x(\lambda * z))^{\circ} \rho^{I}(y(\mu * z))(y(\mu * z))^{\circ}.$$

Thus, by Lemma 2.1,

$$x(\lambda * z)\rho^R y(\mu * z).$$

From condition $(C_2,)$ we have $(\lambda * z)\rho(\mu * z)$ and so $(\lambda * z)^{\circ}\rho^{\circ}(\mu * z)^{\circ}$. It follows that

$$(\lambda * z)^{\circ}(\lambda * z)\rho^{\Lambda}(\mu * z)^{\circ}(\mu * z).$$

Hence

$$(\lambda * z)^{\circ} (\lambda * z) \nu \rho^{\Lambda} (\mu * z)^{\circ} (\mu * z) \nu.$$

Thus

$$(x,\lambda)(z,\nu)\rho^{(\rho^R,\rho^\Lambda)}(y,\mu)(z,\nu).$$

Next, by $x\rho^R y$ and condition (C₃), we have

$$(\nu * x)\rho^R(\nu * y).$$

It follows that

$$z(\nu*x)\rho^Rz(\nu*y)$$

and

$$(\nu * x)^{\circ} (\nu * x) \lambda \rho^{\Lambda} (\nu * y)^{\circ} (\nu * y) \mu.$$

Hence

$$(z(\nu*x),(\nu*x)^{\circ}(\nu*x)\lambda)\rho^{(\rho^R,\rho^{\Lambda})}(z(\nu*y),(\nu*y)^{\circ}(\nu*y)\mu).$$

That is,

$$(z,\nu)(x,\lambda)\rho^{(\rho^R,\rho^\Lambda)}(z,\nu)(y,\mu).$$

Therefore $\rho^{(\rho^R,\rho^\Lambda)}$ is a congruence on $\Gamma.$

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 6

856 A. WANG, L. WANG

Conversely, assume that ρ is a congruence on Γ . We define the following equivalences on R and Λ , respectively:

$$(\forall x, y \in R) \quad x \rho_R y \Leftrightarrow (x, x^{\circ} x) \rho(y, y^{\circ} y),$$

$$(\forall \lambda, \mu \in \Lambda) \quad \lambda \rho_{\Lambda} \mu \Leftrightarrow (x^{\circ} x, \lambda) \rho(y^{\circ} y, \mu).$$

Since ρ is a congruence on Γ , we have ρ_R and ρ_{Λ} are equivalences on R and Λ , respectively. Let $(x,\lambda), (y,\mu), (x_1,\lambda_1), (y_1,\mu_1) \in \Gamma$. If $x\rho_R y$ and $x_1\rho_R y_1$, then

$$(x, x^{\circ}x)\rho(y, y^{\circ}y)$$
 and $(x_1, x_1^{\circ}x_1)\rho(y_1, y_1^{\circ}y_1)$.

Now we immediately get

$$(x, x^{\circ}x)(x_1, x_1^{\circ}x_1)\rho(y, y^{\circ}y)(y_1, y_1^{\circ}y_1).$$

And this implies that

$$(x(x^{\circ}x * x_1), (x^{\circ}x * x_1)^{\circ}(x^{\circ}x * x_1)x_1^{\circ}x_1)\rho(y(y^{\circ}y * y_1), (y^{\circ}y * y_1)^{\circ}(y^{\circ}y * y_1)y_1^{\circ}y_1).$$

Then, by Lemma 1.2,

$$(xx_1, (xx_1)^{\circ}xx_1)\rho(yy_1, (yy_1)^{\circ}yy_1).$$

So we have proved that $xx_1\rho_Ryy_1$.

Suppose that $\lambda \rho_{\Lambda} \mu$ and $\lambda_1 \rho_{\Lambda} \mu_1$, then we obtain

$$(x^{\circ}x,\lambda)\rho(y^{\circ}y,\mu)$$
 and $(x_1^{\circ}x_1,\lambda_1)\rho(y_1^{\circ}y_1,\mu_1)$.

Hence

$$(x^{\circ}x,\lambda)(x_1^{\circ}x_1,\lambda_1)\rho(y^{\circ}y,\mu)(y_1^{\circ}y_1,\mu_1).$$

That is.

$$(x^{\circ}x(\lambda * x_{1}^{\circ}x_{1}), (\lambda * x_{1}^{\circ}x_{1})^{\circ}(\lambda * x_{1}^{\circ}x_{1})\lambda_{1})\rho(y^{\circ}y(\mu * y_{1}^{\circ}y_{1}), (\mu * y_{1}^{\circ}y_{1})^{\circ}(\mu * y_{1}^{\circ}y_{1})\mu_{1}).$$

By Lemma 1.4, we have

$$(\lambda \lambda_1^{\circ}, \lambda \lambda_1) \rho(\mu \mu_1^{\circ}, \mu \mu_1).$$

Thus, by Lemma 1.1,

$$(\lambda_1^{\circ}\lambda^{\circ}, \lambda\lambda_1)\rho(\mu_1^{\circ}\mu^{\circ}, \mu\mu_1).$$

So we have proved $\lambda \lambda_1 \rho_{\Lambda} \mu \mu_1$.

And we have the following cases:

- (1) $\rho_R|_{E^{\circ}} = \rho_{\Lambda}|_{E^{\circ}}$ is obvious. So condition (C₁) holds.
- (2) Let $x, y \in R$ and $x\rho_R y$. Then

$$(x, x^{\circ}x)\rho(y, y^{\circ}y).$$

Hence

$$(z^{\circ}z, \nu)(x, x^{\circ}x)\rho(z^{\circ}z, \nu)(y, y^{\circ}y).$$

That is,

$$(z^{\circ}z(\nu*x), (\nu*x)^{\circ}(\nu*x)x^{\circ}x)\rho(z^{\circ}z(\nu*y), (\nu*y)^{\circ}(\nu*y)y^{\circ}y).$$

It follows that

$$z^{\circ}z(\nu*x)\rho_Rz^{\circ}z(\nu*y).$$

By condition (Q_1) and $z^{\circ}z = \nu^{\circ}$, we get

$$(\nu * x)\rho_R(\nu * y).$$

Now condition (C_3) holds.

(3) Let λ , $\mu \in \Lambda$ and $\lambda \rho_{\Lambda} \mu$. Then

$$(x^{\circ}x,\lambda)\rho(y^{\circ}y,\mu).$$

Hence

$$(x^{\circ}x,\lambda)(z,\nu^{\circ})\rho(y^{\circ}y,\mu)(z,\nu^{\circ}).$$

It follows that

$$(x^{\circ}x(\lambda*z),(\lambda*z)^{\circ}(\lambda*z)\nu^{\circ})\rho(y^{\circ}y(\mu*z),(\mu*z)^{\circ}(\mu*z)\nu^{\circ}).$$

Thus

$$x^{\circ}x(\lambda*z)\rho_{B}y^{\circ}y(\mu*z).$$

By condition (Q_1) and Lemma 1.4, we have

$$(\lambda * z)\rho_R(\mu * z).$$

Now condition (C_2) holds.

Now from the above proof, (ρ_R, ρ_{Λ}) is a congruence pair on Γ .

By the direct part, $\rho^{(\rho_R,\rho_\Lambda)}$ is a congruence. If $(x,\lambda)\rho^{(\rho_R,\rho_\Lambda)}(y,\mu)$, then we have

$$x\rho_R y, \lambda \rho_\Lambda \mu.$$

Thus

$$(x, x^{\circ}x)\rho(y, y^{\circ}y), (x^{\circ}x, \lambda)\rho(y^{\circ}y, \mu).$$

Hence

$$(x(x^{\circ}x*x^{\circ}x),(x^{\circ}x*x^{\circ}x)^{\circ}(x^{\circ}x*x^{\circ}x)\lambda)\rho(y(y^{\circ}y*y^{\circ}y),(y^{\circ}y*y^{\circ}y)^{\circ}(y^{\circ}y*y^{\circ}y)\mu).$$

By Lemma 1.4,

$$(x,\lambda)\rho(y,\mu).$$

Thus, $\rho^{(\rho_R,\rho_\Lambda)} \subseteq \rho$. Since $\rho \subseteq \rho^{(\rho_R,\rho_\Lambda)}$ is obvious, $\rho^{(\rho_R,\rho_\Lambda)} = \rho$.

Theorem 2.1 is proved.

Example 2.1. Let $R = \{a, b, c\}$ and $\Lambda = \{e, f, g\}$ be semigroups whose multiplication tables given respectively by

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 6

858 A. WANG, L. WANG

It is clear that R is a regular semigroup with a right ideal inverse transversal $S^{\circ} = \{b,c\}$. The equivalence ρ^R on R with class $\{a,c\},\{b\}$ is a nontrivial congruence. Λ is a band with a left ideal inverse transversal $\Lambda^{\circ} = \{f,g\}$. The equivalence ρ^{Λ} on Λ with class $\{e,g\},\{f\}$ is a nontrivial congruence. Moreover, $S^{\circ} = E(S^{\circ}) \cong \Lambda^{\circ}$.

By Lemma 1.6, we have $\Gamma = \{(a,e), (a,g), (b,f), (c,e), (c,g)\}$ is a regular semigroup with a Q-inverse transversal which is isomorphic to S° . It is easy to see that (ρ^R, ρ^{Λ}) satisfies the conditions (C_1) , (C_2) and (C_3) , thus (ρ^R, ρ^{Λ}) is a congruence pair. Using Theorem 2.1, we have the equivalence ρ on Γ with class $\{(a,e), (a,g), (c,e), (c,g)\}$, $\{(b,f)\}$ is a nontrivial congruence.

We denote the set of all congruences on Γ and the set of all congruence pairs on Γ constructed as in Theorem 2.1 by $C(\Gamma)$ and $CT(\Gamma)$.

Lemma 2.2. If $(\rho_1^R, \rho_1^{\Lambda}), (\rho_2^R, \rho_2^{\Lambda}) \in CT(\Gamma)$, then

$$\rho^{(\rho_1^R,\rho_1^\Lambda)} \subseteq \rho^{(\rho_2^R,\rho_2^\Lambda)} \Leftrightarrow \rho_1^R \subseteq \rho_2^R, \rho_1^\Lambda \subseteq \rho_2^\Lambda.$$

Proof. Suppose $\rho^{(\rho_1^R,\rho_1^{\Lambda})} \subseteq \rho^{(\rho_2^R,\rho_2^{\Lambda})}$. Let $x\rho_1^R y$. By the proof of Theorem 2.1,

$$((x, x^{\circ}x), (y, y^{\circ}y)) \in \rho^{(\rho_1^R, \rho_1^{\Lambda})} \subseteq \rho^{(\rho_2^R, \rho_2^{\Lambda})}.$$

Hence $x\rho_2^R y$, and immediately we get $\rho_1^R \subseteq \rho_2^R$. Similarly, we have $\rho_1^{\Lambda} \subseteq \rho_2^{\Lambda}$.

The reverse implication is obvious.

Lemma 2.2 is proved.

Define \leq on $CT(\Gamma)$ by

$$(\rho_1^R, \rho_1^{\Lambda}) \leq (\rho_2^R, \rho_2^{\Lambda}) \Leftrightarrow \rho_1^R \subseteq \rho_2^R, \rho_1^{\Lambda} \subseteq \rho_2^{\Lambda}.$$

Then $CT(\Gamma)$ is a partial ordered set with respect to \leq . By Theorem 2.1 and Lemma 2.2, we can easily see that $C(\Gamma)$ and $CT(\Gamma)$ are isomorphic as partial ordered set.

Proposition 2.1. Let $\Omega \subseteq C(\Gamma)$ and $T_{\rho} = (\rho^R, \rho^{\Lambda})$ where $\rho \in \Omega$. Then

$$T_{(\cap_{\rho\in\Omega}\rho)} = \left(\bigcap_{\rho\in\Omega} \rho^R, \bigcap_{\rho\in\Omega} \rho^\Lambda\right)$$

and

$$T_{(\bigvee_{\rho \in \Omega} \rho)} = \left(\bigvee_{\rho \in \Omega} \rho^R, \bigvee_{\rho \in \Omega} \rho^{\Lambda}\right).$$

Proof. The first equality is obvious, we only need to prove the second equality. Let $x, y \in R$ be such that $x(\bigvee_{\rho \in \Omega} \rho)^R y$. Then

$$i = (x, x^{\circ}x) \bigvee_{\rho \in \Omega} \rho(y, y^{\circ}y) = j.$$

Hence, there exist $\rho_i \in \Omega$ and $a_i = (x_i, x_i^{\circ} x_i) \in \Gamma$ such that

$$i\rho_1a_1\rho_2a_2\ldots a_{n-1}\rho_nj$$
.

This implies that

$$x\rho_1^R x_1 \rho_2^R x_2 \dots x_{n-1} \rho_n^R y.$$

We have proved that

$$\left(\bigvee_{\rho\in\Omega}\rho\right)^R\subseteq\bigvee_{\rho\in\Omega}\rho^R.$$

 $\bigvee_{\rho \in \Omega} \rho^R \subseteq (\bigvee_{\rho \in \Omega} \rho)^R$ is obvious. The dually equality can be proved similarly. Proposition 2.1 is proved.

Now, by summing up the above results, we obtain the following theorem.

Theorem 2.2. Let Γ be constructed in Lemma 1.6. Then $CT(\Gamma)$ forms a complete lattice with respect to \leq and $C(\Gamma)$ is isomorphic to $CT(\Gamma)$ as a complete lattice.

For a semigroup S, the equality relations on S are denoted by ϵ_S . The following theorem describes the idempotent-separating congruences.

Theorem 2.3. Let π be an idempotent-separating congruence on R. Then $\rho^{(\pi,\epsilon_{\Lambda})}$ is an idempotent-separating congruence on Γ , and every such congruence may be obtained in this way.

Proof. Since π is an idempotent-separating congruence, $\pi|E^{\circ}=\epsilon_{E^{\circ}}$. It is easy to see that (π,ϵ_{Λ}) is a congruence pair. For any $(x,\lambda),(y,\mu)\in E(\Gamma)$ with $(x,\lambda)\rho^{(\pi,\epsilon_{\Lambda})}(y,\mu)$, we have $\lambda=\mu,$ $xx^{\circ}=yy^{\circ},\ x^{\circ}x=y^{\circ}y$. So $x^{\circ}=x^{\circ}x(\lambda*x)x^{\circ}=y^{\circ}y(\mu*y)y^{\circ}=y^{\circ}$. Hence $x=xx^{\circ}x^{\circ}x^{\circ}x=yy^{\circ}y^{\circ}y^{\circ}y=y$. Therefore $\rho^{(\pi,\epsilon_{\Lambda})}$ is an idempotent-separating congruence. It is easy to show the reverse implication.

References

- 1. *Blyth T. S., McFadden R. B.* Regular semigroups with a multiplicative inverse transversal // Proc. Roy. Soc. Edinburgh A. 1982. 92. P. 253 270.
- 2. Tang X. L. Regular semigroups with inverse transversals // Semigroup Forum. 1997. 55, № 1. P. 24 32.
- 3. *McAlister D. B., McFadden R. B.* Regular semigroups with inverse transversals // Quart. J. Math. Oxford. 1983. 34, № 2. P. 459–474.
- 4. *McAlister D. B., McFadden R. B.* Regular semigroups with inverse transversals as matrix semigroups // Quart. J. Math. Oxford. 1984. 35, № 2. P. 455 474.
- 5. Wang L. M. On congruence lattice of regular semigroups with Q-inverse transversals // Semigroup Forum. 1995. **50**. P. 141 160.
- 6. *Saito T.* Structure of regular semigroups with a quasi-ideal inverse transversals // Semigroup Forum. 1985. **31**. P. 305 309.
- 7. Petrich M. The structure of completely semigroups // Trans. Amer. Math. Soc. 1974. 189. P. 211 236.
- 8. Petrich M., Reilly N. Completely regular semigroups. New York: Wiley, 1999.
- 9. Tang X. L., Wang L. M. Congruences on regular semigroups with inverse transversals // Communs Algebra. 1995. 23. P. 4157 4171.
- Wang L. M., Tang X. L. Congruence lattices of regular semigroups with inverse transversals // Communs Algebra. 1998. – 26. – P. 1234 – 1255.
- 11. Saito T. A note on regular semigroups with inverse transversals // Semigroup Forum. 1986. 33. P. 149 152.

Received 22.04.13, after revision -06.03.16