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REFINEMENTS OF JESSEN’S FUNCTIONAL*
YTOUHEHHSA ®YHKIIIOHAJIA MECCEHA

We obtain new refinements of Jessen’s functional defined by means of positive linear functionals. The accumulated
results are then applied to weighted generalized and power means. We also obtain new refinements of numerous classical
inequalities such as the arithmetic-geometric mean inequality, Young’s inequality, and Hoélder’s inequality.

OtpumaHo HOBI yTouHeHHs (yHKIoHana Meccena, BU3HauCH] y TepMiHAX HOAATHUX TiHiiHMX dyHKuioHanis. OtpuMaHi
pe3yibTaTi 3aCTOCOBAHO JI0 3BAXXEHHWX y3arajbHEHHX Ta CTCICHEBHX CEpelHiX. TakoK OTPMMAaHO HOBi YTOYHEHHS YHC-
JICHHUX KIACHYHUX HEPIBHOCTEH, TAKHX SIK HEPIBHICTH U apu(METHIHO-TCOMETPHYHUX CEPEAHIX, HEpiBHOCTI SHra Ta
I'enbaepa.

1. Introduction. Let us denote with P, the set of all real n-tuples p = (p1,...,pn) such that

k
P, = Z, pi, k=1,...,n, with 0 < P, < P,, k=1,....,n—1, and P, > 0. Let I be an
interval in R and ¢: I — R a convex function. If x = (z1,...,x,) is a monotonic (increasing or
decreasing) n-tuple in I™ and p is in P, then Jensen — Steffensen’s inequality (for more details see
[17, p. 57])

1 & 1 &
"i=1 " oi=1

holds. Now, we define a functional as the difference between the right-hand side and the left-hand
side of (1.1) multiplied by P,

Zn—
DiT;
i=1" """

= (1.2)

(I) X, p sz xz P,

We call it discrete Jensen — Steffensen’s functional. For a fixed function ® and n-tuple x, J(®,x, )
can be considered as a function on the set P,. Because of (1.1) we have that J(®,x,p) > 0 for all
p in P,.

Inequality (1.1) can be observed under stricter conditions on p to obtain the well known Jensen’s
inequality. Let ®: 7 € R — R be a convex function, x = (z1,22,...,2,) € I, n > 2, and
p = (p1,p2, ..., Pn) is positive n-tuple of real numbers with P, = Zn Dj.

In this case, observing the difference between the right-hand side and the left-hand side of Jensen’s
inequality, Dragomir et al. (see [9]) introduced and investigated discrete Jensen’s functional

" >
.
' N =1 Dixsg

o (1.3)

Let P? denote the set of all nonnegative n-tuples of real numbers with P, = Zn P> 0.

1=
Obviously, P C P,. For a fixed function ® and n-tuple x, J,(®,x,-) can be considered as a
function on the set PV.
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Dragomir et al. (see [9]) obtained that such functional is superadditive on the set of positive real
n-tuples, that is

Jn(®,%,p +q) > Jo (@, %,p) + Jn (P, %, Q). (1.4)
Further, above functional is also increasing in the same setting, that is,
Jn((I),X,p) Z Jn(q)axa q) 2 07 (15)

where p > q (i.e., p; > ¢;, t = 1,2,...,n). Monotonicity property of discrete Jensen’s functional
was proved few years before (see [13, p. 717]). Above mentioned properties provided refinements of
numerous classical inequalities. For more details about such extensions see [9]. Krni¢ et al. proved the
superadditivity property and monotonicity property of the functional (1.1), for more details see [12].

It is well known that Jensen’s inequality can be regarded in a more general manner, including
positive linear functionals acting on linear class of real valued functions.

More precisely, let E' be nonempty set and let L(F,R) be any linear class of real-valued functions
f: E — R satisfying following properties:

(L) f,g€ L(E,R) = af +Pg € L(E,R) forall o, 8 € R;

(L) 1€ L(E,R), thatis, if f(t) =1 forall t € E, then f € L(E,R).

We also consider positive linear functionals A: £(F,R) — R. That is, we assume that

(A) Alaf + Bg) = aA(f) + BA(g) for f,g € L(E,R), a, 3 € R;

(Ay) feL(E,R), f(t)y>0forallt e E = A(f) > 0.
Further, if

(As) A1) =1
also holds, we say that A is normalized positive linear functional or A(f) is linear mean defined on
L(E,R).

Jessen’s generalization of Jensen’s inequality (see [17, p. 47, 48]), in view of positive functionals,
claims that

(A(f)) < A(@(f)), (1.6)

where ® is continuous convex function on interval I C R, f attains its values on the interval I,
A is normalized positive linear functional, and f € L(F,R) such that ®(f) € L(E,R). Jessen’s
inequality was extensively studied during the eighties and early nineties of the last century (see
[7, 8, 10, 1416, 18]).

In this paper we define Jessen’s functional including positive functional. Before we define such
functional, we have to establish some basic notation see [11].

Let F(I,R) be the linear space of all real functions on interval I C R, let L(E,R) be the
linear class of real functions, defined on nonempty set F, satisfying properties (L;) and (L;), and
let L& (E,R) C L(E,R) be subset of nonnegative functions in £(E,R). Further, let Z(£(E,R),R)
denotes the space of positive linear functionals on £(E,R), that is, we assume that such functionals
satisfy properties (A;) and (Ay).

As a generalization of Jensen’s functional, with respect to positive functional, we define J:
F(ILR) x L(E,R) x L§(E,R) x Z(L(E,R),R) = R as
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A(m“))
Alp) )

Clearly, definition (1.7) is deduced from relation (1.6) and it also contains definition (1.3) of discrete

T (@, fpi A) = A(d(f)) - Alp)® ( (1.7

Jensen’s functional. We call (1.7) Jessen’s functional.

Remark 1.1. In above definition (1.7) we suppose pf, p®(f) € L(E,R). Then, it is easy to see

that <12<Z£)> is well defined provided that A(p) # 0. Namely, A;(f) = Alpf) € I(L(E,R),R)

A

is normalized positive functional, that is, A;(1) = 1. Suppose I = [a,d]. C(lzeja)irly, a< ft)<b

for all t € E. Since f(t) — a > 0, by using properties (A), (Az), and (A3) we have A;(f) —a =

= Ai(f)—Ai(a) = A1(f—a) > 0, hence A;(f) > a. Similarly, A;(f) < b wherefrom we conclude
A(pf)
A(p)

Conditions similar to those in Remark 1.1 will usually be omitted, so Jessen’s functional (1.7)

that belongs to interval I.

will initially assumed to be well defined.

Remark 1.2. 1If ® is continuous convex function on interval I, then Jessen’s functional is non-
negative, i.e.,

T (®, f,p; A) > 0. (1.8)
It follows directly from Jessen’s relation (1.6) applied on normalized positive functional

_ Alf)
A(p)

On the other hand, if ® is continuous concave function, then the sign of inequality in (1.8) is reversed.

AL(f) € Z(L(E,R),R).

Recently, Krni¢ et al. (see [11]) gave basic properties of Jessen’s functional. That proporties
are superadditivity and monotonicity. Monotonocity property applies to functions p,q € E(J{ (E,R)
where p > ¢ means p; > ¢q;, 1 =1,2,...,n.

Theorem 1.1. Suppose ®:1 C R — R is continuous convex function. Let f € L(E,R),
p,q € LJ(E,R), A € I(L(E,R),R), such that Jessen’s functional (1.7) is well defined. Then
functional (1.7) possess the following properties:

Q) J (@, f,; A) is superadditive on L (E,R), i.e.,
J(@, fip+q¢A) > T(D, f,p; A)+ (D, f,q; A). (1.9)
(i) If p,q € L3 (B, R) with p > q, then
J(®, f,p; A) > J(®, f,q; A) >0, (1.10)

ie., J(®,f, - A) is increasing on L (E,R).
(iii) If ® is continuous concave function, then the signs of inequality in (1.9) and (1.10) are
reversed, i.e., J(®, f,+; A) is subadditive and decreasing on L (E,R).

As the first consequence of Theorem 1.1, they obtain monotonicity property of Jessen’s functional
which includes the function that attains minimum and maximum value on its domain.
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Corollary 1.1. Let ® be continuous convex function on real interval, f € L(E,R), and A €
€ Z(L(E,R),R). Suppose p € L (E,R) attains minimum and maximum value on the set E. If the
functional (1.7) is well defined, then the following series of inequalities hold:

[rgeagp(ﬂf)] J(@,f,1,A) > J (D, f,p; A) > [géigp(x)] J(®,f,1;A), (1.11)
where
(@115 = aq@() - ame (58], (1.12)

Further, if ® is continuous concave function, then the signs of inequality in (1.11) are reversed.

Now we consider the discrete case of Corollary 1.1. We suppose £ = {1,2,...,n} and
L(E,R) is the class of real n-tuples. If we consider discrete functional A € Z(L(E,R),R) defined
by A(x) = Zj_l x;, where x = (x1,x2,...,2,), then the functional (1.7) becomes discrete
functional (1.3) from paper [9] and relation (1.11) takes form

max {pi}S(x) = Ju(®.x,p) = min {pi}So(x). (113)

where the functional J,,(®, x, p) is defined by (1.3) and

Se(x) = Z ®(zi) —n® (Z’nl :CZ) .

In this paper we give refinements of Theorem 1.1 and Corollary 1.1.
2. Main results.

Theorem 2.1. Suppose ®: I C R — R is continuous convex function. Let

A(pf) Alqf)
f.p.q € L(E,R), AeI(L(E,R),R), Alp),Alq) >0, A0) Alg) © 1

such that Jessen's functional (1.7) is well defined. Then the following holds:

o s () o (45) (485 - 50)

<J (@ fipt @A) —J( fpA) = J (P, f,¢;A) <
< max{A(p), A(q)} [<1> <A(pf)> LB (A(qf)> 9% (A(pf) n A(Qf))]_ @1

A(p) Alq) 24(p)  24(q)
3 Alpf) — Alaf)

J(@, f,p; A) = J (2, f,q; A) =

A(p) — Alq A(q)
L (1[A®S) -~ Al Alef)
2‘13{2{ Alp) —Alg) T Alg) ]} 22
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Proof. From relation (1.13) in case n = 2 we have

min{p.a} [2(a) + () 20 (3 ) ] <

< poa) +300) — (p+ e (PED) <

p+q
< max{p, 7} [@(w) +B(y) - 20 <”” - y)} 23)
holds. If we supstitute p with A(p), ¢ with A(q), x with Alpf) and y with (af) in (2.3) we
A(p) Alq)

obtain

min{A(p), A(q)} [‘D (ﬂég))) + o <’2(gq];)> 20 <A(pf

ot o (45 o (45) oo (45 - 2] o

From the definition of Jessen’s functional (1.7) we get

J(@, f,p+q;A) — J(D, f,p; A) — T (®, f,q; A) =
= A(p)® <‘2(Zf;)> + A(q)® (ﬂ?q?) —(A(p) + A(g))® <m>. (2.5)

So, by combining relations (2.4) and (2.5) we have (2.1).
(ii) Functional J(®, f,-, A) is superadditive and increasing on L£(E,R) and satisfied rela-

. A(pf) — Algf) :
tion (2.1). So for A > A > (0 and ——~—== ¢ | the following holds:
2.1 (p) = Alq) = Alp) = Alg) g

J(®, f,p; A) = J(®, f,p—q: A) — T (D, f,q; A) >

> min{A(p — q), A(q)} [ ( ) e ( >
20 (om0 A%;?)} >
> min{A(p) - Alg) A} |0 (APH=0) 0 (SU))
e e ) =

Since J (@, f,p — q; A) > 0 we obtain (2.2).

Theorem 2.1 is proved.

Observe that we can obtain that (2.1) and (2.2) hold also for p,q € £{ (E,R). That result is
given in the following corollary.
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Corollary 2.1. Suppose ®: 1 C R — R is continuous convex function. Let f € L(E,R),
p,q € ES“(E,]R), A e IZ(L(E,R),R), A(p), A(q) > 0 such that Jessen’s functional (1.7) is well
defined. Then the inequality (2.1) holds. If p > q and A(p) > A(q) > 0, then (2.2) holds.

Now, we obtain consequence of Corollary 2.1.

Corollary 2.2. Let ® be continuous convex function on real interval, f € L(E,R), and A €
€ Z(L(E,R),R). Suppose p € L (E,R) attains minimum and maximum value on the set E. If the
Sunctional (1.7) is well defined, p(z)A(1) < A(p) < p(x)A(1), A(p), A(1) > 0, then the following
series of inequalities hold.: B

{maxp( )]7 (@, f,A) = J (D, f,p;;A) >

>mm{p<x>A<1>mjp),A(p)}{@ (A=) v (00 -
- {3 a0 AMH 7
J(@, f.piA) = [minp(a)]j (@, £,14) >
SRSAT
”(ﬁiﬁ)—”{z[ﬁ) S+ 4] e

where B(z) = maxyep p(a), pla) = mingep p(a) and

3 (@, 1,1 4) = A(2(f) - A(1)2 (iiﬁ)'

Proof. Since p € Ear (E,R) attains minimum and maximum value on its domain F, then

max p(x) > p(w) > min p(z),

so we can consider two constant functions

p(x) = r;leagp() and  p(z) = gggp()

Now, double application of property (2.2) yields required result since
J(®, f,5; A) =p(2)j (2, f,1;4)  and T (2, f,p:A) =p(2)j (P, f,1; A).

Corollary 2.2 is proved.
Remark 2.1. Let’s rewrite relations (2.7) and (2.8) from Corollary 2.2 in a discrete form. We
suppose £ = {1,2,...,n} and L(E,R) is the class of real n-tuples. If we consider discrete

functional A € Z(L(E,R),R) defined by A(x) = Zn L iy where x = (x1,22,...,%,), then the
1=
functional (1.7) becomes discrete functional (1.3) from paper [9] and relation (2.7) takes form
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max {p;} S (x) — Jn(P,%x,p) >

1<i<n
n n
maXlgz‘gn{pi} E i1 Tg — E iilpz'l’z'

nmaxi<i<n{pi} — Pa

> mi A
_mln{nlrg%)%{pl} Pn,Pn} P

n n n n
Zi:l Di; 9 1 maxi<i<n{pi} Zi:l Ti— Zi:l Di; N Zi:l DiT;
Pn 2 nmaxlgign{pi} — Pn Pn

and relation (2.8)

Jn(®,x,p) — g;gn{pi}S@(X) >

n n
E g Pi%i — ming <;<n{pi} E P

> mind P — . . . ' >
> mln{ » —n min {p;},n 1%1371{])1}} FEAp—

1<i<n
n n . n n
E i 1 E _ Pii —mini<i<n{pi} § i § i

= _9p !l = = = + = ’

n 2 P, — nminj<;j<,{p:} n

+ &

where the functional J,,(®, x, p) is defined by (1.3) and

Sp(x) =) ®(x;) —nd (nglm> .
=1

3. Applications to weighted generalized and power means. In this section we apply our
basic results from previous section to weighted generalized and power means with respect to positive
functional A € Z(L(E,R),R).

We recall weighted generalized mean with respect to positive linear functional A € Z(L(E,R), R)
and continuous and strictly monotone function y € F(I,RR), which is defined as

M, (f,p; A) = X(W

We assume that (3.1) is well defined, that is, A(p) # 0 and px(f) € L(F,R). Similarly as in the
previous section, such conditions will usually be omitted, so weighted generalized mean (3.1) will
initially assumed to be well defined.

Now we define functional

Jr(x 0w (), 75 A) = Alp) [xX (My(f,p3 4)) = X (My(f, 3 A)) (3.2)

), JeLBR), peLi(ER). G.1)

where ¢ : I — R is continuous and strictly monotone function such that ¢ (f),py(f) € L(E,R). It
is Jessen’s functional (1.7) where the convex function ® is replaced with y o4 ~! and f € L(E,R)
with ¢¥(f) € L(E,R).

Recently Krni¢ et al. in [11] proved that this functional .J(x o ¥~ 1, 9(f),; A) is superadditive
and increasing on £d (E,R) if x o ¢~! is a convex function. Now we can generalize their result.

ISSN 1027-3190.  Ykp. mam. scypn., 2016, m. 68, Ne 7



886 A. BARBIR, K. KRULIC HIMMELREICH, J. PECARIC

Theorem 3.1. Let x,v» € F(I,R) be continuous and strictly monotone functions such that
the function x o ¥~ is convex. Suppose f € E(E,]R) p,q € LI (E,R), A € Z(L(E,R),R),
A(p), A(q) > 0 are such that the functional J,(x o ¥~ , 9(f), ; A) is well defined. Then, func-
tional (3.2) satisfies the following properties:

) min{AQp), Alg)) [Xol/}_l <A(i1(b1§3f))> Fyoru ! (A(Zfb(f))) _

e (S e )=

< Jr(x o L (f), o+ @ A) = Jr(x oL () ps A) = Jr(x o v w(f), 5 A)
SnmeMpLA@ﬂ{Xo¢1(A€zgw>_+xowl(A@¢U»>__

A(q)
(AR Algb(f))
~ o <2A<p> oA ﬂ

(ii) If p,q € L{(E,R) with p > q and A(p) > A(q) > 0, then
Jr(x o™ w(f),p A) — Jr(x o U (f), ¢ A) >

IN

A(p) — A(q) A(q)
o (o)) — Alqv(F)) . Alav(f))
e {2[ Ap) Al Alg) ]H

Proof. We consider Jessen’s functional (1.7) where the convex function ® is replaced with
xov~tand f € L(E,R) with ¢(f) € L(E,R). Also functional (3.2) can be rewritten in the form

T (x o™ (f). ;s A) = A(p- (xo ™ (1(£)))) — Alp)x (1/’1 <W>> B

= A(px(f)) — Alp)x (My(f,p; A)) =
= A(p)x (My(f,p; A)) — A(p)x (My(f,p; A)) =
= A(p) [x (My(f,p; A)) = X (My(f,p; A))].

Now, the properties (i) and (ii) follow from Theorem 1.1.

Theorem 3.1 is proved.

If in Corollary 2.2 we substitute convex function ® with y o y~! and f € L(E,R) with
Y(f) € L(E,R) we obtain the following result.

Corollary 3.1. Suppose x,v, f, A are defined as in Theorem 3.1 and p € EJ(E,R) attains
minimum and maximum value on the set E. If the function x o ' is convex, p(z)A(1) < A(p) <
< p(x)A(1), A(p), A(1) > 0, then for the functional J(x o =1, 4(f),; A) defined by (3.2) the

following series of inequalities hold:
[glggp@)} Jr (xov L u(f), A) = Jr (xou L u(f),p A) >
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> win(p(s) A1) ~ Alp), AQp)} [xop~! (PESUINZ S0
-

e xourt (AU gy o2 {1 [P - A, g )],

A(p) 2 p(z)A(1) — A(p) A(p)

Jr (xo v L u(f),p A) — [gleigp(ﬂf)] Jr (xov L u(f),1;A) >

> min{A(p) - p£) A0 o) AW} o v

C oyl (AZA((lJ;))) oy oy {1 {A(W(f)) —p@)AW()) A(¢(f))] H

where P(x) = maxzep p(x), p(r) = mingeg p(x),

Tr (x o™ 0(f), 15 A) = A(L) [x (M (f5 A)) — x (My(f; A))]

My, (f; A)=n"" <A£177((1])”))>7 n=x.

Let € R and f € L (E,R) such that f(z) > 0 for all # € E. Generalized power mean
MU (f,p; A) equipped with positive functional A € Z(L(E,R),R) is defined by

()" e

o (252 -0

where p € L (E,R). We assume that the above expression is well defined, that is, pf” € L (E,R),
pIn(f) € L(E,R), and A(p) £ 0.
Let now r, s € R, s # 0. We define a functional

and

MU (f,p; A) = (3.3)

Jelcow ™ v(f)mA) = Ap) { (MU a)] - MO A} 64

where x,1%: I — R are functions defined by x(z) = z°%,s # 0, ¥(x) = 2",7 # 0 and ¢¥(x) =
= Inx,r = 0. The first consequence of Theorem 3.1 refers to generalized power means M ("] (f,p;A),
r € R. Results are given in the following corollary.
Corollary 3.2. Let s # 0 and r be real numbers, f,p,q € L§(E,R), f(z) > 0 forall x € E,
and A € Z(L(E,R),R), A(p), A(q) > 0. The functional (3.4) has the following properties:
(1) Ifr#0and s >0,s>ror s<0,s<r, then

<Aj}g}{)’”)>s/r+(Aj?qf)r)>s/r_2<gffég)+gfjg)))s/r <

min{A(p), A(q)}

< Jp(xov L u(f),p+qA) — Jp(x o v (f),p A) — Jp(x o v L 4(f), ¢ A) <
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< max{A(p), A(q)}

(Ajg)r))ﬁw (Ajig)r))s/r_%gfg)) +gf§{;))>8/r |

(i) Ifr #0and s >0, s > 1 or s <0, s <, then for p,q € L (E,R) with p > q and
A(p) > A(q) > 0, holds inequality

Jp(x o v L (f).ps A) — Jp(x o 1 0 (f), s A) >

(=) ()

> min{A(p — q), A(q)}

s (AlfT) — AlafT) | A\
? ( A —Alg) T A<q>> |

(i) If r =0, then

win{ A A()) {exp <5A1(4p(]19r; f)) +exp <5Aﬁ1q($ f)> _

()

< Jp(xov L u(f),p+ ¢ A) — Jp(x o 1w (f),p A) — Jp(x o v L 4(f), q; A) <

< max{A(p), A} [oxp (ALY s oxp (AT -

(0 480

@iv) If r =0, then for p,q € E(J{(E, R) with p > q and A(p) > A(q) > 0, holds inequality
Tp(x o™ 0(f),p; A) = Jp(x o™ L (f), ¢; A) >

sA(pIn f) — sA(gIn f) sA(gln f)
Alp) - A(g) )*exp( A(g) )‘

s [A(pln f) — A(gIn f) A(qlnf)} H
— 2exp { [ + .
2 A(p) — Alg) A(q)
Proof. The proof is direct use of Theorem 3.1. We have to consider two cases depending on
whether  # 0 or r = 0.
If r # 0, we define x(z) = 2* and t)(x) = 2". Then y o ¢~ (z) = z%/" and (xov™) (z) =

s(s—r . .
= %x‘g/“? Thus, x o1~ ! is convex if s > 0,5 > r or s < 0,5 < 7. On the other hand,

> min{A(p — q), A(q)}[eXp(

xow—r1 is concave if s > 0,s <rors<0,s>r.

If » = 0, we put x(z) = z° and ¢¥(x) = Inz. Then, Yoy !(z) = ¢
assumption s # (. Results follow immediately from Theorem 3.1.

Corollary 3.2 is proved.

ST 1s convex under
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Corollary 3.3. Suppose s # 0 and r be real numbers such that r 20, s > 0,8 > 1 or s < 0,
s < rand p € L{(E,R) attains minimum and maximum value on the set E. If p(z)A(1) <
< A(p) < p(x)A(1), A(p), A(1) > 0, then for the functional Jp(x o =1, (f),; A) defined by

(3.4) the following series of inequalities hold:

{maXp( )} Jp (x o™ 0(f), 1;A) — Jp (xo v L u(f), p; A) >

z€E

> min{p(z)A(1) — A(p), A(p)}

Bla)A(fT) — Alpf)\*"
( B()AQ) — A@p) ) -

AN e (B@)AFT) = Alpf™) | Alpf")\*"
*( A<p>> ? ( PAD) — Ap) A<p>) ’

> min{A(p) — p(z)A(1), p(x) A1)}

+ <‘j(=’;?>sﬁ _ gl-s/r <A(pf’“) — p(z)A(f7) A(fr)>s/r]'

If r =0, then
[maxp< ﬂ Jp (x 0 6 (F), 15 A) — Jp (x o v 0(F),pi A) =

> min(p(e) D) - 4. 4} [ (LTSRN ¢

]

Jp (x o™ (f),p; A) — [gleigp(x)} Jp (xo v w(f),1;A) >

> min{A(p) — p(z)A(1), p(z) A(1)} [eXp< (pflxr(u;) ((9;) (<1)[l )> i

row () - 200 3 [P i )

where P(x) = maxzep p(x), p(r) = mingeg p(x),

Je (xo v (), 154) = A { [MU(5 )] = [MV(5 )]
and
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Y
(A (f ))  xp
MU (f: A) = A1) t=r,s. (3.9)
A(In(f))
exp ( AQ) > , t=0,

Now, we consider a discrete variant of relations (3.5)—(3.8). As in Remark 2.1, we suppose
E={1,2,...,n}, n € N, and L(E,R) is a class of real n-tuples. We consider discrete functional

A € Z(L(E,R),R) defined by A(x) = Zil x;, where x = (x1,x9,...,x,). Clearly, A(1) =

:2;11 =n.

Generalized power mean (3.3) in discrete case becomes

n , 1/r
Z'fl plxz
5 ,  r#0,
M, (x,p) = n
\1/Pn
(Hn wa> , r=0,
=1
where x;,p; > 0, i = 1,...,n. For r = 1 we obtain arithmetic mean A, (x,p) = M;(x,p) =
1 n . . n 1/P,
= <Pn Zi:1pixi>’ while for » = 0 geometric mean G,,(x,p) = My(x,p) (Hz T )
Now, if we take constant n-tuples
P = <m {pid o max W) o P= (m {pit,-- min W)
expression for arithemetic and geometric mean reduce to
1 n n 1/n
= Zwi, and G(x) = (H x,)
i=1 i=1
and inequalities (3.7) and (3.8) for s = 1 and r = 0 can be rewritten as
n ma (i} [A20) = GA0)] = Pa [Aa(x.p) — Gl p)] >
> mi G
=z mln{n g%%ﬁpz} Py, Pn}x
. 11 0 n_] P,
o [exp <maX1<z<n{pz} n(Gy(x)) n(Gn(x,p)) ) + Gp(x,p)—
nmaxi<i<n{pi} — Pn
1 <n{pi} In(G%(x))" — In(G Pn
~2exp { [maxl<z<n{pz} D(GHEO)" —n(Gulx, D)™ p)} H G
2 n maX1§i§n{pi} — P,

Py [A(x,p) = Gufx,p)] = 1 min {p;} [40,(x) = GA(x)] >

> . _ : . 3 .
> min{P, —n 11%1%1”{%}7 n élilgn{pz}} X

« o (G i 5 G | o

P, — nminj<j<n{pi}
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s {; [ln<Gn<x, p)" — minicicapi} M(GH0)" | GO(X)} H e

P, —nminj<j<n{pi}

Some variants of inequalities (3.10 ) and (3.11) were studied in papers [1-6].

Remark 3.1. Young’s inequality follows directly from arithmetic-geometric mean inequality, so

relations (3.10) and (3.11) provide refinements of Young’s inequality. Let x = (z1,z2,...,2,) and
o 1
p = (p1,p2, ..., pn) be positive n-tuples such that Zn — = 1. We denote
=1 p;
11 1
xP = (2, a2, ... 2l and pl= <,,..., )
p1 P2 Pn

Then series of inequalities (3.10) and (3.11) can be rewritten in the form

n max {1} [Ag(xp) - G%(xp)} — [A,(xP,p 1) — Gu(xP,p 1) >

1<i<n | p; -
. 1
>minqn max ¢ — — 1,1 X
1<i<n | p;

1
MAX] <isn {} In (G5, (x7))" = In G (xP, p1)
X | exp ? : + Gn(xp’pfl)_
nmaxi<i<n {} —1
- Db
1
AX] <in {} (G (xP))" — In G (xP, p )
-2 : +InG,(xP,p Y| |, (B.12)

1
nmaxi<;<n {} —1
y2

A7) = Gl ) iy {0 [400) - G267 >

1<i<n | p;

1 1
Zmin{l—n mln{ },n min {}}x
1<i<n ( p; 1<i<n ( p;
InG,(xP,p~t) — minj<;<p {} In(GY (xP))"

1
’L
)
1 —nmini<i<n { —
bi

In Gy (xP,p~1) — minj<i<p {1} In(G9 (xP))"
— 2exp 3 Pi + In(Go(xP)) . (3.13)

1
I —nminj<i<p {}
o Di
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Note that Corollaries 3.2 and 3.3 do not cover the case when s = 0 and r # 0. This case should
be considered separately. Let r # 0 be real number, f,p,q € L3 (E,R), f(z) > 0 for all z € E,
and A € Z(L(E,R),R). Then we define a functional

setxouu(s ) = A {50 g G

where x(z) = Inzx and ¢(x) =
Corollary 3.4. Let r < 0 be real number, let f,p,q € L3 (E,R), f(z) > 0 for all z € E and
AeZ(L(E,R),R), A(p), A(q) > 0. The functional (3.14) satisfies the following:

. . 1 (nf") (af") Alpfr) | Alaf")

O min{A(p), A0} M A(p) >““< A(q) )‘21 <2A<p> T 24(g) ﬂ :
Je(x o (f)p+ ¢ A) — Jp(x o v U (f), ;s A) — Jp(x o v w(f), ¢; A) <

A

ol s 45 (451 G5 )

(ii) If p,q € L (E,R) with p > q and A(p) > A(q) > 0, then

Jp(x o 0(f),ps A) = Jp(x o v (f), s A) =
> min{A(p) — A(g), A(q)}~ {m (A(pfr) - A(Qﬂ")) e (A(qfr)) B

r Alp) — Alg) Alg)
- [5G

Proof. The proof is direct consequence of Theorem 3.1. We define x(z) = Inx and ¢(z) = «".

Then, the function x o 9y~ (x) = 1ln;r is convex if 7 < 0 and concave if 7 > 0.

Corollary 3.4 is proved. "

The analogue of Corollary 3.3, that covers the case when s = 0 and r # 0, is contained in the
following result.

Corollary 3.5. Let r < 0 be real number, f € LI(E,R), f(z) > 0 forall z € E, A €
€ Z(L(E,R),R) and p € L (E,R) attains minimum and maximum value on its domain E. Assume
that functional (3.14) is well defined. If p(z)A(1) < A(p) < p(x)A(1), A(p), A(1) > 0, then for
the functional J5(x o =1, ¢(f), s A) defined by (3.14) the following series of inequalities hold:

[ p(a)] 5 (x 0 670, (), 15.4) = T (x 0 0L, 0(f), 1 A) >

zel

> min(p(r) A1) ~ A(p), Ap)}+ |In (x.;; (Zj;r)%

*1“<AXZ£)>‘21”{[ SeAm A 4w )|

J5 (x o™ (f), p; A) — [gggp(w)] Jp (x o™ y(f), 1;A) >

ISSN 1027-3190.  Ykp. mam. scypn., 2016, m. 68, Ne 7



REFINEMENTS OF JESSEN’S FUNCTIONAL 893
1 [m <A(pf’”) —p(x)A(fT)> N
A(p) — p(x)A(1)
)

n(5) - s e - 45

> min{A(p) — p(z)A(1), p(x) A(1)}

where p(x) = maxqep p(z), p(r) = mingep p(z), MUI(f; A) is defined by (3.9) and

I (0w w1 4) = 40) (2387 - [prflg )] ).

4. Applications to Holder’s inequality. This section is devoted to Holder’s inequality. In view
of positive functional A € Z(L(E,R),R), Holder’s inequality claims that

A (H fil/pi> <L (1)
=1 =1

n
where p;, ¢ = 1,2,...,n, are conjugate exponents, that is Zi:l 1/pi=1,p>1,1=1,2,...,n,

and provided that f1, fa, ..., fu, Hj_l £\P e £ (E,R).

It is well known from the literature (see [13, 17]) that Holder’s inequality can easily be obtained
from Young’s inequality. If we consider n-tuple x = (x1,x2,...,x,), where z; = [fi/A(fi)]l/pi 7
1 =1,2,...,n, the expressions in (3.12) and (3.13), that represent the difference between arithmetic
and geometric mean, become

n ) n 1/pi
An(Xp,p_l) _ Gn(Xp,p_l) _ Z : fZ ~ - H fz p

2o pia(f) My
RN -
) =6 =5 0 g ~ Uaimgy

Now, if we apply positive functional A € Z(L(FE,R),R) on above expressions, and use its linearity
property, we get

n Al(f; A 7.1_ fil/pi
AP p7) = Gy )] = 3 2 l_I(THzAi/I” <f-3 )
i= i=1 ’

A(IT, #77)

=1- n )
Hiil AP ()
and
0P} _ G0 (xP)] = l & A(fl) i A<Hj:1fll/n> _
AR = @6n] =4 Z; A(f:) CAT(f)
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A(IT, #)
[T, A7)

By application of functional A € Z(L(F,R),R) on the series of inequalities in (3.12) and (3.13),
the signs of inequalities do not change, since A is linear and positive. Here we will give only result
involving inequality (3.12). Analogous result can be obtained for inequality (3.13), but here we omit
the details.

Theorem 4.1. Let p; > 1, i = 1,2,...,n, be conjugate exponents, f; € ﬁar(E, R), i« =
=1,2,...,n, and Hj—1 f;1/P H:_l f;im e LE(E,R). If A € Z(L(E,R),R), then the following
series of inequalities hold:

1
n 1max {}
1<i<n ( p;

—1—

ﬁAl/m (fi) — ﬁAl/pﬁl/n (fi) A (ﬁ fi”") -
i=1

i=1 =1
_ ﬁAl/m (fz) — A (ﬁ fil/i’z‘)] >
=1 i=1

> min{n max {1} - 1,1}HA1/M (fi) %
i=1

1<i<n | p;
( 1 n 1/PL
”maxléiﬁn{pi}lnnz 1A1/n —h H 1A1/pz (f:) T 1/p
X A exp 1 -+ A Hfz /pz —
nmaxi<i<n {} -1 i=1
1 n le/n n fl.l/Pi
) nmasi<ic { m} bl e amgy 1 o pe
2A exp 1 + 2lnH Al/p
2 <n max {} — 1) i=1 “(fi)
1<i<n ( p;

It is also well known that Holder’s inequality can directly be deduced from Jensen’s inequality
in the case of two functions (see [13]). Let 7,5 € R such that 1/r +1/s = 1. Let f,g € LS (E,R)
and A € Z(L(E,R),R). We define a functional

Jn <<I>, P A) = rs [A7(f)AY*(g) — A (£17g") .

where ®: I — R is defined by ®(z) = —rsxzl/s. 1t is Jessen’s functional (1.7) where the convex
function ® is replaced with ®(z) = —rsz'/* and arguments f and p respectively replaced with g/ f
and f.

We obain the following result.

Theorem 4.2. Let 1/r+1/s =1, withr > 1, let f,g € LI (E,R), and A € Z(L(E,R),R). If
the function f attains minimum and maximum value on set E, then the following series of inequalities
hold:
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o (5)-4(()7))-

_Al/r(f)Al/S( ) — (fl/r 1/s>

[ max f()]

zeFE

> min { [mage £(0) (1) = 49, A }

zel

s 4 (5) 40
[ maxeer f(@)| A1) - A(r) AW

« 2171/5

. 1/s
[ Lmaseen 1@)] 4 (§) - Al) + AV (1) AV (g) | (4.1)
| maxeer £(2)| A1) - A(F)

Proof. We consider relation (2.7) from Corollary 2.2 with arguments f and p respectively
replaced with g/f and f, where ®(z) = —rsz'/s. Clearly, ®"(z) = z/572, so ® is convex
function if x > 0. In this setting, Jessen’s functional (1.7) reads

(e 1) = (s0 (5)) -0 (35) -
= rs [AITS( ) AV (g) — A (f17V0gY0)] =

=rs [ AV (FAY(g) = A(£179") .

Further,

o) -a(o(3) oo 41
|-

Now, we substitute obtained expressions Jg (®,¢9/f, f; A) and Jg (®,g9/f,1; A) in (2.7) and ob-
tain (4.1).

Theorem 4.2 is proved.

Remark 4.1. We can also consider relation (2.8) from Corollary 2.2 to obtain analogous result
to (4.1), but here we omit the details.

=7rs

Al—l/s( )Al/s

Al/r( )Al/s

=7rs

IRION
)=+ ((2)7))
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