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GENERAL PROXIMAL POINT ALGORITHM FOR MONOTONE OPERATORS

3ATAJIBHUAM AJITOPUTM HAUBJINXKYOI TOYKH
JJII MOHOTOHHMUX OIIEPATOPIB

We introduce a new general proximal point algorithm for an infinite family of monotone operators in a real Hilbert space.
We establish strong convergence of the iterative process to a common zero point of the infinite family of monotone
operators. Our result generalizes and improves numerous results in the available literature.

BBenieHo HOBUIA 3arajbHHUN aJTOPUTM HAWONMKYOI TOUKH JUIsi HECKIHUEHHOI CiM’{ MOHOTOHHHX OIEpaTopiB y AiiCHOMY
TiIE0epTOBOMY MPOCTOpi. BCTaHOBIEHO CHITBHY 301KHICTH ITEPAIifHOTO MPOIIECy O CHIBHOT HyIbOBOI TOUKH HECKiHYEH-
HOT ciM’T MOHOTOHHHX oneparopiB. OTpuUMaHHMil pe3ysbTar y3arajbHIOE Ta IMOKPAILy€e YHCICHHI pe3ysbTaTy, 10 Bigomi 3
JITEpaTypHHUX [DKEpell.

1. Introduction. Let H be a real Hilbert space with scalar product (.,.) and A: D(A) C H — H be
a set-valued operator. Recall that A is called monotone if (v — v,z — y) > 0, for any [z, u], [y, v] €
€ G(A), where

G(A) = {(z,u): z € D(A),u € A(z)}.

A monotone operator A is said to be maximal monotone if its graph G(A) is not properly contained
in the graph of any other monotone operator. Monotone operators have proven to be a key class of
objects in modern Optimization and Analysis (see, e.g., the books [1—4] and the references therein).
On the other hand, a variety of problems, including convex programming and variational inequalities,
can be formulated as finding zeros of monotone operators. Consequently the problem of finding a
solution z € H of 0 € Az has been investigated by many researchers. A popular method used to
solve iteratively 0 € Az is the proximal point algorithm of Rockafellar [5], which is recognized as a
powerful and successful algorithm in finding zeros of monotone operators. Starting from any initial
guess xo € H, this proximal point algorithm generates a sequence {x,} given by

Tptl = Jc‘i(xn + en), (1.1)

where JA = (I +rA)~! for all r > 0 is the resolvent of A and {e,} is a sequence of errors.
Rockafellar proved the weak convergence of the algorithm (1.1). However, as shown by Giiler [6],
the proximal point algorithm does not necessarily converge strongly. Since then, many authors
have conducted worthwhile research on modifying the proximal point algorithm so that the strong
convergence is guaranteed (see, for instance, [7—10]). In particular, Xu [11] introduced the following
iterative scheme:

Tp+1 = tpTo + (1 - tn)Jéxn + en, (1.2)
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where 1z is the starting point and {e,, } is the error sequence. For {e,,} summable, it was proved that
{zn} is strongly convergent if r, — oo, and {t,} C (0,1) with lim,_,~ t, = 0, Z:io tn, = 00.
Boikanyo and Morosanu [12] generalized this algorithm (1.2) with error sequences in [P for 1 < p < 2.
Recently, Xu [13] proposed the following regularization for the proximal point algorithm:

Tnt+1 = J';i (tnxO + (1 - tn)xn + en) (13)

which essentially includes the so called prox-Tikhonov algorithm introduced by Lehdili and Mou-
dafi [14] as a special cases. Boikanyo and Morosanu [15] noted that the proximal point algorithm (1.3)
is equivalent to algorithm (1.2). These algorithms have been further studied and analyzed by many
authors (see [16-23]).

In this work we introduce a general proximal point algorithm for finding a common zero point for
an infinite family of monotone operators. We establish strong convergence of the iterative process to
a common zero of the family of monotone operators. Our result generalizes some results of Xu [11],
Tian and Song [17], Boikanyo and Morosanu [16], Yao and Noor [23], and many others.

2. Preliminaries. Let H be a real Hilbert space with inner product (., .) and induced norm ||.]|.
We write z,, — z to indicate that the sequence {x, } converge weakly to z, and x,, — x to indicate
that the sequence {x,} converges strongly to . Let K be a nonempty, closed and convex subset of
H. Then, for any x € H, there exists a unique nearest point in K, denoted by Pxx, such that

[ = Pral| <z -yl Vye K.

Operator Pk is called the metric projection of H onto K. We also know that for x € H and z € K,
z = Py if and only if
(x —z,y—2) <0 VyekK.

It is known that H satisfies Opial’s condition, i.e., for any sequence {z,} with x,, — x, the inequality
liminf ||z, — z| < liminf ||z, — y||
n—o0 n—oo

holds for every y € H with y # x. We will use the following notions on S: K — H.
(1) S is nonexpansive if

1Sz — Syl < llz —yll Va,y € K.
(ii) S is firmly nonexpansive if
ISz — Sy|* < ||z —ylI* = ll(z — Sz) — (y = Sy)|* Va,y € K.

It is well known that Py is a nonexpansive mapping.
The resolvent operator has the following properties:
Lemma 2.1 [1]. Fora A >0,
(1) A is monotone if and only if the resolvent J /’\4 of A is single valued and firmly nonexpansive;
(i) A is maximal monotone if and only if J ;\4 of A is single valued and firmly nonexpansive and
its domain is all of H;
(iii) 0 € A(z*) < 2* € Fix(J{!), where Fix(J{}) denotes the fixed point set of J.
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Since the fixed point set of a nonexpansive operator is closed convex, the projection onto the
solution set Z = A71(0) = {x € D(A): 0 € Ax} is well defined whenever Z # @. For more
details, see [24].

Lemma 2.2 [1] (The resolvent identity). For X\, pu > 0, there holds the identity

Jie = Jlf (gw—l— (1—%) Jj{‘a:), r € H.

Let B be a strongly positive bounded linear operator on H, that is, there is a constant 7 > 0
such that
(Bzx,z) > 7||z|? Vo € H.

A typical problem is to minimize a quadratic function over the set of fixed points of a nonexpansive
mapping S :

xénl«“l(ns) %(Bx,x) — (z,b).

Marino and Xu [25] introduced the following iterative process for finding a fixed point of a nonex-
pansive mapping based on the viscosity approximation method introduced by Moudafi [26]:

Tnt1 = apyf(xn) + (I —apB)Sxzy, Vn > 0. 2.1

They proved that under some appropriate condition imposed on the parameters, the sequence {x,,}
generated by (2.1) converges strongly to the unique solution of the variational inequality

(B=~vf)x*,x —a*) >0  Vxe F(S),

which is the optimality condition for the minimization problem

1

where h is a potential function for v f (i.e., #'(z) = vf(z) Vo € H).

Lemma 2.3 [25]. Assume that B is a strongly positive bounded linear operator on a Hilbert
space H with coefficient 5 > 0 and 0 < p < || B||™L. Then ||I — pB| < 1 — p7.

Lemma 2.4. There holds the following inequality in a Hilbert space H:

lz +yl* < [lel® + 2{y, 2 +y), Va,y € H.

Lemma 2.5 [27]. Let H be a Hilbert space and {x,,} be a sequence in H. Then for any given
{A\n}o2, € (0,1) with ZOO . An = 1 and for any positive integer i, j with i < j,
n—

2 [eS)
<Y Aallzall® = Aaxyllzs — ).
n=1

o
g AnTn,
n=1

Lemma 2.6 [11]. Assume that {ay,} is a sequence of nonnegative real numbers such that

On41 < (1 - ’Vn)an + ')/n(;n + Bna n > Oa

where {vn}, {Bn} and {6, } satisfy the conditions:
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. 00

(1) m C [07 1]7 Zn:l In = OO0,

.. oo

(i) limsup,,_,. 0n, <0 or Z Y 0n| < 00,
n=1

e oo
(i) By >0 foralln>0with > B, <oo.
n=0
Then lim,, s i, = 0.
Lemma 2.7 [28]. Let {t,} be a sequence of real numbers that does not decrease at infinity, in
the sense that there exists a subsequence {t,,} of {tn} such that t,, < t,, 1 for all i > 0. For
sufficiently large numbers n € N, define an integer sequence {T(n)} as

T(n) = max{k < n:ty < tri1}
Then 1(n) — oo as n — oo and
maX{tT(n)a tn} < ZL/ﬂ'(n)Jrl-

3. Main result. Now, we state our main result.

Theorem 3.1. Let A;, i € N, be an infinite family of monotone operators of a Hilbert space H
with Z = (32, A7 H({0}) # @. Assume that K is a nonempty closed convex subset of H such that
N2y D(A;) € K C (2 R(I +1A;) for all v > 0. Assume that f is a b-contraction of K into

g

itself and B is a strongly positive bounded linear operator on H with coefficient ¥ and 0 < v < 3

Let {x,,} be a sequence generated by xo € H and

o
A.
Yn = Qn0Tn + 5 Qnidy,  Tn, n >0,

=1

Tn+1 = Bn’}/f(xn) + (I - BnB)yn Vn >0,

where Z?OO an; =1 and {ay,;} and {By,} satisfy the following conditions:
1=
. . S
() {Ba} € (0,1), limpyoo B =0, Y~ =00,
(ii) {rn} C (0,00) and liminf,,_, r, > 0,
(ii)) {ani} C (0,1) and liminf,,_, o 00n; > 0 for all i € N.
Then the sequence {x,} converges strongly to z € Z, which solves the variational inequality;,

(B=—~f)z,x—2)>0 VreZ

Proof. Since Z = (22, A;'({0}) is closed and convex, we have the projection Py is well
defined. Since lim, ., B, = 0, we can assume that (3, € (0, | B||~!) for all n > 0. Applying
Lemma 2.3 we have

|1 = BnBl <1 —Bn7. 3.1)

Next, we show that {x,,} is bounded. By Lemma 2.1, the operators Jéi are nonexpansive and hence
we get

o0
lyn — 2| < llanozn + Zan,ijréfxn —z| <
i=1
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o0
< anollen = 2l + Y an,ill T wn — 2| <
i=1
oo

< anollzn — 2l + Z anil|zn — 2| < |lon — 2|
i=1

By using inequality (3.1) we obtain
[2nt1 = 2]l = 1B (vf (2n) = B2) + ((I = BuB)(yn — 2)|| <
< Bullvf(n) = Bzl + [l = BuBllllyn — 2| <
< Buyllf (@n) = () + Bullvf(2) = Bzl + (1 = By |ln — 2] <
< Baybllen — 2l + Bullvf (2) — Bzl + (1 = Bu7)[|l2n — 2] <
< (1 =Bu(¥ =) llwn = 2l + Bullvf(2) = Bz|| <

1
Smax{nxn—zn,
5y — b

I f(z) - Bzu}.

It follows by induction that

1
—z]| < —zl|, —— - B Yn > 0.
o = 21 < max { o — <l = )~ Ball | v >
This shows that {z,,} is bounded and so is { f(z,)}. Next, we show that for each i € N,

lim ||z, — Jiz,| = 0.

n—o0

By using Lemma 2.5, for each ¢ € N we get

o0
lyn = 2[I° < llomown + > aniJfiz, — 2||* <
=1

[e.e]
< anolln = 2l + ) il Tiwn = 2 = anoanll J7ian — anl® <
i=1

oo
< anollzn = 2P + ) anillen — 2|° = anoanl| e, — za|* <
i=1
< lzn — 2|* - anvoamHJéixn —z, |2 (3.2)
Consequently, we have

[Zns1 — 21 = |Bn(vf (zn) — B2) + (I = BuB)(yn — 2)|I” <
< 1Bu(vf(@n) = B2) + (I = BuB)(yn — 2)||* <
< Bl (@n) — B2l* + (1 = o) llyn — 217+
+2Bn(1 = Ba)|[vf (2n) — Bz|l[lyn — 2| <

ISSN 1027-3190.  Ykp. mam. scypn., 2016, m. 68, Ne 11



1488 M. ESLAMIAN, J. VAHIDI

< Balvf () = Bz|1? + 28a(1 = )|V (@n) — B2|[J2n — 2+
+(1 - 5117)2”%1 - Z||2 - (1- Bn7)20‘n,0an,i||*];ii$n - ZCnHQ (3.3)
So, we have for every ¢ € N

(1 - ﬁnﬁ)Qan,Oan,th}Ai:ﬂn - $n‘|2 <

Tn

< lzn — 2)1* = [lzns1 — 212 + 2801 = B |7f (zn) — B2||||lzn — 2|+
+B82||1vf (zn) — Bz|*. (3.4)

We note that the Banach contraction mapping principle guarantees that Pz (I — B+ f) has a unique
fixed point z which is the unique solution of the variational inequality

(B=—~f)z,x—2)>0 VreZ

We finally analyze the inequality (3.4) by considering the following two cases.

Case 1. Assume that {||z, — 2|} is a monotone sequence. In other words, for ng large enough,
{l|xn — #||}n>n, is either nondecreasing or nonincreasing. Since |z, — z| is bounded, we have
||xy, — z|| is convergent. Since lim,_,o 3, = 0, and {f(zy)} and {z,} are bounded, from (3.4) we
get

lim (1 — Bn7) 20,00l J7 i wn — za]|* = 0,
n—oo

which implies that

. A,
nh_)n(f)lo | Jyixn — x| = 0.

Using the resolvent identity (Lemma 2.2), for each » > 0 we have

lzn = ]| < llan = Joiwal| + | Triwn = Tt <

Tn Tn

Jf‘i <Txn + (1 — T) Jéjajn> — J,f‘ia:n
Tn T'n

Lazn + <1 - T) J,f:fxn — Ty
r ,

n Tn

< |wn — Jitia,| +’ <

< wn — Jiia,| +‘ <

< Hxn — J,‘,?fan + ’1 — :‘ HJéfxn —wnH —0, n— o
n

Next we show that limsup,, , (B — vf)z,z — z,) < 0. We can choose a subsequence {z,,} of
{zy} such that

lim ((B —vf)z,2 — xp,) = limsup((B —vf)z, 2z — xn).

i—00 n— 00

Since {z,,} is bounded, there exists a subsequence {xnlj} of {z,, } which converges weakly to z*.
Without loss of generality, we can assume that x,,, — z*. We show that z* € Z. Indeed,

ln, = Jat| < llzn, = Jan |l + | n, — T <
< me - J:‘anzH + me - l'*H,
which implies that
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limsup ||z,, — J2z*| < limsup ||z, — =¥
1—00 1—00

By the Opial property of Hilbert space H we obtain z* = J4iz* i € N. Hence 2* € Z. Therefore,
from z = Pz(I — B+ vf)z and 2* € W, it follows that

lim sup((B — 7f)2, = wn) = i ((B = /)2, 2 = 2a,) = (B = 7f)2, —2) <0.

n—0o0
Since
Tnt1 — 2 = Pn(7f(xn) — Bz) + (I = BnB)(yn — 2),
by using Lemma 2.4 and the inequality (3.2) we have
|41 = 217 < (I = BuB)(yn — 2)II* + 2Bn{vf(20) = Bz, 2n41 — 2) <
< (1= B llzn = 2I*+
+2807(f(@n) = f(2), Bnt1 — 2) + 280 (7f(2) — Bz, ng1 — 2) <
< (1= 872 l|@n — 217 + 28ubyl2n — 2|21 — 2]+
+28,(vf(2) — Bz,xp41 — 2) <
< (1= B2 llzn — 217 + Buby(llen — 2l + l|lzn41 — 2]+
+200(vfz = Bz, 2ny1 — 2) <
< (1= Bu7)* + Buby) lwn — 21* + Burybllznss — 2[*+
+28,(vf(2) — Bz, xpy1 — 2).

This implies that

1 — 28,5 + (Bn7)? + Bud

fonss = 2l < L2 LGP L Bby, ey
= (1- 20 g, BT,y
bR tufe = B -3 < (1= A0 o, s
B ) -

=1 =) llzn - Z||2 + Ynn

where P = sup{||z, — z||?: n > 0}, v, = =——"" and
pllen — =17 n 2 0}, 3, = 2T =10
L 72) P 1
on = (8:7) + (vfz— Bz, zpy1 — 2).

2 —Ab) A b

ISSN 1027-3190.  Ykp. mam. scypn., 2016, m. 68, Ne 11



1490 M. ESLAMIAN, J. VAHIDI

It is easy to see that ~,, — 0, ZOO T =00 and lim sup,,_,, 95, < 0. Now by applying Lemma 2.6
n=

we conclude that the sequence {z,,} converges strongly to z.
Case 2. Assume that {|lz, — 2|} is not a monotone sequence. Then, we can define an integer
sequence {7(n)} for all n > ngy (for some ng large enough) by

7(n) =max{k € N;k < n: ||lzg — 2[| < [|wp1 — 2|}
Clearly, 7(n) is a nondecreasing sequence such that 7(n) — oo as n — oo and for all n > ng,
Jrmy — 21 < sy — 211
Now, it follows from (3.3) that
st — 2112 = ln — 212 < B2llr(en) — B2l + (BaT)? — 287 | — 211+
+26n(1 = B [IVF(2n) — B2 [|lzn — |-
Since limy, o 8, = 0 and {f(x,)} and {z,} are bounded, we derive

tim ([lr g1 — 2l = 27 — 212) = 0. (3.5)

n—o0

By the similar argument as in Case 1 we obtain

; A; _ _
Jim [Ty = 22| = 0

and
HxT(n)+1 - ZHZ < (1 - ’YT(’I’L))HwT(n) - 2”2 + ’YT(n)éT(TL)7

where limsup,,_, ., 0,y < 0. Since [[2,(,) — 2| < [[T7(n)41 — 2||, we have

77'(71) |’xr(n) - ZHZ < 7T(n)57(n)

Since v7(,) > 0 we deduce
er(n) - ZH2 < 57‘(71)

From lim sup,,_, 0-(n) < 0 we get limy, o0 || 77(n) — 2| = 0. This together with (3.5), implies that
lim,, o0 er(n)+1 — z|| = 0. Thus by Lemma 2.7 we have

0 < lan — 2 < max { g — 2l |20 = 21} < lruye — 211

Therefore {x,,} converges strongly to z = Pz(I — B + 7 f)z.

Theorem 3.1 is proved.

Theorem 3.2. Let A;, i € N, be an infinite family of maximal monotone operators of a real
Hilbert space H with Z = (;2, A; 1({0}) # @. Assume that f is a b-contraction of H into itself

and A is a strongly positive bounded linear operator on H with coefficient 7 and 0 < v < % Let

{x,} be a sequence generated by xo € H and
(o]
A/.
Un = Qn0Tn + Y Qniditian, 1 >0,
i=1

Tn+1 = 5n’7f(xn) + (I - BnB)yn Vn >0,

where Z‘Oio ani =1 and {ay,;} and {By} satisfy the following conditions:
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(i) {Ba} € (0,1), limpy oo B =0, Y By =00,

(ii) {rn} C (0,00) and liminf,, ., > 0,

(iil) {ans} C (0,1) and liminf, o an o, > 0 for all i € N.

Then the sequence {x,} converges strongly to z € Z, which solves the variational inequality

(B=~f)zyx—2)>0 VrelZ

Proof. Since A; are maximal monotones, then A; are monotone and satisfy the condition
R(I +rA;) = H for all r > 0. Putting K = H in Theorem 3.1, the desired result follows.

Putting B = I and v = 1 in Theorem 3.1, for a finite family of monotone operators we obtain
immediately the following result.

Corollary 3.1. Let A;, i = 1,2,...,m, be a finite family of monotone operators of a Hilbert
space H with Z = (-, A; 1 ({0}) # @. Assume that K is a nonempty closed convex subset of H
such that (), D(A;) C K C (i~ R(I + rA;) for all v > 0. Assume that f is a b-contraction of
K into itself. Let {x,} be a sequence generated by xo € H and

m
A.
Yn = Qn0Tn + § Qnidy,  Tn, n >0,
i=1

Tnt1 = /an(xn) + (1 - /Bn)yn Vn > 0,

where Zﬁo an; =1 and {oy;}, {Bn} satisfy the following conditions:
1=
. . 00
(@) {Bn} € (0,1), limpyoo S =0, Y~ B =00,
(it) {rn} C (0,00) and liminf,, ., > 0,
(i) {ani} € (0,1) and liminf, o an o0 >0 fori=1,2,...,m.
Then the sequence {x,} converges strongly to z € Z, which solves the variational inequality

(z—fz,x—2)>0 VexelZ
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