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OF METRIC-VALUED SEQUENCES

ITPO Y3ATAJIBHEHY CTATUCTHYHY TA IJEAJIBHY 3BIKHICTD
METPUYHO3HAYHUX MMOCJAIIOBHOCTEN

We consider the notion of generalized density, namely, natural density of weight g recently introduced in [Balcerzak M.,
Das P, Filipczak M., Swaczyna J. Generalized kinds of density and the associated ideals / Acta Math. Hung. — 2015. —
147, Ne 1. — P. 97—-115] and primarily study some sufficient and almost converse necessary conditions for the generalized
statistically convergent sequence under which the subsequence is also generalized statistically convergent. Some results
are also obtained in more general form using the notion of ideals. The entire investigation is performed in the setting of
general metric spaces extending the recent results of Kiiciikaslan M., Deger U., Dovgoshey O. On statistical convergence
of metric valued sequences, see Ukr. Math. J. — 2014. — 66, Ne 5. — P. 712 -720.

Mu po3riisiaeMo HOHATTS y3araJlbHeHO! IUIBHOCTI, TOOTO HATypalbHOI IIUIBHOCTI 3 Barolo ¢, HEIIOJaBHO BBE/ICHOI B CTaTTI
[Balcerzak M., Das P., Filipczak M., Swaczyna J. Generalized kinds of density and the associated ideals // Acta Math.
Hung. —2015. — 147, Ne 1. — P. 97— 115], Ta nepeBa>kHO BUBYAEMO JAESIKi JOCTATHI Ta Maike IPOTHIIEKHI HEOOXiTHI yMOBH
JUIS y3arajJbHEHOI CTaTUCTHYHO 301KHOT OCTIJOBHOCTI, 32 SKUX IiIOCTIJOBHICTh TAKOX € y3araJlbHEHOIO Ta CTAaTUCTUYHO
30ikHOW0. Jleski pe3ynbTaTd TakoK OTPHMAHO B OLIBIN 3arajlbHOMY BHIVIS/I 32 JOMOMOTOK MOHATTA ifeamiB. Harre
JOCIIPKCHHSI BUKOHAHO B MOCTAHOBIIl 3arajJbHUX METPUYHUX MPOCTOPIB i y3aralbHIOE HELIOJaBHI pe3ylbTaTh, OTPUMaHi
y crarri Kiiciikaslan M., Deger U., Dovgoshey O. On statistical convergence of metric valued sequences (quB. Ykp. Mart.
KypH. — 2014. — 66, Ne 5. — C. 712-720).

1. Introduction. In recent years there have been rapid developments of the analytical studies in metric
spaces which can be seen in [21, 27]. In [16] Dovgoshey and Martio introduced a new approach to
the introduction of smooth structures for general metric spaces (one can see also [4, 5, 14, 15] where
more references can be found). In the language of [16] this new approach is completely based on the
convergence of metric-valued sequences but it is not a priori clear that the ordinary convergence is
the best possible way to obtain smooth structures for arbitrary metric spaces.

From the beginnings of 1800’s several methods have been introduced to make a divergent real or
complex sequence convergent (for example Cesaro, Norlund, weighted mean, Abel etc.) but most of
these convergence methods are dependent on the algebraic structures of the spaces of reals or complex
numbers. It should be noted that in general metric spaces do not have algebraic structures. However
if one considers the notion of statistical convergence introduced in [18, 29] and its extensions like
statistical convergence of order « [3, 6] or more generally the notion of ideal convergence [22], it is
clear that they can be readily extended to arbitrary metric spaces.

On the other direction the study of statistical convergence and its many extensions and in particular
ideal convergence and its applications has been one of the most active areas of research in summability
theory over the last 15 years.

Naturally it seems that the studies of these generalized methods of convergence may provide
a natural foundation for the upbuilding of various tangent spaces to general metric spaces. The
construction of tangent spaces in [4, 5, 14—16] is primarily based on the fundamental fact that for
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a convergent sequence () in a metric space, each of its subsequence (7)) is also convergent.
However this is generally not true for the generalized methods of convergence mentioned above.

Very recently following the line of investigation of [25], in [23] conditions were studied for the
density of a subsequence of a statistically convergent sequence under which the subsequence is also
statistically convergent in metric space settings.

As a natural consequence, in this paper we continue the investigation proposed in [23] and
investigate similar problems for metric-valued sequences by considering the notion of natural density
of weight g which was very recently introduced in [1] as also for certain results we use the most
general notion of ideals.

2. Basic facts and definitions. Let N denote the set of all positive integers. By card(A) we
denote the cardinality of a set A. The natural density of a set A C N is defined as follows: The lower
and the upper densities of A are given by the formulas

d(A) = lim inf card(AN [1,n])’

n— 00 n

d(A) = lim sup card(AN [1,n]).

n—00 n

If d(A) = d(A), we say that the natural density of A exists and it is denoted by d(A). The notion of
statistical convergence was introduced by Fast [18] (see also [29]) using this notion of natural density.

Now recall that a family Z C 2¥ of subsets of a nonempty set Y is said to be an ideal in Y if
(1) A, BeZ implies AUB €7, (il)) A€ Z, B C A implies B € Z, while an admissible ideal Z of
Y further satisfies {x} € Z for each x € Y. Such ideals are also called free ideals. If Z is a proper
ideal in Y (i.e., Y ¢ Z, Z # {@}), then the family of sets F(Z) = {M C Y : there exists A € Z:
M =Y \ A} is afilter in Y. It is called the filter associated with the ideal Z. Throughout the paper Z
will stand for a proper admissible ideal of N. We denote the ideal of all finite subsets of N by Z;),.
For more example of different ideals see [22].

An admissible ideal Z is said to satisfy the condition (AP) (or is called a P-ideal or sometimes
AP-ideal) if for every countable family of mutually disjoint sets (A, Aa,...) € Z there exists a

countable family of sets (B, Ba,...) such that A;ADB; is finite for each j € N and U B, e T.

k=1
Several examples of P-ideals can be found in [1].

It is known that the density ideal
Z,={ACN:d(A) =0}

is an F;5 P-ideal on N. It is also an example of a so-called Erdos — Ulam ideal (for further information
see [17]).
In [3] the authors proposed a modified version of density. Namely, for 0 < o < 1 and A C N,
they put
—-— d(AN|1
do(A) = limsup card(AN[1,n])

o
n—00 n

and dq(A) is defined analogously. It has been very recently observed in [1] that these density
functions also generate P-ideals.
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In this connection it can be mentioned that Kostyrko et al. [22] considered arbitrary ideals Z on N
and defined the notion of Z-convergence of sequences extending the idea of statistical convergence.
Following the general line of [22], ideals were used to study sequences in topological spaces [9, 24],
to study nets in topological and uniform spaces [11, 12]. More recent applications of ideals can be
found in [8, 10, 13] where many more references can be found.

We now start our main discussions. In [1] the notion of natural density (as also natural density of
order «) has further been extended as follows. Let g: N — [0, 00) be a function with lim,,_, g(n) =
= 00. The upper density of weight g was defined in [1] by the formula

- card (AN [1,n])

dy(A) = limsup
g( ) n—00 g(n)

for A C N. Then the family
Z,={ACN:dy(A) =0}

forms an ideal. It has been observed in [1] that N € Z, iff 0. S0 we additionally assume
n

that n/g(n) - 0 so that N ¢ 7, and in has been observed in [1] that Z, is a proper admissible
P-ideal of N. The collection of all such functions g satisfying the above mentioned properties will
be denoted by GG. As a natural consequence we can introduce the following definition.

Throughout (X, p) will stand for a metric space and X will denote the set of all sequences of
points of X.

Definition 2.1. A metric-valued sequence T = (x,,) € X is said to be dg-statistically convergent
to a € X if for any € > 0 we have dy(A(e)) = 0 where A(e) = {n € N: p(zyn,a) > ¢}.

Below some more basic definitions are given which will be needed throughout the paper.

Definition 2.2. A4 set K C N is called dg-dense subset of N if dg(K°) = 0.

Definition 2.3 (see [22]). A metric-valued sequence x = (x,) € X is p — L-convergent to
ac€ X ifforanye >0, A(e)={ne N:p(zp,a) >} €.

Definition 2.4. A4 set K C N is called T-dense subset of N if K € F(T).

Definition 2.5. If (n(k:)) is an infinite strictly increasing sequence of natural numbers and
z = (z,) € X, then we write ¥ = (Zpk)) and Kz = {n(k): k € N}. ¥ is called an I-dense
subsequence of ¥ if Kz is an I-dense subset of N.

Definition 2.6. Two sequences & = (x,) € X and § = (y,) € X are T-equivalent, & < jj if
there is an T-dense set M C N such that ©,, = y, for every n € M.

The following definitions are special cases of the above two definitions.

Definition 2.7. If (n(k)) is an infinite strictly increasing sequence of natural numbers and
z = (z,) € X, then we write ¥ = (Tnry) and Kz = {n(k): k€ N}. &' is called dy-dense
subsequence of T if Ky is dy-dense in N.

Definition 2.8. Two sequences i = (x,) € X and §j = (y,) € X are d,-statistically equivalent,
T <y (dg-statistically) if there is an dgy-dense set M C N such that x, = yy, for every n € M.

3. Main results. The first result given below extends Theorem 2.1 [23] and shows that there is
a one to one correspondence between metrizable topologies on X and the subsets of X consisting of
all Z-convergent sequences for certain special types of ideals.

Theorem 3.1. Let (X, p1) and (X, p2) be two metric spaces. Let T be a P-ideal which is not
maximal. Then the following statements are equivalent:

(1) The set of all p1 — Z-convergent sequences coincides with the set of all ps — I-convergent
sequences.
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(ii) The set of all sequences convergent in (X, p1) coincides with the set of all sequences
convergent in (X, p2).

(ii1)) The metrics p1 and po induce one and the same topology on X.

Proof. (ii) <> (iii). The result is well known.

(ii) = (i). Let & = (x,,) be p; —Z-convergent. Since Z is a P-ideal so & is p; —Z*-convergent,
i.e., there is a set M € F(Z) such that (Z)ys is p1-convergent (see [22]). By (ii), (Z)as is pa-
convergent and so T is py — Z*-convergent which consequently implies that x is ps — Z-convergent
(see [22]).

(i) = (iii). Assume that (i) holds. But on the contrary assume that the topologies induced by the
metrics p; and po are distinct. Then there is a zg € X and £¢ > 0 such that

{z e X:pi(z,x0) <eo} P {x € X: pa(z,m0) <6} (3.1)

forall § > 0 or
{z € X: pa(z,20) <eo} P {z €X:pi(z,x0) <6}

for all § > 0. Without any loss of generality assume that (3.1) holds. For each n € N we can then
choose z,, € X such that

1
p2(Tn, o) < - and  p1(zn,T0) > €0 (3.2)

for each n € N. Choose a set K C N such that K ¢ 7 as well as K¢ ¢ 7 (since T is not maximal).
Define a sequence § = (y,) € X by

r, if nekK,
Yn =
xg if n¢ K.

Clearly
{neN: pi(yn,w0) >0} =K ¢ T. (3.3)

Now observe that the sequence § = (y,,) is convergent to xg in (X, p2) and so is p — Z-convergent.
By (i), ¥ = (yn) is then also p; — Z-convergent. Observe that § must be p; — Z-convergent to z
for otherwise if § is p; — Z-convergent to yo # zo then taking 0 < & < p1(z0,yo) we have

{n € N: p1(yn,y0) > €} D K°.

Since K¢ ¢ Z so {n € N: pi(yn,y0) > €} ¢ Z which is a contradiction to the fact that § = (y,) is
p1 — Z-convergent to yg. But if § is p; — Z-convergent to x¢ then we must have

{neN: pi(yn,m0) >0} =K €T

which contradicts (3.3). This proves that (i) = (iii) holds.

Lemma 3.1. Let (X, p) be a metric space, 1o € X and & = (v,) € X. Then % is p — I-
convergent to xq in X if and only if the sequence (p (xy,x0)) is Z-convergent to 0 in R.

The proof is straightforward and so is omitted.

Lemma 3.2. Let (X, p) be a metric space, xo € X and let & = (x,,) € X be p — I-convergent
to xo. Then there is § = (y,) € X such that §j =< & and §j is convergent to z in (X, p) provided T
is a P-ideal.
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The result again follows from the fact that £ = (z,,) is p —Z*-convergent to x as Z is a P-ideal
[22] and consequently we get the required sequence 3.

We now start our discussions on subsequences. The first natural question that arises is that if a
sequence is d-statistically convergent which of its subsequences are also d,-statistically convergent
to the same limit. It is also natural to ask when the converse is also true. We prove the next two
results in this direction.

Theorem 3.2. Let (X, p) be a metric space, & = (z,,) € X and ¥ = (T (k)) be a subsequence
of T such that

lim inf 79(‘[{%(”){)

> 0.
n—00 g(n)

If & is dg-statistically convergent to xo € X, then T’ is also dg-statistically convergent to xy.
Proof. Assume that T is dg-statistically convergent to zo. Now clearly

{n(k): n(k) <n, d(Tp k), T0) = e} C{m:m <n, d(zm,z0) >}

for all n € N where € > 0 is given. Then we get

9(\1(19”:(”)0 [{n(k): n (k) <n, p (T, 20) 2 e}] <
{m:m <n, p(xm,z0) > e}
B g (|Kz (n)]) (3.4)

In order to prove that 2’ is dg-statistically convergent to zy we need to show that

[{n (k) :n(k) <0, p(wagy,20) 2 e}|

lim sup
Recall that for any two sequences (c,) and (d,) of nonnegative real numbers with

0 # liminf,,,o ¢, < 00 we have (see [2])

liminf ¢, lim sup d,, < limsup ¢, d,. 3.9

n—0oo n—00 n—00
In (3.5) let us take

oW i m S p () 2 e}
g9(n) g (|Kz (n)])
so that
_ ‘{m m<n, p(xmer) > 5}’
cpdy =

g9(n)
Therefore we get from (3.5)

z : < s >
lim inf (1K (n)]) lim sup [{m:m <n, p(wm,z0) = c}| -
n—oo g(n) 300 9 ([Kz (n))
: < my 2
Slimsup‘{m m < n, p(xm,zo) > €}l
n—o0 g(n)
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Since 7 is d-statistically convergent to g so the right-hand side of the above inequality is zero.
9 (1Kz (n)))
g9(n)

{m:m <n, p(zm,z0) > o} —0

Since by our assumption lim inf,, o > 0 so it follows that

lim sup
and the result now follows from (3.4). N
Theorem 3.3. Let (X, p) be a metric space and & € X. Then the following statements are
equivalent:
(a) T is dg-statistically convergent;
(b) every subsequence T’ of & with
JI{~
lim inf M >0
n—oo g (n)
is dg-statistically convergent;
(c) every dg-statistically dense subsequence T’ of T is dg-statistically convergent provided g € G

is such that 0 < liminf,_ . (—) < 00.
g(n
Proof. From Theorem 3.2 it follows that (a) = (b). Since evidently T itself is a d,-dense

subsequence of itself so (c) = (a).
(b) = (c). Let 2’ be a d,-statistically dense subsequence of Z. This means that K has the
property that d,, (Kg/) =0, ie,

K¢,
lim sup M =0.
n—00 g(n)
Since |K3 (n)| + |KS (n)| = n, consequently we have
Kol | 1K'l _ 0o
g9(n) g9(n) g9(n)
It now follows that
= K%,

lim inf M + lim sup M > liminf ——

n—os g(n) noo  9(n) n—oc g(n)
which implies that

Ky
lim inf M > lim inf o >0

n—oo  g(n) n—oo g (n)

is a finite positive number. Finally we obtain

i inf ZUEZ D S i SUEE D e B ()]

>0
noo  g(n) n=oo Kz (n)| noeo g(n)

in view of the fact that |Kz(n)| — oo as n — oo. By (b) it now readily follows that 7’ is
dg-statistically convergent. This completes the equivalence of the three statements.

The next three results are given in the most general version in terms of ideals. As a consequence,
one should note that these results hold for natural density of weight g also.
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Lemma 3.3. Let (X, p) be a metric space with |X| > 2. Let & = (x,) € X and ¥ = (T (k)
be an infinite subsequence of T such that Kz € Z. Then there exists a sequence § € X and a
subsequence ' of i such that Kz = Ky where §f' is not I-convergent provided T is not a maximal
ideal.

Proof. Choose two distinct elements a and b from X. Choose a subset M C N such that M ¢ 7

as well as M ¢ F(I). Let us define a sequence § = (y,) € X by

zn if n e N\Ka,
yn =14 a if n=n(k)e€ Kz, where k& M,
b if n=n(k)€ Kz, where k¢ M.

I -
Since K € T so N\ Kz € F (Z) which shows that & <. Obviously taking §’ = (y,,x)) We see
that K3 = K. Since for any ¢ € X, taking 0 < ¢ < max {p(a, c), p(b, c)} we observe that

{k:: P(Un(k)> €) = 5} DM or MC°

and so cannot belong to Z. This shows that 7/ is not Z-convergent. N
Lemma 3.4. Let (X, p) be a metric space. Let a € X, & = (xy,) and § = (y,) belong to X. If

o I - .
T is Z-convergent to a and T X7, then § is also T-convergent to a.

z
Proof. Since =y so there is M € F(Z) such that x,, = y,, for all n € M. Clearly for any
e >0,
{n: p(yn,a) > e} C MU {n: p(zn,a) > c}.

Since T is Z-convergent to a so the set on the right-hand side belong to Z which implies that
{n: p(yn,a) > e} €T and § is also Z-convergent to a.

Theorem 3.4. Let (X, p) be a metric space with |X| > 2, a € X and T be not maximal. Let
Z = (x,) be I-convergent to a. Then for every infinite subsequence T' of & with Kz € I, there
exist a sequence Y € X and a subsequence ' of 1 such that:

() §=7 and Ky = Ky,
(i) g is Z-convergent to a,
(iii) o is not T-convergent.
The result follows from Lemmas 3.3 and 3.4.
Lemma 3.5. Let (X, p) be a metric space. Let T, § € X and 7 = g (dg-statistically). If K is
a subset of N such that
Q)

0 < lim inf J
n—00 g(n)

) (3.6)

7 = (xn)) and §' = (Yn)) are subsequences of & and § respectively such that Kz = Ky = K,
then the relation §' < &' (d4-statistically) is true.
Proof. We have to show that

lim sup H?’L(l{) €K: Ln(k) # yn(k),n(k‘) < m}‘ _
e g(|K(m)])

0. 3.7)

Observe that for any m € N we obtain
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{n(k) e K: T (k) 7 Yn(k), (k) < m} C {n € N: z, # yn,n < m}.
Consequently we get
KekK:z, o (k) <
lhnsup|{n( ) Tn(k) 7 Yn(r)> 1 (k) <}
m—y0o0 g (|K (m)|)
: <
< lim sup {n € N: zp # yp,n < m}| <
m—ro0 g (K (m)| <)
: g(m) . {n € N: 2, # yn,n < m}|
< lim sup ————= lim sup =
m—oo g (K (m)]) m—soo g(m)

|{n€N:xn75yn,n<m}|<hminfg(|K(m)D>_l, (3.8)
m—o0 g(m)

<

= lim sup
m—00 g (m)

From (3.6) it follows that
-1
0< <1iminfg(‘K(mm> < o0.
m—00 g (m)
Also as T < y (dg-statistically) we have

: {n € N: zp # yn,n < mj|
lim sup =

Now (3.7) readily follows that (3.8) and this completes the proof.
Theorem 3.5. Let (X, p) be a metric space, a € X and & = (xy,) is dg-statistically convergent

0.

to a. Suppose that T = () is a subsequence of T for which there are §j = (yn) € X and |
such that:
(1) y =z (dg-statistically) and Kz = Ky,
(i) ¥ is not dg-statistically convergent,
K (n)]
g(n)

limsup,, .o —— < 00
n

=0, provided g: N — [0,00) satisfies 0 < liminfTHOOL and

g(n)

then liminf, .o

Proof. On the contrary suppose that

lim inf M > 0.
n—00 g(n)

Then
(1K (D |

. .. 09
oo g(n)
> liminf M lim inf M

n=eo K (n)|  noeo g(n)

> 0.

Let y € X and ¥’ be a subsequence of ¢ such that (i) and (ii) hold. Then we have K3 = Ky and
Z < g (dg-statistically). Then from Lemma 3.5 it follows that z’ =< ' (d,-statistically). Applying
Theorem 3.2 we observe that Z’ is d,-statistically convergent to a. Since ' <y’ (d,-statistically)
so by Lemma 3.4 3/ is also d,-statistically convergent to a which contradicts (ii).
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