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ON SOLVABILITY OF ONE CLASS OF THIRD ORDER
DIFFERENTIAL EQUATIONS *

ITPO PO3B’A3HICTDH OJHOI'O KJIACY JU®EPEHIIAJIBHUX PIBHSHb
TPETHOI'O NOPAAKY

One-dimensional mixed problem for one class of third order partial differential equation with nonlinear right-hand side
is considered. The concept of generalized solution for this problem is introduced. By the Fourier method, the problem of
existence and uniqueness of generalized solution for this problem is reduced to the problem of solvability of the countable
system of nonlinear integro-differential equations. Using Bellman’s inequality, the uniqueness of generalized solution is
proved. Under some conditions on initial functions and the right-hand side of the equation, the existence theorem for the
generalized solution is proved using the method of successive approximations.

Po3misiHyTO OMHOBUMIPHY MilllaHy 3afady AJIsl OQHOTO Kiacy MU(epeHIiaTbHIX PIBHIHD TPETHOTO IMOPSIKY 3 YACTHUHHIMH
MOXiJHUMH 3 HEJIHIHHOIO MPaBOIO YaCTHHOI. BBEIEHO MOHATTSA y3araJbHEHOTO PO3B’A3KY A Wi€l 3a1a4i. 3a JOIOMOTOI0
Mmetony Dyp’e 3a1ady iCHYBaHHS Ta € AMHOCTI y3araJbHEHOTO PO3B’SI3KY 3BEJICHO /10 3a/1a4i PO3B’I3HOCTI 3J1I4€HHOI CUCTEMHU
HENHIMHUX 1HTerpo-IuQepeHIiaTbHUX PIBHAHB. 3 BUKOPUCTaHHAM HepiBHOCTI bennMmaHa TOBeAeHO €IWHICTD y3arajibHe-
HOTO po3B’s3Ky. [Ipu Jeskux yMoBax Ha MOYaTKOBI (yHKIT Ta MpaBy YacTHHY PiBHSHHS Ha OCHOBI METOXY IOCIIiJOBHHX
iTepauiif JoBeAEeHO TeOpeMy PO ICHYBAaHHS y3araJbHEHOTO PO3B’S3KY.

1. Introduction. In the last century, there has been considerable interest in local and nonlocal
boundary-value problems for partial differential equations with time and spatial variables. The theory
and applications of local and nonlocal boundary-value problems for third order PDEs have been
studied by many mathematicians (see [1—12]).

Many problems of elasticity theory such as the problem of longitudinal oscillations of non uni-
form viscoelastic rod, the problem of longitudinal impact of perfectly rigid body on non uniform
finite-length viscoelastic rod with variable cross section, the problem of wave propagation in a visco-
elastic body, etc. are reduced to the solution in the domain D = (0,7) x (0,7) (T is any positive
number) to the mixed problem for the equation

U (t,2) — Qg (t, x) = F(u)(t, o), (1.1)

with initial and boundary conditions
u(0,2) = ¢(x), w(0,2) =¢(z), 0<z<m, (1.2)
u(t,0) =0, u(t,m) =0, 0<t<T, (1.3)

where 0 < « is a fixed number, F' is in general a given nonlinear operator, ¢, ¢ are the given
functions from certain space of functions. Definition of the solution of problem (1.1)—(1.3) is given
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on the next section. Earlier in [13—15], the existence and uniqueness of the classical solution of
the problem (1.1)—(1.3) for £ > 0 and 0 < & < 7 as well as its behavior for ¢ — +oo have been
considered. In [16-18], existence and uniqueness theorems for classical solution of this problem
have been proved under some conditions on problem data and the properties of the solution have been
explored. A priori estimates which allow obtaining the conditions for the existence, uniqueness and
asymptotic stability of the solution have been treated in [19, 20]. Similar matters have been studied
in [21-24]. The existence and uniqueness of classical, generalized and almost everywhere solutions
of (1.1)—(1.3) have been considered in [25-27]. Using the method of successive approximations
and the principles of Krasnoselski, Schauder and Leray — Schauder, in [27] proved local and global
existence and uniqueness theorems for classical, generalized and almost everywhere solutions of the
problem (1.1)—(1.3).

Fourier’s well-known method of separation of variables is applicable also for solving the prob-
lem (1.1)—(1.3). Among the works devoted to justification of the Fourier method for solving such

problems we can mention the works [27—31]. Note that in [31] introduced the Banach spaces BS;T
of the functions u(¢, z) of the form
oo
u(t,x) = Z un (t) sinnz, (1.4)
n=1

considered in the set D, with u,(t) € C®([0,T7]), equipped with the finite norm

HUHB;;T = (Z (n2 Orgg%‘un(t)o ) + <Zl (nogltag%‘u;l(t)‘) ) .

n=1 n=

The generalized solutions of (1.1)—(1.3) are considered in the space BS; o Using Fourier method,

they reduced the problem (1.1)-(1.3) to the countable system of nonlinear integro-differential equa-
tions, which, in turn, was reduced to finding a fixed point of some nonlinear operator in corresponding
space. In [32, 33], the continuous dependence (in some sense) of solution of the problem (1.1)—(1.3)
on F, ¢, 1 has been considered. In [34, 35], the estimates for the classical, generalized and almost
everywhere solutions of (1.1)—(1.3) have been treated. In works [1, 12, 14, 16— 19] using the ope-
rator approach, it is established stability estimates for the solution of the boundary-value problem for
third order partial differential equations. L,

In this paper, we consider the problem (1.1)—(1.3) in the Banach space B;;?a of functions of
the form (1.4) with the coefficients u,(t) € C'?) ([0,T1), equipped with the norm

< NS g Y
U = n 9 max |up(t nd max |u,(t
fall 23 = ({2 (0 ooy fn0]) )+ (X (0 g ftol) ) )
p,p,T n=1 n=1
where p > 2 and p, ¢ are the numbers conjugate of each other. We prove the existence and
uniqueness theorems for the generalized solution of (1.1)—(1.3). To justify our method, we use the
analog of Littlewood —Paley theorem for vector-valued coefficients of decomposition of a function
with respect to the system {sinnx} in the sense of b-basis [36—38]. The matter of existence of
the solution is reduced to finding the coefficients of the sought solution in concrete Banach space of
sequences of functions.
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2. Some basic notations and auxiliary facts. In this section, we introduce some that we need
notations and the definition of the generalized solution of the problem (1.1)—(1.3). By Ly, ,—2(0, ),
p > 2, we denote the Banach space of functions f(x) € L,(0, ), with

2 [ _
{fatnen € lop—2, Jn= ﬂ_/f(l’) sin nxdz,
0

equipped with the norm

”f”Lp,, 2(0,m) = (an 2| f |p>

where [, ,_o the Banach space of sequences of scalars A = {\,} with the norm ||\ Iy

neN

1
= (Z:;l np_2|)\n|p>p, po—2([0, T, Lp(0,7)), p > 2, will denote the set of vector-functions
w(t): [0,T] — Ly(0, ), such that

e}

p p—2 P
||u|pr‘p72 (07E00m) ~ =Y n / |un ()| dt < 400,

n=1

™

2 s
where u,(t) = / u(t, z) sinnazdx. The space Ly, —2([0,T], L,(0,7)) is a Banach space with
0
respect to the norm ||ul|

Lpp—2 ([OvT} Lp (0777)) '

Let X be some Banach space. Denote by the Wzgl)([a, b], X) set of vector-functions u: [a,b] —

At) — u(t
— X such that for all ¢ € [0, 7] there exist in X a strong limit lima; o u(t+ Ati u(t) = u/(t)

and it holds

p
Il 0y = [ O+ [ O]t < o

The space W,gl)([a, b], X) is a Banach space with respect to the norm Hu||W<1) (ab.X)"

In the sequel, the elements of the space Wl( )([O,T ], q(O,w)) will be denoted in the form
u = u(t,x), where t € (0,7), z € (0,m).
Before giving the definition for the generalized solution of the problem (1.1)—(1.3), we make

some remarks.

1 1 142,
Remark2.1. 1f p > 2, —+— =1, then the space B 7,
P q PP,

QN

is continuously embedded in the space

BS;T and the following relation is true:
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1422
In fact, for u(t,z) € B, |7, we have

[e's) 2 % o'} 2
HuH321 = (Z <n2 max |un ‘) > + (Z (n max ‘u |> ) =
2,2,T 1 0<t<T 0<t<T

n= n=1

1 1
00 ) 2, n)\2 oo 2 ,,n)\2
:(Z( 3 g 0] ) +<Z (g 0l ) ™ )

N

n=1 n=1

Applying Holder’s inequality with index g (whose conjugate is 5 4 ) to every sum in the last
—4q

equality, we obtain

27q

o :
< 1+
”“”BS;T—< ( qofi%\un@)\)) (Zn) +
n=1
1 2-q
> 9 , pP\r > L 2q
(S mbaol) | (5) -
2—q 1 1
00 2q 00 " p\ p 00 9 p\P
= () (32 (v g b))+ (32 (F g b)) ) =
n=1 n=1 - n=1
=N
(%) Ml ez
p,p,T

2
q

42
Obviously, if u(t,z) € B ‘} , then the convergence of the series Zoo 1n||unHC[0’T] and
n=

anl [, || oo,y implies wu(t, $) (t, ), up(t, x) € C(D).
2
q

L2
Remark?2.2. For u(t,z) € B %[, there exist partial derivatives u,;, us and

Uz (t, T) g n? U (t) sinnx, Utz (t, ) E nu ) cosnx.

Besides gy, Uty € C([O, TY); Ly p—2(0, 7r)) In fact, we have

Z ( 2|Un Z ( qHuan[o,T})p < 400 Vtel0,T].
n=1 n=1

Then, by Paley theorem (see [39, p.182]), there exists f(¢,x) € L,(0,m) such that f(t,z) =
= — Z n? un(t) sinnx and

/ [f(t2)fdw < Ay Y 0?72 (0% un(t)])".
0 n=1
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Hence we obtain f(t,z) € C([0,T]; Lyp—2(0,7)). Moreover, f(t,z) =tz (t, ). In fact,

T

f(t0) = o [ Sty = 5 (=X wtunte) [sinnyy | -
0 n=1 0

x

2 5[0 5 [ oo
= 882/ (Z nuy, (t) cos ny) dy = % Z Ny, (t) /COS nydy | =
x x

0 n=1 n=1 0

? (&
=53 up () sinnx | = ug,(t, ).
x

n=1

The derivative uy, is treated similarly.
We introduce the following definition the generalized solution of (1.1)—(1.3).

2 2

1422
Definition 2.1. The function u(t,z) € Bpquq satisfying condition (1.2), is called a generalized

solution of (1.1)—(1.3) if for any function v(t,x) € Wl(l) ([0, T, Ly(0,7)) such that v(T,z) = 0 on
a.e. [0, | the integral identity

T 7w
//{ut(t, x)vi(t, ) — augy(t, x)v(t, ) + F(u)(t, x)v(t, z)} dedt—
0 0
—a/go"(x)v(O,x)d:z:—i—/¢(x)v(0,a:)dx =0 (2.1)
0 0

is fulfilled.
When obtaining the main results we will need the following lemma.

Lemma 2.1 (Gronwall —Bellman). Let the functions u(t), f(t) be continuous and nonnegative
for t > tg and it hold

t

u(t) <a —|—/f(7)u(7)d7, t > to,

to

where a is some positive constant. Then
t
f(r)d
u(t) < aefto (r) Tt >t.

3. Existence and uniqueness of generalized solution. In this section, we prove the existence
and uniqueness theorem for the generalized solution of the problem (1.1)—(1.3).

Lemma below can be proved similarly to the one proved in [31] for p = 2.

Lemma 3.1. Let u(t,x) be a generalized solution of the problem (1.1)—(1.3) and F(u) €
€ Lyp—2([0,T], Ly(0,7)). Then the coefficients uy(t) are the solutions of the following countable
of nonlinear integro-differential equations:
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t
1 —an?(t—1
Omg/Fn(u,T)@ — e (=) g, (3.1)

0

1 o
Un(t):@n‘i‘w(l—@ an )¢n+

where py,, 1y, and F,,(u,t) are the Fourier coefficients by system {sinnx} of the functions p(x), ()
and F(u)(t,x), respectively.
Proof. Substituting the function of the form

2
—(t—7)sinnx, 0<t<7, 0<z<m,
Vrp(t,z) =< T

0, T<t<T, 0<x<m,

into (2.1) with fixed n € N and 7 € [0, 7], we obtain
[ A0+ @run) + (¢ = D) }dt—an = 7 =0,

On differentiating the last equality twice in 7, we have
u’ (1) + an®u, (1) — Fp(u,7) =0, 7€[0,T].

Taking into account the conditions u,(0) = ¢, and u,(0) = v, we obtain (3.1).
Lemma 3.1 is proved.
When obtaining the main result we need the following lemma.
Lemma 3.2. Let the operator P be defined in the space Ly, ,_5([0,T], L,(0,7)) by the formula

00 t

1
P(f)(t,z) = Z:l omZ/f"(T)(l - e_o‘"2(t_7))d7 sinnz, f € Lpp—2([0,T], Ly(0,7)),
n= 0
2 1422
where f,(t) f (t,z)sinnxzdz. Then P: Ly, 2([0,T], L,y(0,7)) — B, , " and
7T 0 Rl )
HP(f)HB +% % S L||f||LP P*?([OzT]vLP(OﬂT))’ (32)
p,p, T
1ot 1
p
where L = w.
aqa
Proof. For every f € Ly 2([0,T],Ly(0,7)), we have
- : P\
2 1 2
P _ 14= / - 1_ e an (t—7) d
PO 1oy = | 21" e [ o0 e )+
N
+ n‘ max /f _an2(t_7)d7'
[0,7]
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Applying the Holder inequality, we obtain

[
S =

t

1 oo
- p—2 )P e—on?(t=7)yq
| P(f )HBH%% S Zn /\f )| dTmax / Yidr +

7 0

00 T t % %

2p 2
Z a / 7)|Pdt max /e_o‘" =" gr <
[0,7]
n=1 0 0

00 T
=2 [ | fu(r)Pdr | +
Yo ]

p
q)q max (1 — e_‘m%)g

[0,7]

2 o
St [inra
n=1 0

Taking into account that

t
max/(l —e‘“”Q(t_T))da <T and max/e_a"Q(t_T)dT < 1 ,
0

[0,7] 0,7 an?q
we have
1 . 1
1 p 0 p
q
PO 1oz < — an 2/\f War |+ (X [ | <
Byplr avgr \ni)
1 1
- 1 1
quq ""O‘p )P ! p—2 )P '
Z Pdr | = Zn | fn(T)|P |dT | .
aqq n—=1 5

Lemma 3.2 is proved.
3.1. Uniqueness of solution. Now let us state the main uniqueness result for the generalized

solution of the problem (1.1)—(1.3).

Theorem 3.1. Let the following conditions be satisfied:
2 2

1) F: Bpp?rq — Lpp—2([0,T], Lpp—2(0,7));
22
2) Yu(t,z),v(t,x) € B:;‘if’q and t € [0,T:
1)) = F@E,, 0m < cOlu=vl 2, (33)
p,p,t

where ¢(t) € L,(0,T) is some positive function.
Then the problem (1.1)—(1.3) can not have more than one generalized solution.
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Proof. Assume the contrary, i.e., assume that the problem (1.1)—(1.3) has at least two different
generalized solutions w(t,z) and v(t,z). Let {un(t)},cn and {vn(t)},cn be the sequences of
coefficients of the functions u(t,z) and v(¢, x), respectively. From Lemma 3.1, we obtain

u(t,z) —v(t,z) = Y (un(t) — vn(t)) sinna =

n=1

an?
n=1

- t
= Z 1/ (Fn(u, T) — Fn(U,T)) (1 - efa”Q(th))dT sinnx =
0

= P(F(u)(t,z) — F(v)(t,z)).

Then, for all ¢ € [0, T] by virtue of (3.2), using (3.3), we have

t
<2 [,
K 0 BP,P

= |[P(F(u) = F))[|"
B

dr.

p
e =",

BP

2
q

NS

2 22
M q’q
Pyt T

3

o

p,p,

Hence, by Lemma 2.1, we obtain |ju — v|” = 0. Consequently, u(t,z) = v(t, x).

. P,p,t
Theorem 3.1 is proved.
Lemma 3.3. Assume ¢(x) € Wéz)(o,w), {(n*ntnen € lpp2,9(0) = @(m) = 0, Y(z) €
1
e WD (0,7), {mihn}nen € lpp_s, $(0) = ¢(m) = 0 and let wy(t) = op + (1= ey,
1422
Then the function w(t,z) = 2:;1 wy (t) sinnx belongs to the space B, 1"
o0
Proof. 1t is clear that the series Z | Wn (t)sinnx is convergent. Let us show that w(t,z) €
n=
1422
pp,T

oo 2 , P
anl (nq Hw”HC[O,T]> . We haVe

1
[wnllcor < lnl + WWH’H”’ZHC[O,T] = W’ﬂ‘

. . oo 1+2 p
i.e., let us show the convergence of the series anl n "4 |lwnl|lcpr)  and

Then, taking into account that {n?@, }nen, {n¥n}nen € lpp—2, We obtain

Also we get
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S (i lwhllenn) =30 (nilenl)” =3 (lnl)"n 2 < +oc,
n=1 n=1 n=1

N

2

Consequently, w(t, z) € B éf .

Lemma 3.3 is proved.

3.2. Existence of solution. Now let us consider solvability of the generalized solution of the
problem.

Theorem 3.2. Let the following conditions be satisfied:

D @) € WP0,7), {nputnen € lppar 9(0) = @) = 0, ¥(x) € W(0,7),
{nwn}nGN 6 l 7p 27 @ZJ(O) = ¢( ) = O

2) F: B quq — Lpp-2([0,T), Lpp—2(0,7)) Yu € B, 5%, t € [0,T]:

IE@)E, om < alt) + 0O s 2, (3.4)

where a(t),b(t) € L,(0,T) are some positive functions;
3) Vu(t, ), v(t, z) € K(HuH s <R) t €0, 7):

PPT

HF<U)(t7 ) = F(v)(t, .)HLp,p%(Oﬂf) <e(t) [Ju -l 1+ % ) (3.5

T
where ¢(t) € Ly(0,T), R — Aexp/ P(t)dt, A = 2wl
0

42
g
B »,T

+Lg||a||§p(07T)a B(t) =

2
q

— Lob(t), Lo = 2 L.

Then the problem (1.1)—(1.3) has a unique generalized solution.
2 2

Proof. Consider the operator () in the space B, +q .9 defined by the formula

Q(u)(t,z) = w(t,z) + P(F(u)(t, x)).

By using (3.2), (3.3), we obtain

e, 22<2p-1(uwnp 22 IPEWI, “><
Bppqt ! BPP% ! BPP% !
L CUNE / IP@IL, ot <
p,t

<2 HUJII”

p,pt

t
+2p_1Lp/(a”(7')+b”(7’)||u||p 22T | =
0

s odT <

Bite3
q

p,pf

t t
=or~1 HU’H% —|—L /ap )dr+L} /bp )|
0 0
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q
p,p,t

t
<A+ / BY)|ull? s dr.
B 7
0

. 1422
Let us build the sequence {wuy(t, m)}zozo C B,,r" as follows:

uo(t,z) =0, up(t,z) = Qup—1)(t,x), k=1,2,....

According to (3.6), for every t € [0,7], we obtain

t
lil” 2o = 1Quo)|l” |, <A< A+ A/Bp(f)dﬂ
B q’q B 14
PPt P,p,t 0
t
Juzll” |2 o = 1Qu)|” 2, <A+ /BP(T) [ua]l® |, 2 2
B q’q B q’q q
PPt PPt 0 p,p,t
t T
< A—i—/Bp(T)(A—i—A/Bp(s)ds)dT:

ISSN 1027-3190. Vkp. mam. oscypn., 2021, m. 73, Ne 3
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QN

Let us estimate Hun+k — “kH];u
P

o for any n,k = 1,2,.... Taking into account (3.2), (3.4)
’q

S

s

and (3.5), we have

p
ltnin = well” 25 = [ @) = Q)| vzz =
B 14 prp’t
p,p,t
p
= | P(Flunsn) = Flun-)|| 1022 <
BPaPJ
t
p
<0 [ |[Flunn) - Flus)] dt <
Lp,p72(077r)
0
t
<0 [ S unsicr — w5 2
0 prpqq‘f' ?

Then

tn+k — uka 1

By

QN

t
zéﬂ/@wwmmquwwwhﬁ
°q q’q

0

p,p,T

+
sP

o~

)

ds |dr =

>

+
sP

Qo
QN

Bp

)

’

t T
<r [ 2 [ @) s - ul?,
0 0
T

t
= LQp/Cp(7'> /Cp(s)ds [tn k-2 — up—2ll” 2 2dT <
B q’q
0 0

p,p,T

P
9 | Untr—2 — up—2ll H.%%dT <
D,P,T
d ([T F
) t . (/0 cp(s)ds>
< LP / o lltn — uol| 1+%Qd7'<
0 p,p,T
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Thus, the following inequality is true:

k
LPkRP ”CHZ((),T)

. p
[ UkHB %T%_ il

Qo

1+
Consequently, the sequence {uk (t, x)}:il is fundamental in B

2
o 77, and therefore it converges
to some u(t,x) € K. Further, we have

|Q(ur) — Q)| <

1+
p,

QN
gl
NS

P,

< L[F(uk) — F(u)||Lp([o,T},Lp,p,2(o,7r)) <L ||CHL,,(0,T) [k — U”BH% 2,
pp, T
1422
and, therefore, Q(uy,) converges in B, , 7% to Q(u) as k — co. Then
o
u(t,x) = hm ug(t,x) = hm Q(uk—1)(t,x) = Qu)(t,x) = Zun(t) sinnz,
k—o0
n=1

where

t

1 —an2 1 —an?(t—r
wn(t) =t g (1= it [ Fur) (1= e )
0

Let us show that u(¢, x) is a generalized solution of the problem (1.1)—(1.3). Obviously,

x) = Zun(O) sinnz = Z opsinnx = p(z),
n=1

n=1

x) = Zu'n(O) sinnz = an sinnx = (x).
n=1

It remains to show the validity of the identity (2.1). Assume that

x) = Zun(t) sin nz,
n=1
T 7
= // Ut (E, T)ve(t, ) — QU 20 (E, )0 (T, ) + F(u)(t,x)v(t,m)}dmdt—
0

—a/go”(a:)v((),a:)d:ﬂ—{—/¢(m)v(0,x)da:. (3.7)

We have
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Consequently, taking into account u! (t) 4+ an?u!, (t)
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™

T
//umﬂg (t, z)v(t, x)dzdt =
0 0

T m
//Zu;Z sin nzv(x, t)dzdt = Z/ / t)v(t, z)dt | sinnzdr =
0 0

n=1

™ T

= Z u;l(t)v(t,x)OT—/u’,i(t)v(t,x)dt sinnxdxr =
n=1 0
m T = m
/Zl/} sin nxv(0, z) //Zu/ sinnxv(x,t)dxdt,
0 n=1 0 0 n=1

™

T T
m
2
//umm (t, z)v(t, x)dzdt = //Zn Up (t)ve(t, ) sin nedxdt =
0 0 0 0

T

—ZnZ/ un (t)v(t, x)\g’—/u;(t)v(t,m)dt sin nxdx =
n=1 0

0

ﬂ. m T m
= /ZnQ@n sinnxv(0, z dm+//2n2u v(t, x) sin nzdzdt.
o =l 00

™

T m
= // (F(u)(t,z) — Z F(u,t) sinnz)v(t, z)dzdt+
0 0

n=1

n=1

+/ (1/1(33) — Z Yy sin nx) v(0, z)dx+
0

—i—a/ (gp”(ac) + Zn2<pn sin nm) v(0, z)dz.
0

n=1

As a result, we have

| Jm| < ||F(u)(t,x) —ZFn(u,t)sinn%x Hv(t,x)HLq(D)—i-
n=1 Lyp(D)
— Z@Z)nsinnx HU(O’IE)HL(;(O,W)+
n=1

L,(0,m)
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+a |l () + Z n, sinnx HU(O, x)HLq(O,w) —0
n=1 LP(OJr)

as m — oo. Passing to the limit in (3.7) as m — oo, we obtain the validity of the integral iden-
tity (2.1). The uniqueness of generalized solution follows from Theorem 3.1.

Theorem 3.2 is proved.

4. Conclusion. For the initial boundary-value problem (1.1)—(1.3) with nonlinear right-hand
side and zero boundary conditions, the concept of generalized solution belonging to Banach space is
introduced. Under some conditions, the existence and uniqueness of generalized solution is proved.
In particular, for we obtain the previously known results in this field. Note that, using the known
technique, we can obtain similar results for the same problem with nonzero boundary data. Moreover,
the same technique is also applicable to the multidimensional analog of this problem. Of course, this
problem can be treated by other methods too, for example, by operator method. To do so, you need
to define the corresponding mapping operators and use the methods of this theory.
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