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PERTURBATION AND ERROR ANALYSES
OF PARTITIONED LU FACTORIZATION
FOR BLOCK TRIDIAGONAL LINEAR SYSTEMS *

AHAJII3 3BYPEHB TA IOXUBOK PO3EUTOI HA YACTUHU LU
®AKTOPU3AILII I BJIOYHO-TPUIIATOHAJIBHUX JITHIMHUX CUCTEM

The perturbation and backward error analyses of the partitioned LU factorization for block tridiagonal matrices are
presented. Moreover, we consider the perturbation bounds for the partitioned LU factorization for block tridiagonal linear
systems. Finally, numerical examples are given to verify our results.

Hageneno anaii3 30ypeHb Ta 3BOPOTHHI aHali3 MoXxuOOK ais po3burtoi Ha wactuu LU ¢axropusaunii G10uHO-TpuUIi-
aroHaJbHUX MaTpHIb. KpiM TOro, BUBYAIOTHCS rpaHuIi 30ypeHb mist po3outoi Ha wactuHu LU dakropusanii G1oqHO-
TPHUIIaroHaJBHUX JIHIMHUX cHcTeM. TakoX HaBeIEHO YHCIIOBI €KCIEPHUMEHTH, SIKi MiATBEPAXKYIOTh CIIPABEIUINBICTD JaHUX
PpEe3yIIbTaTiB.

1. Introduction. We consider the linear system Az = b when A is a nonsingular block tridiagonal

matrix as follows:
A Oy
By Ay (O

A= : (1.1)
Cs—l
B A

where A; € RFixki B, ¢ RFixki-1 and C; € RF>*ki+1 forall 1 <i < s.

For a nonsingular block tridiagonal matrix as above, our interest is to solve the linear system
Az = b efficiently and accurately. Applying partitioned LU factorization for a general matrix, the
representation of partitioned LU factorization for nonsingular block tridiagonal matrices is as follows:

L1 X Un LG
ByUy, I I
A= 1 (Il ) = L1 DUy,
S1
I, I
where
Ay — BgUl_llLl_llCl Cy
Bs A3 (3
S1 =
Cs—l
B Ag
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1684 CHI-YE WU, TING-ZHU HUANG
If Ay — BoU, Ly} can be factorized as follows:
171
Ay — BoU Ly} = LaaUso,

then D, satisfies

I
Lo X
D1 = LoDyUs = B3Uyy I3 X
I
I
I Uz Ly Co
X I I3 ,
SQ :
I

where the form of S5 is similar to that of S; so that we here ignore it. For a given i, if the first
block of S; can be factorized, then the partitioned LU factorization can run to the (i + 1)st step.
Otherwise, the factorization must break down in the ith step. Suppose that the factorization can run
to completion. Then we have

A=1Ly... Ly 1L UU;_+...Uq,
where
D, 1 = L,U,.

Note that there are different form and content between the partitioned LU factorization and the general
block LU factorization, because every step in process the former is more one LU factorization than
the latter, and the factors both L; and U; of the former are triangular forms which are not satisfied
for the latter.

In the literature there are lots of papers dealing with the perturbation bounds for usual, or
pointwise, LU, Cholesky or QR factorizations. References relevant to this problem include Barrlund
[1], Stewart [2—-4], Chang and Paige [5], and Dopico and Molera [6], etc. First-order perturbation
bounds are frequently used, such as Chang, Paige and Stewart [7], and Stewart [2, 3]. Dopico
and Molera [6] presented expressions for the terms of any order in the series expressions of the
perturbed LU and Cholesky factors. When the above factorization for the original matrix A in (1.1)
runs to completion, the question is whether the perturbed matrix A + E exists the partitioned LU
factorization. If F satisfies

[E] < €lAl,

where € is small sufficiently and |A| stands for a matrix of absolute values of entries of A, then
the partitioned LU factorization for the perturbed matrix A + E exists. The relations between
Sg-g)(A +E), D§f)(A + E) and S(k)(A)7 DEJ’?) (A), respectively, are considered, where S»(I.C)(A) and

5] (5]

ISSN 1027-3190.  Yxp. mam. ocypu., 2016, m. 68, Ne 12
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Dg-c)(A) stand for block (7, j) of Sy and Dy, respectively. Moreover, perturbation bounds for the
factors are also proposed.

The error analysis is one of the most powerful tools for studying the accuracy and stability
of numerical algorithms. References relevant to this problem include Higham [8-10], Amodio and
Mazzia [11], Demmel, Higham, and Shreiber [12], Zhao, Wang, and Ren [13], Mattheij [14], Forsgren,
Gill, and Shinnerl [15], and Bueno and Dopico [16], etc. In this paper, applying the special property
that the factors L; and U; are triangular forms, then some assumptions on the BLAS3 that can not be
applied in the error analysis of general block LU factorization can be used in that of the partitioned
LU factorization. Hence, error analysis of the partitioned LU factorization for block tridiagonal
linear systems can be considered. Comparing the results of Higham [8], Demmel and Higham [17]
with those of this paper, the distinction between the former and the latter is conspicuous. Based on
the assumptions, the latter conditions are weaker than those of the former. Finally, two numerical
examples are considered to illustrate our theory results, where the mentioned matrices generated from
the discretization of partial differential equation —Aw = f and random block tridiagonal matrices by
MATLAB 6.5, respectively.

2. Perturbation theory. In this section our interest is to present perturbation analysis of the
factors of the partitioned LU factorization.

2.1. Some properties. We first consider the relation between the first block of Si(A + E) and
that of Si(A).

Theorem 2.1. Let the partitioned LU factorization for the block tridiagonal matrix A in (1.1)
run to completion. Assume that € is small enough that |E| < €|A|. Then

SV A+ B) = SIP(4) + T + O(éY),
where Ty, 1 < k < s, satisfy
1 T —E._ (k—1)\ !
T, = Eqq, Ty = (Bk (Sﬁ:_l)) Ik)( o g 1’k> <S” ) Ch
—FEg g1 Ek p

Proof. To save clutter we will omit “+O(e2?)”. The proof is essentially inductive. For k = 1, we
have
SW(A+E) = (As + Bs) — (Ba + Ea)Up (A + E)L (A + E)(C1 + Ena).

Since A= = U~'L~! and |E| < €|A|. Then

SY(A+ E) = (Ay + Ex) — (By + Ean ) (A7 + AT En AT (Cy + Byp) =
= Ay — BoAT'C) + By — E01 AT'Cy — BoAT B ATICL — Bo AT By =

~Bn —Ep\[AT'C)
= SW(A) + (BoAT ) ( )( ! ) .
—Fo Ess I

For k =i — 1, by the assumption, it follows that
St (A+ E) = SiTV(A) + T,
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1686 CHI-YE WU, TING-ZHU HUANG

where, from the structure of 7;, we obtain 7; = O(e). For k = i, we get
. o -1
SW(A+ E) = (Ais1 + Eir141) — (Bivt + Eiray) (Sﬁ R Ti) (Ci+ Eijiy1) =

= Aip1— Biy1U;;'Ci + Eiy1i41 — Fiy1, (Sﬁ_l)) - C; — Bita (Sﬁ_l))_l T; <Sﬁ_1)>_1 Ci =
-1
—se+ (mn (s )G g )((5(1)) Ci) |

Theorem 2.1 is proved.

From the result as above, we have the following theorem.

Theorem 2.2. Let the partitioned LU factorization for the block tridiagonal matrix A in (1.1)
run to completion. Assume that e is small enough that |E| < €|A|. Then

SU A+ E) = SIP(A) + ai(Te + O(e2) + (1 — ayj) By,

DX(A+ E) = DX)(A) + Biaiy (T + O(?) + (1 — aij) Ey),
where
1, k<i<s—1, 1, i=j=1,
B; = Q=

0, 1<i<k, 0, others.

Proof. By the partitioned LU factorization, we have

SP(A+E)=SP(A) + By i AL 2.1)
Combining (2.1) with Theorem 2.1 gives
SZ'(;'C)(A +E)= SZ.(;C)(A) + aij(Tr + O(€%)) + (1 — i) Eij, (2.2)
where
L, i=75=1,
Q5 =
0, others.

By the form of Dy, it follows that
DX(A+E)=DP(A), 1<i<kt. (2.3)
From (2.2), we have
DA+ E) =D (A) + ay(Ti + O(2) + (1 — ayj)Eyj, k<i<s—1  (24)
For (2.3) and (2.4), it follows that
DI (A+ B) = DY (4) + B; (0 (T + O(e) + (1 — i) E)

ij
where
1, k<i<s-—1,
Bi =
0, 1<i<k.

Theorem 2.2 is proved.
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PERTURBATION AND ERROR ANALYSES OF PARTITIONED LU FACTORIZATION ... 1687

Corollary 2.1.  Let the partitioned LU factorization for the block tridiagonal matrix A in (1.1)
run to completion. Assume that € is small enough that |E| < €|A|. Then

k k k k
sS(A+E) =574 +0(),  DY(A+E)=DY(A)+0().

Proof. From the proof of Theorem 2.1 and the form of T}, it follows that T, = O(e), then
Tk + Eij + O(€%) = O(€). Therefore

SA+E)=5P(A)+0(), DY (A+E)=DY(A)+0).

From |E| < €| Al, if € is sufficiently small, then the spectral radius p(L"'EU!) < 1 holds.
Therefore it has a unique block LU factorization (see Theorem 12.1 in [8] for details). In this case
the question is whether the matrices Sglf), 1 <k <s—1, exist the LU factorization, that is, whether

the perturbed matrix A + E' exists the partitioned LU factorization. By Theorem 2.1, it follows that
S (A+E) = 81 (4) + T+ O().
For the assumption of Theorem 2.1, we have
SY;) (A+E) = Lyy1 41Uk g1 + Tk + 0(62) =
= Lig1k11 (Ik+1 + Lty (Th + 0(62))Uk_+11,k+1> Uk+1,k41-

Since
Ty + O(€%) = O(e), p (L_IEU_I) < 1.

Then
p (L’;LkH(Tk + 0(62))Ul;+11,k+1) <L

that is, Lyt + Lity ooy (Th + O(€)Upl .,y exists the LU factorization. Thus Siy)(A + E)
(1 <k <s—1) have the LU factorization. Hence the perturbed matrix A + F exists the partitioned
LU factorization. Based on the above mentioned, we have the following theorem.

Theorem 2.3. Let the partitioned LU factorization for the block tridiagonal matrix A in (1.1)
run to completion. Assume that € is small enough that |E| < €| A|. Then the perturbed matrix A+ E
has the partitioned LU factorization.

2.2. Perturbation bounds for the factors. In this subsection we present the bounds for the
factors. First of all, we consider the bound for S (k)

ij
ﬁ) by applying Theorem 2.1:

. Obviously, we are easy to get the following

componentwise perturbation bound for S
S (A+B) = 817 (4)] < d A,

Unless otherwise stated, let in this section an unsubscripted norm ||.|| be an arbitrary subordinate and
monotone matrix norm. For Sﬁ:), we have the following theorem.

Theorem 2.4. Let the partitioned LU factorization for the block tridiagonal matrix A in (1.1)
run to completion, and let

o)
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1688 CHI-YE WU, TING-ZHU HUANG

k—1)) 1 k—1)) 1
- mﬂx{i (5)") H(Sﬁ ) e}
with .
B H @H#L
Assume that e is small enough that |E| < €|A|. Then
k-1
(4 + B) H A X =) 2
|stPa+ Tl + ) e+ 0@,

Proof. We first consider the bound for 7. From Theorem 2.1 it follows that

Ty = (Bk (Sﬁ?—l))—l Ik)( —T— —Ek_17k> (Sﬁ;_l))_l c, )

—FE 1 Ey ke I,
— _B, (s““ ”) Ty 1(S(k ”) Oy — Epp (s( ‘”) Cho—

— DBy, (S(k 1)) Ei_1;+ Eg.

Taking the monotone norm on both sides yields

By (S(k 1

(S(k ”)_1 Ci

1Tkl <

S§’; 1) Ch

[Tl + €

| Ak k—1][+

+€

Be(st)]

Rearranging the above inequality, we have

Xe€ X¢€
T —— < <
Il + X5 < ) <
< Wkt ( Xe ) <
< )=
< k1! <||A1H 4 X> c.
w—1

k—1 _ 1)
< k-1 x(w .
Il <t (anl + 55 =1 )

Then

Theorem 2.4 is proved.
From Theorems 2.2 and 2.4, it is easy to propose the perturbation bounds for Sfj(A) and ij (A),
1.e.,
k - x(w 1)
\UNA+E»m%%AMka1@Am+k(D)e+wAmk+o@x

[+ 5 - Py < b (i + X5 =)

> €+ 2HAin€ + 0(62).
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3. Error analysis. Throughout, we use the conventional error model of floating-point arithmetic
in which the evaluation of an expression in floating-point arithmetic is denoted by fi(-), with

fllaob)=(aob)(1+6), [6|<u, o=+ —x%/

(see, for example, [8]). Here u is the unit roundoff of the machine being employed.
Unless otherwise mentioned, in this section an unsubscripted norm denotes

| Al := max; ;

aij|.
Note that for this norm, the best inequality is
IAB] < nl|A[[[| B,

where A € R™*™ and B € R™*P. 1t is well known that this norm is not consistent, but for sparse
matrices it is simple and proper choice.

Based on fast matrix multiplication techniques, the use of BLAS3 affects the stability only insofar
as it increases the constant terms in the normwise backward error bounds (see [17] for details). We
have the following assumptions about the underlying level-3 BLAS.

(a) The computed approximation C to C' = AB, where A € R™*" and B € R"*?, satisfies

C=AB+AC,  |AC| < ci(m,n, p)ullAll| B]| + O(u?),

where ¢ (m, n,p) denotes a constant depending on m, n, and p.
(b) If T € R™*™ and B € R™*P, then computed solution X to the triangular systems 7'X = B
satisfies
TX =B+AB,  |AB|| < co(m,p)ul|T||| X + O(u?),

where ca(m, p) denotes a constant depending on m and p.

Assumption (b) on the BLAS3 can not be applied in the error analysis of general block LU
factorization because the factor U is not triangular form. In view of this consideration, the partitioned
LU for block tridiagonal matrices is presented because the factors L and U are triangular form, i.e.,
errors incurred at the process of the partitioned LU factorization and substitution can be presented
by applying assumption (b). We first recall error analyses of the partitioned LU factorization for a
general partitioned matrix A € R™"*™and of the corresponding computed solution to Ax = b.

Lemma 3.1 [17]. Under assumptions (a), (b) and

LU = A + A4y, JAAL| < es(kr)ul| La ||| T ]| + O(u?),

the LU factors of A € R™*"™ computed using the partitioned outer product form of LU factorization
with block size ki satisfy LU = A+ AA, where

|AAY < w (8(n, k)|l + 60, EDILIT) + O(u?),
and where
d(n, k1) =14+d(n—ki,k1), 0(k1,k1) =0,
O(n, k1) = max {c3(k1), ca(ki,n — k1), 1 +c1(n — ki, ki,n—k1)+
+6(n— ki, k1) +0(n — ki, k)Y, 0k, k1) = 0.
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1690 CHI-YE WU, TING-ZHU HUANG

The following lemma is Problem 12.6 in [8].
Lemma 3.2 [8]. Under the conditions of Lemma 3.1 the computed solution to Ax = b satisfies

(A+0A4)z=0b,  [0A[ < cou(| Al + |LIT]) + O(u?),
where c,, is a constant depending on n and the block size.

The corresponding error analyses of block tridiagonal matrix A in (1.1) and its linear systems are
presented as follows.

Theorem 3.1. Let the partitioned LU factorization for the block tridiagonal matrix A in (1.1)
run to completion. Then, under assumptions (a) and (b),

A+AA=LU, IAA] < (&5 1IAl+ GlILINU TN + O(w?),
where
0, 1=j=1,
ki,k1), i=4=1,
1, P=i£, ca(k1, k1), 1=
= = i = #1,
ST ok kb (La), i=j-1, T =17
. 0, others,
CQ(kZ‘, kz)kZFL(U”), 1= + 1,

C; = max{l + C1 (ki—ly ki—ly ki), Cg(k‘i, kl)} .
Proof. To save clutter we will omit “+O(u?)”. By the assumption (b), we have
U Ui = I+ AL, IAL] < eahi, kil U 10l 3.1

(%3
where Uigl is the computed quantities for inverting Us;. Thus,

Then R
1Tz < 107 + O(u).

By representation (3.1), it follows that
IAL]| < ea ki, ki)ullUZ 11Tl
Similarly, we get

UJIUu = Ii -+ AIZ', HALH S Cg(ki, kZ)UHUZZIHHUMH = Cg(ki, kz)n(Uu)u (3.2)

A similar assertion holds for the following case:
Lyli;' =L+ AL, ||AL| < eaki, ki)ul| L ||| L || = 2k, ki) w(Lii)u. (3.3)
By the process of partitioned factorization gives
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BoU Uy = By + ABy,
. (3.4)
LHLilCl =C1 + ACh.
From representations (2.2)—(2.4), we obtain

|ABa|| < ca(k1, k1)k1k(Ur)|| Bazlu,
[ACH]| < ok, k1) k1k(La)[|Crllu.

By assumption (b), we can get the bound for A A; as follows:
[AA:]] < ca(kr, k1 )ul Laa [[[[Una |-

For AB3, AAs and AC5, because of some errors incurred at the process of multiplication and

subtraction of the matrices and the LU factorization for Ay — BU11 ~1(C}, they are different from
AB;y, AA; and ACH, respectively. Let

LoyUyz = BoU 'L CL = H
Then the computed approximate H satisfies
BoUi' Lyl O+ AH = H, || AH]| < ex(ky, by, ko)ul BaUR L1 Gl

Let
Ay — H =G,

Then the computed approximate G to G satisfies
Ay = H+AG =G, |AG| < ul]|A2| + || H).
That is,

A —BUlL 101+ AG =G,
2o ! (3.5)

IAG] < (|| A2]| + (1 + ex(kr, ki, k2)) | B2Upy (|1 L33 Call).-
Applying the LU factorization for G gives
G+ AG" = LUy, IAG"|| < ea(ka, ko)u|| Loal||| Usz]|-
Combining (3.1) with (3.2), it follows that
Ay + AAg = LoglUs + Bzﬁﬂliflcl,
1A Az || < u(l| Azl + (1 + er (ki ki, ko)) [ BoUp I L3 Call + 2z, ko) || Laa[[|Uzz|))-

From the factors Ln, U11, ng and U22 obtained in the process of the factorization, it is conspicuous
that L11 and U11 are different from ng and Ugg, respectively. For the latter contain the errors
incurred at multiplication and subtraction beside the course of factorization. For AA;, 3 <1 < s,
the similar results hold
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IAA < u(l|Aill + (1 + ex(kioy, ki1, k)| BiU; L ;4 [l x
|ILiy i1 Cicall + caka, k)| Ll || Uil) <
< ull|Aill + el Lii—1 | 1Ui—1i-1ll + (| L[| Uil])),

where ¢; = max {1 + ¢1(kij—1, ki—1, ki), ca(ki, k;)} . For AB;41 and AC; forall 2 <i<s—1, we
have

IAB; 1| < calki, ki) ki (Usi)|| Biva,iv||u,
|ACH| < calks, ki)kik(Lii) || Ci|u.

Therefore
[AA[ < (& IlAll + G I LT D,
where
0, i1=7=1,
CQ(k17k1)7 1= :17
1? Z = ] 7& 17

ca(ks, ki)kik(Ly;), 1=j—1,
0, others.

kCg(ki,]f/'i)]{Z'I{(UM'), = ] + 1,

Theorem 3.1 is proved.
Remark 3.1. Comparing Lemma 3.1 with Theorem 3.1, we know the following comments.
1) The assumption of Lemma 3.1

Luln = A+ A4, [|AAY] < es(Ba)ull Lu [0 ]| + O(u?),

is omitted in Theorem 3.1. Based on this point, the assumptions of the latter are weaker than those
of the former.

2) It is conspicuous that the proof of the latter is different from that of the former.

3) In the result of the former, the computed approximate L and U are applied, however, the exact
quantities L and U are used in that of the latter.

From Theorem 3.1, we have the following assertion on block tridiagonal linear systems. Note
that AL and AU are produced in solving Ly = b and Uz = y, respectively.

Theorem 3.2. Let A be as in (1.1), and suppose that the partitioned LU factorization computes
an approximate solution & to Ax = b, where & is the exact solution of the system (A + §A)z = b.
Then

I0A]l < (&Il + 035 | LINU 1w + O(u?),

& — |
I

< n ((gum(a) + 22w(0) + (G + ) LIV IIAT ) ut O,

where 6;5 = Cij + Yons/u.
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Proof. By the assumption, it follows that
(L + AL)U + AU)z = b.

Then
0A =AA+ ALU + LAU + ALAU. (3.6)

In the following proof we need the bounds for AL and AU. Applying the factorization and the result
of [18], it follows that

A nu A
(U + AUz =y, AU < - 7).
—nu
For a given 4, we have
(Ui + AUy =9, AU < < 2|0,
—nu
Thus,
(Us + AU) ... (U + AUy )z = v,
nsu | N R
|AU| < . nu’Us, UL < slU,
where v,s = nsu/(1 — nsu). By the definition of norm, we get
IAU]| < s U]I- (3.7)
On the other hand, we obtain
(Li + ALY ... (Ls+ ALJy =b,  [|AL|l < sl L. (3.8)

Combining (3.6), (3.7) with (3.8), by Theorem 3.1, it follows that
I8A] < (€511 All + Gl LINTUID® + (23ms + )0l LT <
< (&l ANl + 0 I LINTU 1w,

where ;5 = (i + Yonsn/u and 27,5 + 7,%8 < vons [8, 9]. The following proof refers to the relative
error. By Higham [10], we have

& — || < [A"Y(AA+ ALU) + U AU||||2]- (3.9)
Applying Theorem 3.1, from (3.7) and (3.8), it follows that

& — ]

< n((&sm(A) + 225 @)) + (G4 + =) IZIT A7) w.

1] u

Theorem 3.2 is proved.

Actually, for k; = 1, 1 < ¢ < s, there exists a relationship between x(U) and x(A) and ||L|| <1
holds when the partial pivoting strategy is applied during the factorization, then the relative error
mentioned above can be O(k(A)u). On the other hand, the triangular form of the factors L; and U;
of the partitioned LU factorization in this paper advantages the relative error ||z — z||/||Z||.
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1694 CHI-YE WU, TING-ZHU HUANG

Remark 3.2. Comparing Lemma 3.2 with Theorem 3.2, we have the following comments besides
the first comment in Remark 3.1.

1. The coefficient ¢, of Lemma 3.2 is a faint constant, however, those of Theorem 3.2 are given
exactly.

2. In the latter the relative error of solution is also considered, however, the form is not referred
to.

4. Numerical experiments. In this section, applying MATLAB 6.5, we illustrate theory results
on backward error generated from the partitioned LU factorization for block tridiagonal matrices and
on the relative error of solution to linear systems.

Example 4.1. Let block tridiagonal matrices be generated from the discretization of partial
differential equation —Awu = f, where A; = tridiag(—1,4, —1), xk,. Some results corresponding to
the example are listed in Table 4.1.

Table 4.1

Size IA= L+l | llz—&l/2]
900 x 900 | 1.7764e — 015 | 2.2204e — 015
1600 x 1600 | 2.6645¢ — 015 | 1.0880e — 014

3600 x 3600 | 3.5527e — 015 | 1.4655¢e — 014

Example 4.2. Let A be random block tridiagonal matrices, where A;, B; and C; are random
matrices with approximately 0.8 x k; x k;, 0.2 x k; X k;—1 and 0.2 X k;—1 X k; uniformly distributed
nonzero entries, respectively. The results listed in Table 2.

Table 4.2

Size IA= L+l | llz—&l/|2]

900 x 900 | 5.6843e — 014 | 3.4195e¢ — 013
1600 x 1600 | 1.2967e — 013 | 1.2765e — 012
3600 x 3600 | 8.1712e — 014 | 3.3598e — 012

From the results as above, it shows that the errors |A — L+ U]|| and ||z — &||/||2|| are very small.
However, we can not say that the partitioned LU factorization must be stable, because the backward
error contains || L||. For example,

e 0 1 O
0 € 0 1
1 0 € 0 1 O
A - 9
0O 1 0 €€ 0 1
1 0 1 0
O 1 0 1
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where ¢ is sufficient small. Applying the partitioned LU factorization in this paper gives

1
1
1
- 1
€
L=1ILiLoLs = 1 1
€
€ 1
e —1 .
1
e -1

Hence, ||L|| is boundless when e is sufficient small.
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