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APPLICATION OF FABER POLYNOMIALS TO APPROXIMATE SOLUTION
OF THE RIEMANN PROBLEM

3ACTOCYBAHHSA NMOJITHOMIB ®ABEPA 10 HABJIMKEHOI'O PO3B’AA3AHHSA
ITPOBJIEMHA PIMAHA

In the paper, Faber polynomials are used to derive an approximate solution of the Riemann problem on a Lyapunov curve.
Moreover, an estimation of the error of the approximated solution is presented and proved.

[Nomiromu ®abepa 3aCTOCOBAHO AJISI OTPUMaHHS HAOIMKEHOTO PO3B’ 3Ky mpodnemu PimMana Ha kpusiid JlsmynoBa. Hage-
JIEHO 1 OOTPYHTOBAHO OI[IHKY MOXHOKH [HOTO HAOIMKEHOTO PO3B’SI3KY.

1. Introduction. Let L be a closed Lyapunov curve on the complex plane and G(t) # 0 and
g(t) be given functions of Holder continuous class H(u), 0 < p < 1, defined on L. The Riemann
boundary-value problem for analytic functions consists in finding a pair of functions F*(z), z € DT,
and F~(z), z € D, analytic on the inside (D) and outside (D) of the curve L, respectively,
such that the following condition is fulfilled

FT(t)=G@)F~(t)+ g(t), F(0)=0, telL. (1)

Let us recall that a simple continuous curve is called Lyapunov curve if it satisfies the following
conditions:

(i) at every point of L there exists a well-defined tangent,

(ii) the angle 6(s) between OX axis and the tangent to L at the point M whose distance from
a fixed point, measured along the curve L, is equal to s, satisfies

10(s2) — 0(s1)| < kls1 —s2]%, O0<a<l.

The Riemann problem (1) has numerous applications [8, 22, 6, 21]. The main arise in the theory
of singular integral equations. The homogeneous Riemann problem ( g(t) = 0) was first considered
by Hilbert [11], and the nonhomogeneous problem (1) by Privalov [23]. They reduced it to the
problem of solving integral equations. Next, Gakhov in the monograph [7] presented an effective
solution of (1) in terms of Cauchy type integrals.

We will recall this solution. Let » = IndG(¢) > 0, then the solution has the following
form [8, 22]:

F(2) = X3 (2) (¥%(2) + Pr1(2)), @
where
XT(z) =expl'*(2), z€ DT, X (2)=2"expl' (2), z€ D, 3)
P, 1(2) =90 +mz+...+7,12%% and 79,71, .. .,7_1 are arbitrary constants. Here
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In (777G
Fi(z) = 217”/ n(TT_ Z(T)) dr, z€ D+, )
L
and
1 9(7)
2/X+(T T—2 € D7, ®)
L

If 3 < 0 then the solution F'*(z), given by the formula (2) with P,,_1(z) = 0, exists if and only
if the following conditions hold:

g(7)

1 .
XJF(T)TJ dr =0, j=1,2,...,|x. (6)

Over the last decades the Riemann problem has been intensively investigated. Many generaliza-
tions and modifications can be found in the literature [6, 20]. One of the most famous problem is the
nonlinear conjugation problem of power type [3, 21]. Many research has been done under various as-
sumptions about the curve and coefficients [13, 14]. However, even in the classical Riemann problem
the Cauchy-type integrals occurring in (4), (5) have very complicated forms. Their exact values can
be calculated only in special cases. Therefore, to solve the problem (1), we apply the approximate
methods [2]. Well-known numerical solutions of the problem (1) have been constructed for the case
of zero index and the case when the contour is a circle or a segment of a real line [24, 25].

In this paper Faber polynomials are used to derive an approximate solution of the boundary
problem (1) on any Lyapunov curve in the case of an arbitrary index. Moreover, the convergence of
the approximate solution is proved and the rate of convergence is established.

Faber polynomials and their numerous modifications are a very useful tool in modern investigation
of analytic functions [18, 25] and approximation theory. One can find their applications to a numerical
solution of the Dirichlet problem in the plane [4], approximate solutions of singular integral equations
[17, 26] and many other numerical methods for analytic functions (see monograph by P. K. Suetin [25]
and papers [1, 5, 9, 10, 12, 15, 16, 19]).

2. Approximate solution. If 5 > 0 then the right-hand side of the formula (2) contains s
arbitrary constants. Therefore, we have to find the conditions for the uniqueness of the solution. In
our opinion, the most convenient conditions are the following:

—Res (F(2)2 ) = 4;, j=12,...,5, (7

where A;,j =1,2,..., s, are given numbers.
By (2), taking into account the Laurent expansions of X ~(z) and ¥~ (z) about the point z = oo,
1e.,

1
X*(z)=7(1+%+%+...),

z

h h
U (2) = 71_’_72_’_
2
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from (7) we derive the system of linear equations
A= V-1,
A2 = P1Yse—1 + Va2,

Ay =Du1Ve—1 + 0171 + - - + Y0-

It enables us to compute the unknown coefficients g, Y1, . .-, Vse—1-

In what follows, it will be convenient to have an expansion in Faber series of the function F'*(z)
defined by (2). For this purpose, we first find the expansion of the function I'*(z) . By Theorem 6
from [25, p. 192] we obtain

I't(2) = f: ap®(2), z€ DT, (®)
k=0
h
o L1 [In(r*G(T) & (rydr = L In [(p(8) *Gle(®)]
M i Qk+1(7) C2mi thtl ’
L [t|=1
d
an ) oy .
r (Z):Zqﬂf(z)’ z€ D, )
k=1
where
by = 2% / In (r#G(r)) 85 (1)@ (7) dr = 2% In [~ ()G (t))] £+ dr.
L t]=1

The function w = ®(z) is a Riemann mapping, i.e., a conformal and univalent mapping from D~
of C, onto the exterior of the unit circle |w| > 1 of C,,, while ¢(¢) is a limit value of the inverse
function z = ¢(w), and ®x(z), k= 0,1,..., are the Faber polynomials on the area D*.

Similarly as in the previous case, we have the following expansions:

UH(z) =Y op®i(z), z€ DT, (10)
k=0
[o@) d _
‘I’_(Z):Zq)k?z)a ze D, (11)
k=1
where
o L[ gle(®)  dr
M o X+ (p(t)) thtt’
It|=1
1 9(e®) ks
lt|=1
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Thus, in the case of nonnegative index » > 0, the desired functions F*(z) can be expressed as

(2) = exp <Z ak®k(z)> (Z cxPr(2) + P%_1(2)>, z € D¥,
k=0 k=0

F~(z) =2 "exp <Z ) (Z —1(2 )), z€D.
k

As the approximate solution of the problem (1), (7), we take the function

FE(2) = X (2)(VE + P.a(2)), 2z € DF, (12)
where
Xy(z) =exply(2), X, (2) =2z "expl; (2),
L= (13)
Z arp P T, (2) ; ()’
and

ORI MO AOE S

/ p(t)) L1 9(e®) k-1,
" 2mi XJr (p(1)) F i Xit (p(1)) '
It|=1 It|=1

If 2« < O then an approximate solution of the problem (1) can be found from the boundary condition

FH(0) = Gu®F; 0+ 9 + X0 (F+ 5+ +75). tel, (14)

where
1

Gn(t) = X, (1) (X, (1)
and the functions X5 (¢) are defined by (13). The coefficients q1, go, . . . ;4| should be chosen in
such a way that the solvability conditions for Eq. (14) are satisfied. These conditions, by (6), have
the form

1

211
L

Qo @ ql%l) j—1 / 9(7) 1
— 4+ =4 ...+ —— d i—tq =1,2,. .
(T + =3 + + 1 T T = “om +<T)T T, j= . ||

Hence, we obtain

) Jj—1
g d =1,2,. .
4 27TZ/X+TT T -1

In accordance with (2), the solution of the problem (14) has the following structure:
Fy(2) = X3 (2)¥;(2), z€D, (15)
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where X (t) are defined by (13), and

. B n - B n By

\I/n (Z) - zak‘q)k(z)7 \Iln (Z) - (I)k(z)’
k=0 k=1
U= o ( )tk+1 B 2mi ®)
It|=1 lt|=1
and

3 p
Ho(t) 9(90( )) a1 q2 ||

T XS (e(t) e " (p(1))? M (o)

3. Estimation of errors. Now we will provide the error estimations of the approximate solutions
obtained above. Let the function G*(t) = In(t~*G(t)),t € L, be continuously differentiable up to
the order r and the rth derivative fulfill the Holder inequality with the constant 0 < p < 1. Then we

say that the function G*(t) belongs to the class W" H*. According to [25, p. 262] we have

n 1 7
TF(2) = Y ar®i(2) §K1m7 z € Dt,
k=0
RN UL P ORI
(Z)_Zq)k(z) = 27’LT+M’ zZ € )
k=1

where K; are constants independent of n. Taking into account the inequality
[1—ef[<(e=D)lz], |2/ <1,
and using the maximum modulus principle, we obtain

Inn
n

+ + + + +
‘X (z)—Xn(z)}gmaX‘X (z) — X (z)|§K3W, z € D™,

telL

Similarly, we get the estimations for (16) and (17), i.e.,

n
Inn —
Ut (z) - chq)k(z) < K4Wa z € D*,
k=0
n
_ dp Inn —
U (z)—k_l(bk(z) §K5nT+u’ z€ D™,

whenever g(t) € W"H". To estimate the modulus | ¥ (2) — U (z)

Z cPr(z) — Z i Pr(2).
k=0 k=0

By [25, p. 155], we have

(16)

(17

, we first estimate the difference

ISSN 1027-3190.  Yxp. mam. ocypu., 2016, m. 68, Ne 12



APPLICATION OF FABER POLYNOMIALS TO APPROXIMATE SOLUTION OF THE RIEMANN PROBLEM 1701

n n

D a®i(z) = > ci®i(2)

k=0 k=0

X)) = XH(1) & Pulz) .,
n (7) ( )Z@k_’ig()ﬂq’(ﬂ

<

|dr| <

Hence, we get

and

Now we can estimate the modulus |F*(z) — Fi¥(z)|. We obtain
|F=(2) = Fy(2)]| =
= |XH(2) (T5(2) + P (2)) — X (2) (WE () + Paca ()] =

= [ (XF(2) T (2) = X3 ()T (2)) + (X5 (2)0F(2) — Xi(Z)‘I’i(Z)) +

n

+ (XF(2) — X (2)) Pu1(2)] < Kn—o0, z¢€ D (18)

Remark 1. 1If » < 0 then the estimation (18) holds as well.

We have thereby proved the following theorem.

Theorem 1. Let the functions G*(t) = In(t=*G(t)) and ¢(t) appearing in (1) belong to the class
WTrH!, r>0,0 < pu <1, and let F*(2), F(2) denote the exact and approximate solutions (2)
and (12), respectively. Then the estimation (18) holds.
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. . . . 5 3
4. Numerical experiment. Let L be an ellipse with foci +1 and semiaxes a = — and b = —.

4 4
We find the exact and approximate solutions of the following Riemann problem:
t B —t2+1
Fft)= ——F () + ————, tclL.
O =g O+ t(t —1)
t -2+ 1 ,
Here G(t) R g(t) = T Moreover, the ellipse L can be expressed by the
1 ) 1 .
equation t = 3 2¢i0 4 26_’9>, 0<6<2r.

Functions ®(z) and ¢(w) have the forms

Furthermore, in this case Faber polynomials have the form

@n(z) :ﬁTn(Z)v n:17277

where T),(z), —1 < x <1 are the Chebyshev polynomials of the first kind.

It can be easily obtained that the index sz = —1 and the conditions of solvability (6) are satisfied
Applying the formulae (3)—(5) we have

2
I(2)=0, zeD", DI (z)=-In—

a1 ze€ D™,
+ + - 1 -
X" (2)=1, zeDT, X (z)=z—-, zeD™,
z
Ut (z)=2 =z2z€DT, U (2) = — ! , z€D.
z(z—1)
Finally from (2), with P,,_;(z) = 0, we obtain
1
F(z)=2 zeD*, F()=-"1_ seD".
z
To find the approximate solution, we determine the functions ') (2), T'; () and ¥ (2), ¥, (2) as
follows:
EntLJrQ
$ —4
If(z)=0, zeD", T,(x)= >

, z€ D™,
— (2k-1)(z+ V22— 1)%k—2

(1 - (=1)F) — 2k
UH(z2)=2 zeDF, T (2)=) - , zeD.
; (z 4+ V22 —1)k
The approximate solution F(z) can be obtained from (15).

The exact and approximate values of the function F'~(z) for chosen points in D~ with n = 20,

are presented in Table 1.
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Table 1
t=2.00 F~(t) = —0.7500000000
F(t) = —0.7499999999
t=1.62+0.71: ~(t) = —0.7378050367 + 0.46154769361

ESRES
I

S

t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t

—0.7378050374 + 0.4615476937%
—0.0424777057 4 1.17470327844
—0.0424777052 4 1.1747033045¢
0.6913297244 + 0.1803529499:
0.6913297119 + 0.18035293461
0.3008804422 — 0.00875818941
0.3008804418 — 0.00875818931
0.2500000000

0.2500000000

= (0.3008804422 + 0.00875818941
= (0.3008804418 + 0.00875818931%
= 0.6913297244 — 0.1803529499:
= 0.6913297119 — 0.18035293464
—0.0424777057 — 1.17470327844
—0.0424777052 — 1.17470330451¢
—0.7378050367 — 0.46154769361
—0.7378050374 — 0.46154769371

t =0.618 4+ 1.141¢

&

S

t=—0.618 4+ 1.141:

=
I

t=-1.6240.71:

o
Il

t=-2.00

CE
I

AAAA/_\AAA/_\/_\AA,_\,_\/_\/_\A,_\/_\/_\

t=-1.62—-0.71¢

5

S

t=—0.618 — 1.141:

S S

S

t =0.618 —1.141:

7

t=162-0.71

K

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)=
)=
)
)
)
)

=
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